宇宙線ミューオンが起こす光生成反応の探索

 1843105s 安 博充

 1863121s 山下 智愛

 1823185s 濱田 悠斗

2022 年 4 月 14 日

目次

第1章	導入	1
1.1	光生成反応	1
第2章	散乱断面積の計算	2
2.1	散乱断面積の計算に用いる仮定	2
2.2	生成断面積の計算枠組み....................................	3
2.3	Φ の考察	4
2.4	断面積の計算に用いる近似....................................	4
2.5	y と Q^2 の積分範囲	5
2.6	断面積の計算	6
2.7	予定する検出器でのイベント数の見積もり	6
第3章	散乱角度	7
3.1	光生成反応の散乱角度	7
3.2	γN の崩壊で生成される π, p について \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	9
3.3	実験室系にプーストされた γ^*N から生成される π の散乱角 $\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots$	11
第4章	装置	13
第4章 4.1	装置 探索装置の概要	13 13
第4章 4.1 4.2	装置 探索装置の概要	13 13 14
第4章 4.1 4.2 4.3	装置 探索装置の概要	13 13 14 16
第4章 4.1 4.2 4.3 4.4	装置 探索装置の概要	 13 13 14 16 17
第4章 4.1 4.2 4.3 4.4 第5章	 装置 探索装置の概要 装置詳細 データ取得のセットアップ MPPC におけるゲインの個体差 シミュレーション 	 13 13 14 16 17 19
第4章 4.1 4.2 4.3 4.4 第5章 5.1	装置 探索装置の概要	 13 14 16 17 19 19
第4章 4.1 4.2 4.3 4.4 第5章 5.1 5.2	装置 探索装置の概要	 13 14 16 17 19 19 19
第4章 4.1 4.2 4.3 4.4 第5章 5.1 5.2 5.3	装置 探索装置の概要	 13 13 14 16 17 19 19 19 20
第4章 4.1 4.2 4.3 4.4 第5章 5.1 5.2 5.3 第6章	装置 探索装置の概要	 13 13 14 16 17 19 19 19 20 21
第4章 4.1 4.2 4.3 4.4 第5章 5.1 5.2 5.3 第6章 6.1	装置 探索装置の概要	 13 13 14 16 17 19 19 19 20 21 21
第4章 4.1 4.2 4.3 4.4 第5章 5.1 5.2 5.3 第6章 6.1 6.2	装置 探索装置の概要	 13 13 14 16 17 19 19 19 20 21 21 21
第4章 4.1 4.2 4.3 4.4 第5章 5.1 5.2 5.3 第6章 6.1 6.2 6.3	装置 探索装置の概要	 13 13 14 16 17 19 19 19 20 21 21 21 22

第7章	結論			
第8章	謝辞			

26 27 概要

核子と宇宙線ミューオンから出る光子が行う反応に光生成反応がある.この反応は核子とミューオンから出る光子との反応である.核子と光子からハドロン中間状態ができ,中間状態からの崩壊により粒子が生成される.本研究ではこの光生成反応の飛跡を捉える.

第1章

導入

1.1 光生成反応

宇宙線ミューオンが核子 (陽子,中性子) と起こす反応に光生成反応がある. この反応は核子とミューオンから出てくる光子との反応である. また,この反応によりできるハドロン中間状態 (γ^*N)は,核子 (N)と光子 (γ)の不変質量が小さい場合は短寿命の共鳴状態に近い. また,終状態にはハドロンの中でも最も質量の小さいパイオン (π)と核子 (p,n)の2つの粒子が出てくると期待される. 本実験では荷電粒子が2つ出てくる π, p が生成される反応に着目する.

図 1.1 光生成反応のダイアグラム

第2章

散乱断面積の計算

計算するための仮定や使用する式について説明し散乱断面積を導出し,本研究で用いた検出器でのイベント 数の見積もりを行う.

2.1 散乱断面積の計算に用いる仮定

2.1.1 ハドロン系の質量の仮定

2 粒子以上の多粒子状態に崩壊する場合、ハドロン中間状態の質量 m_W は バリオン数を保存し最も軽い 2 粒子の組み合わせである π の質量 m_{π} と陽子の質量 m_p の合計よりも大きくなければならない.

$$m_W \ge m_\pi + m_p \approx 0.14 + 0.94 = 1.08 \text{ GeV}$$
 (2.1)

よって、ハドロン系の質量は $m_W \ge 1.08$ GeV を仮定する.

