

陰イオンガスSF₆を用いた

暗黒物質探索におけるµ-TPC開発

東野 聡A,D

身内 賢太朗A 石浦 宏尚A 島田 拓弥A 窪田 諒A 中山 郁香A 池田 智法B 坂下 健C,D 庄子 正剛C,D

神戸大理A 京大理B KEKC Open-ItD

2021年 9月 14日

日本物理学会 2021年秋季大会 @オンライン 2021年9月14-17日

講演番号:14pT4-7

方向に感度を持つ暗黒物質 (DM) 直接探索

- •原子核反跳からDM (WIMP) 到来方向を知る
 - ➡異方性がDMの強い証拠に
 - ➡ニュートリノBGとの分離も可能

WIMP wind from Cygnus!

NEWAGE

- •神岡にて反跳原子核の3次元飛跡検出
- ガスTPC + 400 µm 間隔ストリップ検出器 (µ-TPC)
 - ▶ 計768 ch × 2 (2次元) 読み出し
- 測れるのは各ヒットの相対時間
 - ►ドリフト方向の絶対座標はわからない

NEWAGE

- •神岡にて反跳原子核の3次元飛跡検出
- ガスTPC + 400 µm 間隔ストリップ検出器 (µ-TPC)
 - ▶ 計768 ch × 2 (2次元) 読み出し
- 測れるのは各ヒットの相対時間
 - ►ドリフト方向の絶対座標はわからない

陰イオンガス:SF₆

これまでの取り組み

T. Ikeda et al 2020 JINST 15 P07015

•小型検出器開発、SF₆ガスTPCの性能評価

measurement

ショーでの取り組み

 \triangleright

RS20

Ethernet

Analog Analog Analog

FPGA

T. Ikeda et al 2020 JINST 15 P07015

3D track reconstruction

absolute Z position measurement

多チャンネルアンプASIC: LTARS2014 (KEK, 岩手大)

- LAr TPC用に設計されたため、陰イオンガスTPC用に
 新規開発が必要
- ・時定数↑、S/N↓を要求

新規エレクトロニクス開発

● 時定数: 4 µs, S/N > 20 を満たす新型ASIC: LTARS2018 <mark>≫</mark> チェンバー

➡T. Kishishita et al 2020 JINST 15 T09009

新規エレクトロニクス開発

● 時定数: 4 µs, S/N > 20 を満たす新型ASIC: LTARS2018 ▼ チェンバー

・DM探索実験に実用できる検出器開発

➡現状外部トリガーのみ → 長飛跡のα線のみ検出できていた

➡セルフトリガーを実装し、原子核反跳を検出する

・DM探索実験に実用できる検出器開発

➡現状外部トリガーのみ → 長飛跡のα線のみ検出できていた

➡セルフトリガーを実装し、原子核反跳を検出する

・原子核反跳イベント測定 ~ 252Cf線源を用いたデータ収集~

セルフトリガー機能 (トリガープロセッサ)

以下の条件を満たすときセルフトリガー発行

- ・あるチャンネルのADC値とoffset (常時計算)の差が[TRG_THR]以上
- ・上記を満たすチャンネルが[NUM_CH]以上

ソフトウェアから指定可

トリガープロセッサ

トリガー判定の前の1023クロックぶんでoffset計算

➡DAQセッションではないので詳しい説明はスキップします

トリガープロセッサの動作確認

1. ファームウェア開発ツール (Xilinx, Vivado) のSimulation

		193,970.000 ns					
Name	Value		193,900.000	ns	194,000.000 ns	194,100.000 ns	194, 200
🐌 Clock (50 MHz)	1						
14 RST	0						
SELF_TRIGGER	0						
> 🔮 全ChのDecision数	00			00		V08 V	00
🕌 とあるChのDecision	0						
▶ 🗑 とあるChのADC値	4095	255		ΞX		255	
→ 🝯 とあるChのOffset	255				255		

アルファ線照射実験
 (実機に実装して確認)

準備OK!

・原子核反跳イベント測定 ~ ²⁵²Cf線源 (中性子) を用いたデータ収集 ~

(準備) エネルギー較正

- α線が有感領域内で失う
 エネルギー計算
 - ➡Geant4 simulationを使用

252Cf線源試験@神戸大

- •線源からの中性子が原子核反跳を起こす事象観測を目指す
- セルフトリガー設定
- threshold: 150 mV
- ・ヒットチャンネル数:3

17

- ・飛跡長とエネルギー損失からフッ素原子核反跳同定
 - ➡SRIM (シミュレーションソフトウェア) による計算値と比較

- 陰イオンガスµ-TPC開発、DM探索実験への実用化に向け整備中
 - ➡中性子線源を用いた原子核反跳でDM由来の信号をemulate

▶ 信号を検出するためにセルフトリガー機構が必要

- セルフトリガーを実装すべくファームウェア開発実施
- 中性子線源を用いて動作確認し、原子核反跳の検出に成功!

→ DM探索実験に実用できる検出器を開発した

▶ 今後はゲインを上げてダブルピークからドリフト方向の絶対位置決定を目指す

Event display (1)

Event display (2)

Expected limit