2.1.2 光子のエネルギーの仮定

図 2.1 のように核子と光子の四元運動量を考える.

図 2.1 ハドロン中間状態と核子と光子の図

核子、光子の四元運動量をそれぞれ p_N, p_γ とすると、

$$p_N = (m_N, 0, 0), \ p_\gamma = (E_\gamma, 0, E_\gamma)$$
(2.2)

とかける. m_W との関係は

$$m_W^2 = (p_N + p_\gamma)^2 = p_N^2 + 2p_N p_\gamma + p_\gamma^2 = 2m_N E_\gamma + m_N^2$$
(2.3)

 $m_N = 0.94 \text{ GeV}$ であるから、2.3式を用いると $m_W = 1.08 \text{ GeV}$ の時

$$E_{\gamma} \approx 0.23 \text{ GeV}$$
 (2.4)

よって、光生成反応を観測するために必要な光子のエネルギー E_{γ} は $E_{\gamma} \ge 0.23$ GeV となる.

2.1.3 宇宙線 µ の仮定

宇宙線 μ のエネルギー E_{μ} は E_{γ} よりも遥かに大きいエネルギーを持つ必要がある. そのため $E_{\mu} = 1.5$ GeV とおく. また $E_{\mu} = 1.5$ GeV 以上となる μ の割合 R は図 2.2 より $R \approx 0.56$ と頻度が高めである.

図 2.2 宇宙線 *μ* のエネルギー分布 [5]

 E_{μ} と散乱後の μ のエネルギー E'_{μ} との比を y として, その値は

$$y = \frac{E_{\mu} - E'_{\mu}}{E_{\mu}} \approx 0.2$$
 (2.5)

となる.

2.2 生成断面積の計算枠組み

 $\mu \ge N$ の散乱断面積 $\sigma_{\mu N}$ は μ から γ を出す確率 $\Phi \ge$, $\gamma \ge N$ との散乱断面積 $\sigma_{tot}(\gamma^* N)$ の積で表すこと ができる. [1, 2]

$$\sigma_{\mu N} = \int dy \sigma_{tot}(\gamma^* N) \Phi \tag{2.6}$$

Φ は以下のように表される.

$$\Phi(y) = \frac{\alpha}{\pi y} \int \frac{dQ^2}{Q^2} \left[(1-y)(1-\frac{Q_{min}^2}{Q^2}) + \frac{y^2}{2} \right]$$
(2.7)

 $Q^2 = -(k - k')^2$ を運動量移行の2乗の負数とした.

2.3 Φの考察

 Φ の積分前の値は y を定数とすると図 2.3 のようになる.

このグラフから Φ は y が小さいところで大きくなる. つまり, E_{μ} が E_{γ} より遥かに大きくなるところで $\sigma_{\mu N}$ が大きくなる. また, Q^2 が小さくなるところで大きくなっている. Q^2 は 0 でない最小値を持つ. この最小 値を $Q^2_{\min}(y)$ とすると, 以下のように表される.

$$Q_{\min}^2 = \frac{m_p^2 y^2}{1 - y} \tag{2.8}$$

2.4 断面積の計算に用いる近似

2.3 章で示したように断面積を概算するには y が小さいところを見積もればよいことがわかる. 宇宙線 ミューオンのエネルギーを 1.5 GeV としたことから, 0.2 < y < 0.33 に対応する $E_{\gamma} \in [300, 500]$ MeV の範囲の断面積を見積もる. 図 2.4 は核子 1 個あたりの全光核反応断面積と光子のエネルギーの関係であり, これを用いて $\gamma \ge N$ の反応断面積 $\sigma_{tot}(\gamma^*N) \ge \sigma_{tot}(\gamma^*N) = 0.3$ mb と近似する.

図 2.4 核子1個あたりの全光核反応断面積と光子のエネルギーの関係

 $E_{\mu} = 1.5 {
m GeV}, E_{\gamma} \in [0.3, 0.5] {
m GeV}$ の仮定から y の範囲は

$$y = \frac{E_{\gamma}}{E_{\mu}} \tag{2.9}$$

を用いることで $y \in [0.20, 0.33]$ となる.

2.5 y と Q² の積分範囲

 m_W の関係式

$$m_W = \sqrt{m_p^2 + 2m_p E_\mu y - Q^2} \tag{2.10}$$

は $m_W = 1.08 \text{GeV}$ とした時,図 2.5 のようになる.

図 2.5 $m_W = \sqrt{m_p^2 + 2m_p E_\mu y - Q^2}$ のyを固定した関係式

 $m_W = 1.08 \text{GeV}$ の直線と y の値ごとの直線が交わる Q^2 の値が Q^2 の最大値になるのでこれを Q^2_{max} とする. よって,積分範囲は $y \in [0.20, 0.33], Q^2 \in [Q^2_{\text{min}}(y), Q^2_{\text{max}}(y)]$ となる.

2.6 断面積の計算

 $\frac{d^2\sigma}{dydQ^2}$ は図 2.6 のようになる.

これを積分すると、断面積 σ は、 $\sigma \approx 3.3 \times 10^{-28}$ cm² となった.

2.7 予定する検出器でのイベント数の見積もり

関係式

$$-dN = \frac{\rho N_A \sigma}{A} NRV \tag{2.11}$$

から反応式を見積もる. -dN を入射 μ の単位時間あたりの減少分, 検出器の密度 $\rho = 1.0$ g/cm³, 検出器の 質量数 A = 12 g/mol, 検出器の有効体積 V = 7500 cm³, 単位時間・単位面積あたりの入射する μ の数を $N = \frac{1}{10 \times 10}$ 個/s·cm², 1.5GeV 以上のエネルギーを持つ μ の割合を R = 0.56 として代入すると

$$-dN \approx 4.4 \times 10^{-4} \ \texttt{個/s} \tag{2.12}$$

となった. このことから反応するイベントは 10⁴ オーダーに 1 個であることがわかる. 実際の実験での反応数の見積もりは, 6.1 節で述べる.

第3章

散乱角度

3.1 光生成反応の散乱角度

図 3.1 のように実験室系での μ の散乱角 θ , 中間状態 γ^*N 系の散乱角 ϕ を定義する.

図 3.1 散乱角 θ, ϕ の定義

3.1.1 θの取る値

図 3.2 のような運動学変数を考える.[3]

図 3.2 運動学変数の定義

各値に対して以下のような定義を行う. このとき, μ の進行方向の運動量成分を $p_{\parallel},$ 垂直方向の成分を p_{\perp}

として、4 元運動量を $p = (E, p_{\parallel}, p_{\perp})$ とあらわすと、各粒子の運動量は以下の通りとなる.

$$k = (E_{\mu}, p_{\mu}, 0) \tag{3.1}$$

$$k' = (E'_{\mu}, p'_{\mu} \cos \theta, p'_{\mu} \sin \theta) \tag{3.2}$$

$$p = (m_N, 0, 0) \tag{3.3}$$

$$q = k - k' = (E_{\mu} - E'_{\mu}, p_{\mu} - p'_{\mu} \cos \theta, -p'_{\mu} \sin \theta)$$
(3.4)

また, Q^2 は q を用いることにより式 3.5 のように表せる.

$$Q^{2} = -q^{2} = 2E_{\mu}E_{\mu}' - 2m_{\mu}^{2} - 2p_{\mu}p_{\mu}'\cos\theta$$
(3.5)

式 3.5 を θ について解く.

 $E'_{\mu}=E_{\mu}(1-y), p'_{\mu}=\sqrt{E'^2_{\mu}-m^2_{\mu}}$ を用いて E'_{μ}, p'_{μ} を消去すると,

$$\theta = \arccos\left(\frac{2E_{\mu}E'_{\mu} - 2m^2_{\mu} - Q^2}{2p_{\mu}p'_{\mu}}\right)$$
(3.6)

$$= \arccos\left(\frac{-Q^2 - 2m_{\mu}^2 + 2E_{\mu}^2(1-y)}{2\sqrt{E_{\mu}^2 - p_{\mu}^2}\sqrt{E_{\mu}^2(1-y)^2 - m_{\mu}^2}}\right)$$
(3.7)

この θ は図 3.3 のようになる.

図 3.3 μ の散乱角 θ の Q^2 依存性

 θ は y が小さくなると小さくなる. また Q^2 が小さくなると小さくなる. θ は $\theta = [10^\circ, 40^\circ]$ の範囲であることがわかる.

3.1.2 Øの取る値

$$\vec{p_{\mu}} \cdot \vec{p_{W}} = |p_{\mu}||p_{W}|\cos\phi \tag{3.8}$$

から

$$\phi = \arccos\left(\frac{yE_{\mu}^2 + \frac{Q^2}{2}}{\sqrt{(E_{\mu}^2 - m_{\mu}^2)(y^2E_{\mu}^2 + Q^2)}}\right)$$
(3.9)

 ϕ は図 3.4 のようになる.

図 3.4 中間状態の散乱角 ϕ の Q^2 依存性

中間状態の散乱角 ϕ は y が小さくなると大きくなる. また, Q^2 が小さくなると小さくなる. ϕ は $\phi = [30^\circ, 50^\circ]$ の範囲にあることがわかる.

3.2 γN の崩壊で生成される π, p について

3.2.1 γ^*N から生成される π, p の静止系での運動量とエネルギー

図 3.5 静止した γ^*N から生成される π, p

図 3.5 のような静止した γ^*N を考える. $m_W = 1.08$ GeV, $E_\mu = 1.5$ GeV を仮定する. この仮定から y = 0.2 で $Q^2 \approx 0.28$ GeV² となる. それぞれの粒子が持つエネルギーと運動量を導出する. エネルギー保存 則から

$$E_W = E_\pi + E_p \tag{3.10}$$

運動量保存則から

$$p_p = p_\pi \tag{3.11}$$

式 3.10, 3.11 から

$$E_W = E_\pi + \sqrt{m_p^2 + p_p^2}$$
(3.12)

$$= E_{\pi} + \sqrt{m_p^2 + p_{\pi}^2} \tag{3.13}$$

$$= E_{\pi} + \sqrt{m_p^2 + E_{\pi}^2 - m_{\pi}^2} \tag{3.14}$$

 E_{π} について解くと

$$E_{\pi} = \frac{E_W^2 + m_{\pi}^2 - m_p^2}{2E_W} \tag{3.15}$$

同様に E_p を導出すると、

$$E_p = \frac{E_W^2 + m_p^2 - m_\pi^2}{2E_W}$$
(3.16)

運動量は関係式

$$p^2 = \sqrt{E^2 - m^2} \tag{3.17}$$

から見積もる. $E_W = 1.15$ GeV, $m_p = 0.938$ GeV, $m_{\pi} = 0.138$ GeV として代入すると, E = 200.7 MeV, $E_p = 949.0$ MeV, $p = p_p = 145.8$ MeV となる.

3.2.2 実験室系にブーストされた γ^*N から生成される π, p の運動量

図 3.6 実験室系にブーストされた γ^*N から生成される π, p

実験室系にブーストされた γ^*N を考える. ローレンツ変換の式 3.18 を用いて運動量を計算する.

$$\begin{pmatrix} E^* \\ p_{\parallel}^* \end{pmatrix} = \begin{pmatrix} \gamma & -\gamma\beta \\ -\gamma\beta & \gamma \end{pmatrix} \begin{pmatrix} E \\ p_{\parallel} \end{pmatrix}$$
(3.18)

ここで

$$\beta = \frac{p_W}{E_W} = \frac{p_{\gamma} + p_p}{E_{\gamma} + E_p} = 0.24 \tag{3.19}$$

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}} \approx 1.03 \tag{3.20}$$

となる.このことから中間状態はあまりブーストされないことがわかる.

図 3.7 静止した $\gamma^* N$ から出てくる π の散乱角

静止した γ^*N 系から π が出てくる角を θ_{π} として, π の運動量について考える. γ^*N 系の進行方向に対し て垂直な運動量成分を $p_{\pi\perp}$, 平行な運動量成分を $p_{\pi\parallel}$ とすると以下の式が成り立つ.

$$p_{\pi\parallel} = p_{\pi} \cos \theta \tag{3.21}$$

$$p_{\pi\perp} = p_\pi \sin\theta \tag{3.22}$$

3.3 実験室系にブーストされた γ^*N から生成される π の散乱角

ローレンツ変換の式から $p'_{\pi\parallel}$ を導出し, $p_{\pi\perp} = p'_{\pi\perp}$ であるから,

$$p'_{\pi} = \sqrt{p'^2_{\pi\parallel} + p'^2_{\pi\perp}} \tag{3.23}$$

 θ_{π} が等方的に出た時にブーストされた γ^*N から出てくる π の角度を ϕ_{π} とすると,

$$p'_{\pi\parallel} = p'_{\pi} \cos \phi_{\pi} \tag{3.24}$$

よって,

$$\phi = \arccos \frac{p'_{\pi \parallel}}{p'_{\pi}} \tag{3.25}$$

 θ_{π} が等方的に出るとして ϕ_{π} の分布は 3.8 のようになった.

 ϕ_π は 60°付近にピークを持つため主に進行方向成分が大きいが、同時に横方向の運動量成分も大きいことがわかる.

第4章

装置

4.1 探索装置の概要

今回の実験に用いた探索装置の概略図及び座標軸を図 4.1 に、Y 方向から見た図を図 4.2 に示す.

図 4.2 Y 方向から見た装置

実験装置は、2cmのアルミ板を2cm間隔で8段積み上げている.アルミ板の各層には、通過粒子のxy平面

での座標を特定するため、図 4.3 のようにプラスチックシンチレータを逆側に 7 度ずつ傾けたものを 2 層ずつ アルミの間に配置している. この 2 次元飛跡検出器を z 方向に 8 段重ねることで 3 次元飛跡検出器とし反応の 探索を行った. プラスチックシンチレータからの光は波長変換ファイバーによって伝えられ、光検出器である MPPC を用い検出し EASIROC MODULE を用いてデジタル信号として読み出された. また検出装置に入射 する μ 粒子を検出装置の上方から入射し検出器を通過するものに制限するため、装置上部にプラスチックシン チレータを 3 枚配置しトリガーシンチレータとして用いた.

図 4.3 プラスチックシンチレータと光ファイバー

4.2 装置詳細

4.2.1 プラスチックシンチレータ

反応の探索に用いたプラスチックシンチレータの大きさは厚さ 1cm, 長さ 75cm, 幅 4cm である. プラス チックシンチレータは荷電粒子が通過すると電子が励起し,基底状態に戻るときにシンチレーション光と呼ば れる光を発する荷電粒子検出器である. このプラスチックシンチレータを 4 枚を 2 層ずつ 8 段配置し,計 64 枚使用している.

4.2.2 波長変換ファイバー

波長変換ファイバーはプラスチックシンチレータからの光を吸収し、光検出器の感度が良い波長 (400~500nm) に変換する. 直径 1.2mm のものを使用し、装置片側の基盤に取り付けた光検出器にプラスチックシン チレータからの光を導いた. 図 4.3 のように 2 枚重ねたシンチレータは逆側から光を導いた.

4.2.3 MPPC

光検出器として、MPPC(Multi Pixel Photon Counter)を用いた. [6] MPPC は受光面が複数のピクセルからなるフォトンカウンティングデバイスである. 各ピクセルは高い増幅率を持つ半導体光検出器である. 各ピ

クセルにおいて降伏電圧以上で光電子をアバランシェ増幅し、ピクセル内に発生した光電子数によらず同じ波 高を出力する. ピクセルは複数あり、波高は重ね合わせて出力される. この波高から検出した光電子数を見積 もることができる. この MPPC64 個を基板に取り付け、ゴミコネクタを用いてプラスチックシンチレータの 片側から出ている波長変換ファイバーと接続した. ゴミコネクタはプラスチックの2つのパーツからなるコネ クタでファイバーの径と同じ 1.5mm の穴が開いており、ファイバーと MPPC を密着して接続することで光漏 れを防ぐ.

⊠ 4.4 MPPC

図 4.5 アバランシェ増幅

4.2.4 EASIROC

MPPC からの信号の読み出しに EASIROC(Extended Analogue Silicon PM Integrated Read Out Chip) を用いた.最大 64ch の MPPC への電圧の印加や同時読み出しが可能である. [4]

図 4.6 EASIROC を用いて読み出した MPPC の信号

Amp, Shaper, Discriminator が内蔵されており, 光電子数の情報を ADC(Analog to Digital Converter) で, 時間情報を TDC(Time to Digital Converter) で取得できる.

図 4.6 は MPPC に LED の光をあて、 EASIROC を用いて読み出した信号の例である.

MPPC にかける電圧は EASIROC による全チャンネルー律の値の V_0 と, DAC からの出力電圧との間の電圧

を MPPC にかけることによりコントロールした. DAC の入力を n_{DAC} とすると, Input DAC によりコント ロールする電圧 (V_i) は,

$$V_i = -0.0195(n_{DAC}) + 9.4479 \tag{4.1}$$

である. また, $V_i \ge V_0 \ge \text{Bias Voltage}(V)$ の関係は

$$V = V_0 - V_i \tag{4.2}$$

である. DAC の入力を調整することで各 MPPC への Bias Voltage を調整した.

4.2.5 トリガーシンチレータ

図 4.7 は装置を上から見た写真である.装置のすぐ上に、トリガーシンチレータとして厚さ 1cm、長さ 126cm,幅 7cm のプラスチックシンチレータを 3 枚設置した.トリガーシンチレータの大きさは検出器に入射 する *μ* 粒子の方向を限定するため、検出器の *x* 方向の大きさより少し小さく配置している.

図 4.7 トリガーシンチレータの配置

4.2.6 アルミ板

厚さ 2cm, 長さ 100cm, 幅 30cm のアルミの板を 2cm 間隔で 8 段積み上げた. プラスチックシンチレータの 間にアルミの板を用いたのは, 装置の質量を稼ぎ反応を起こしやすくするためである.

4.3 データ取得のセットアップ

図 4.8 は今回の実験におけるデータ取得のセットアップである.

図 4.8 データ取得のセットアップ

装置上部のトリガーシンチレータのいずれかに μ 粒子が入射したとき、データ取得が行われる.トリガー 信号は BRoaD に送られ、測定に必要な Peak Hold、T Stop、Accept 信号が適切な時間遅延させられて EASIROC に送られている. Peak Hold に信号が入ると波高と時間の両方の測定が開始され、T Stop に信号 が入ると測定が止まる. Accept に信号が入ると信号をデジタル値として読み出す. 読み出しの間は次のトリ ガーを入れてはいけないので、BroadIII モジュールを使って Accept のあと 5µs トリガーを抑制している.

4.4 MPPC におけるゲインの個体差

図 4.9 宇宙線 µ 粒子の MPPC における信号

図 4.9 は宇宙線 µ 粒子が検出器に入射したときの MPPC の信号を EASIROC を用いて読み出した時のエ ネルギーのヒストグラムである.測定によって得られたデータは各チャンネル毎に 12bit (4096 段階)の強 度を持っている.ここでは 12bit を 0 から 4095 までの整数で表すことにし、その値のことを ADC 値と呼ぶ. ADC 値は MPPC から得られた信号を EASIROC が増幅、整形し AD 変換を行うことで得られた値である. 荷電粒子が通過したシンチレータは荷電粒子からエネルギーを受け取り、受け取ったエネルギー分の X 線を放 出する. シンチレータが放出した X 線は波長変換ファイバーによって MPPC へと到達する. ADC 値はオフ セットを除けば MPPC からの信号強度 (光電子数), すなわち荷電粒子がシンチレータに渡したエネルギーに おおむね比例している量である.

EASIROC の ADC 値は強度 0 のとき 850 付近を示すので、1 番左のピークはペデスタルであると分かる. ADC 値 3500 付近は光電子数が多くサチュレーションしている.

MPPC に同じ電圧をかけて μ 粒子を測定するとシンチレータの中で μ 粒子が最小電離損失をして, 飛跡の長 さが一定であれば, 平均値はほぼ一定になるので各チャンネルで同じところにピークが立つことが期待される. しかし MPPC の個体差により波高が異なるので図 4.9 における電離損失に対応するピーク (ADC 値 1600 付 近) の位置も異なる. 今回の実験では粒子が通ったと判定するためのしきい値を同じくらいの値で決定するた めに, 宇宙線 μ 粒子を用いてキャリプレーションを行い信号のピークの位置を揃えた. 電圧を変えて宇宙線 μ 粒子の信号を 3 回測定し, ヒストグラムをランダウ分布でフィットしそれぞれのチャンネルのピークの位置を 求めて同じ電圧をかけた時にピークの位置が同じ位置になるように InputDAC の値を調整した. 図 4.10 が揃 える前のチャンネルごとのピークの位置で, 図 4.11 が揃えた後の図である. 完全にゲインを揃えることはでき なかったが, おおよそ揃えることができた.

図 4.10 ゲインを揃える前のピークの ADC 値

図 4.11 ゲインを揃えた後のピークの ADC 値

第5章

シミュレーション

5.1 Geant4

Geant4 とは物質中を通過する粒子の物理相互作用をモンテカルロ法に基づいてシミュレートすることので きるパッケージである.物理プロセスや検出器の構造,検出器の応答,応答データ等の作成,保存などの多くの ツールキットから構成されている.

5.2 本実験での µ 粒子シミュレーション

宇宙線発生シミュレーション CRY を用いて µ 粒子を生成した. 装置のパラメーターは

- トリガーシンチレータ 126cm×7cm×1cm を 7 度ずつ傾けて横に 3 枚
- シンチレータ 75cm×4cm×1cm を横に 4 枚, 縦に 8 層
- アルミニウム板 100cm×30cm×2cm を 8 層

としてトリガーシンチレータのすぐ下からトリガーシンチレータの大きさの範囲で 10^7 イベントの μ 粒子を 発生させた.

CRY によって生成した µ 粒子のうち, 1 番上のシンチレータに入射した粒子のエネルギー分布と角度分布が それぞれ図 5.1, 図 5.2 である.

図 5.1 CRY によって生成した *µ* 粒子のエネルギー分布

図 5.2 CRY によって生成した μ 粒子の角度分布

図 5.1 より, 入射 µ 粒子は 2000MeV あたりのエネルギーを持ったものが多いがそれよりも高エネルギーな 粒子も存在するということがわかる.また, ヒストグラムのエントリー数が約 600 万イベントであることより トリガーシンチレータを通過した粒子のうち約 60.2 % の確率で検出器に入射するということがわかる.今回 シミュレーションを行った目的としては, 検出器内での光生成反応がどれくらいの割合で発生するのか求める ことである.

5.3 シミュレーション結果

今回のシミュレーションにおいては光生成反応として入射 µ 粒子からパイオンが発生したイベントを選んだ.

ー番下のシンチレータまで μ 粒子が到達したイベントは全イベントのうち 1,937,095 イベントで効率は 0.194 であった.また、シンチレータ内で反応して π が出たイベントは 19 イベントで効率は 1.90 × 10⁻⁶ で あった.実際の測定器に μ 粒子が入射するレートは 15count/sec であったので、1 秒に 2.85 × 10⁻⁵ だけ π が 出てくるイベントがあるということになる.実際約 260 時間測定を行ったので 1.2 × 10⁷ 万イベント得られた. このことより、今回用いた検出器においても光生成反応が起きて π が出てくるイベントというのが数十イベントくらいは観測できそうだということがわかった.

表 5.1 シミュレーションによるデータ

総イベント	10,000,000
1 番下の層まで μ 粒子が通過したイベント	$1,\!937,\!095$
π が出たイベント	19

下の図 5.3,5.4 は、後述 (6.4.1 節) する解析プログラムを用いてシミュレーションデータを解析した図である. このイベントだと宇宙線 μ 粒子が検出器内で反応して 2 粒子出たことがわかる. それぞれの粒子の失った エネルギーをシミュレーション結果から計算するとどの粒子か特定することができる.

第6章

宇宙線ミューオンの解析

測定データを用いてどのように光生成反応イベントを探索したかを説明する.

6.1 解析に用いたデータ

表 6.1 に示すようにトリガーレート 15 cps, データ取得時間約 260 時間, 取得イベント数 12054470 イベントのデータを解析に用いた.

トリガーレート	$15 \mathrm{~cps}$
取得時間	約 260 時間
イベント数	12054470

表 6.1 解析に用いたデータ

6.2 しきい値の設定

4.4 節の通り、ADC 値は荷電粒子がシンチレータに渡したエネルギーに比例している量であるので ADC 値 に適切なしきい値を設けることでシンチレータ毎に荷電粒子が通過したかどうかを判別できる.図4.9 に示 す分布のペデスタルによるピークからある程度離れた値をしきい値とすることにした.具体的には図6.1 の ように ADC 値のしきい値を800 から1500 まで1刻みで変更した時の検出効率を計算し、チャンネル毎に effeciency が大きく下がらない程度のしきい値を探すことでしきい値を決定した.図6.1,6.2 の緑線は実験に 用いた ADC 値のしきい値を示している.

図 6.2 宇宙線による ADC 値の分布

6.3 ヒット情報の作成

6.3.1 ヒット情報の作成方法

6.2 節で荷電粒子が64枚あるシンチレータのうちのどのシンチレータを通過したかという情報を得ること ができた.図6.3は実験装置のある層でシンチレータに荷電粒子が走ったか/走っていなかったかを色分けした ものである.図の赤く塗られている部分のように、荷電粒子はしきい値を超えたシンチレータ同士が重なる位 置を通過したと考えることができる.図6.3は1層分の絵であるが、8層分に以上の処理を施すことでで荷電粒 子の3次元飛跡のようなものの情報が得られた(図6.5).図6.5の透過している青い領域は検出器の有感領域 を示しており、黒い領域は解析によって荷電粒子がと通過したと判定された領域である.この3次元飛跡のよ うなものから飛跡を再構成することができる.

図 6.3 1 層分のシンチレータ

図 6.4 1 層に 2 つ以上の荷電粒子が通ったとき

図 6.5 イベントディスプレイ

6.3.2 ヒット情報作成の問題点

6.3.1 節で説明したヒット情報の計算方法には問題点が存在する.1層に2個以上の荷電粒子が通過した場合に作成されたヒット情報からは飛跡を再構成できないという点である.例えば、図 6.4 に示すようにシンチレータから得られた ADC 値がしきい値を超えた場合は赤く塗られる箇所 (荷電粒子が通過したと考えられる場所)が余分にできてしまい,荷電粒子の本当の飛跡がわからなくなってしまう.本実験では光生成反応を探索しているため探索対象は複数の粒子の飛跡であるが,この問題点は複数の粒子の飛跡の再構成を難しくしてしまっている.

6.4 光生成反応イベントの探索

6.4.1 イベントセレクション

6.1 に示した測定データから光生成反応と考えられるイベントを以下に示す条件によって選んだ.

- (1) 6 層以上の層を荷電粒子が通った
- (2) 1, 2, 8 層目で1つの荷電粒子が通った

(3) 3~7 層目で荷電粒子の反応が2 つ以上ある

(1),(2)の条件は荷電粒子が検出器内をある程度真っ直ぐ通ったことを保証するための条件である.(3)の条件 は光生成反応によって期待される複数粒子の飛跡を捉えるための条件である.

イベントセレクションの結果残ったイベントは 2543 イベントであり,総取得イベント数 12054473 の約 0.021% であった.イベントセレクションによって得られたイベントの例を図 6.6 に示す.図 6.6 は上から順に z 軸正の方向から各層を示していて,一つの菱形がピクセルを表しており,黒く塗りつぶされたピクセルが荷電 粒子が検出器を通ったと考えられるピクセルである.図 6.6 を見ると,ミューオンが z 軸正の方向から検出器 に入射し,3 層目あたりでもう一つの荷電粒子が発生したと見ることができる.しかし,このイベントが光生成 反応によって得られたイベントであるかどうかは定かではない.

図 6.6 イベントセレクション後のイベントの例

6.4.2 イベントセレクションの検証

6.4.1 節のイベントセレクションによって得られたイベントは光生成反応由来かどうか定かではないと述べた. そこで、シミュレーションによって得られたデータを 6.4.1 節と同じイベントセレクションで解析することによってイベントセレクションによってどれだけの光生成反応イベントが得られたかどうかを検証した. 結果を表 6.2 に示す.

全イベント	カット後	
1000000	5759	
全イベント中でパイオンを含むイベント	カット後でパイオンを含むイベント	
19 (純粋度 0.00019%)	14 (純粋度 0.24%)	

表 6.2 イベントセレクションの検証

表 6.2 における純粋度はイベントセレクションによって得られたイベントのうちパイオンを含むイベントの 割合である.表 6.2 によるとイベントセレクション前とイベントセレクション後でパイオンイベントの純粋度 は 0.00019% から 0.24% に上昇していることがわかる.しかし,カット後のイベントにおけるパイオンイベン トの純粋度が 0.24% というのはイベントセレクションによって得られたイベントの 99% 以上にパイオンでな いイベント (バックグラウンド)を含んでしまっていることを意味している.よって,6.4.1 節で行ったイベン トセレクションではバックグラインドが十分に取り除くことができなかったといえる.

6.4.3 バックグラウンドの検討

図 6.7 は 6.4.2 節で使用したシミュレーションデータから、イベントセレクションがパイオンイベントと間 違えたイベントを可視化したものの例である.図 6.7 に示すようなミューオンが検出器内の電子を弾くイベン トが支配的であった.図 6.8 はシミュレーションによって得られた、ミューオンによって弾き出された電子とパ イオンの角度分布である.青色,赤色で表されるヒストグラムはそれぞれ光生成反応によって生成されたパイ オン、ミューオンによって蹴り出された電子の散乱角分布を示している.角度は上空方向を正としたベクトル (図 4.1 における z 軸) と粒子の運動量ベクトルの内積によって定義される.本研究において用いたイベントセ レクションでは主に、入射ミューオンと同じ方向へ飛ぶパイオンを検出しようとしたために図 6.8 における π ラジアン付近の探索をしていた.そのために電子散乱におけるイベントがイベントセレクション後のイベント に含まれていたと考えられる.

図 6.7 バックグラウンドと考えられるイベント

図 6.8 パイオンと電子の角度分布

第7章

結論

本研究の目的は光生成反応の飛跡を捉えることが目的であったが,うまく捉えることができなかった.以下 に示す2点の改良及び解析で光生成反応の飛跡を捉えることができるであろうと考えられる.

1つ目は装置のデザインの見直しである.本研究では納期や予算の都合上新しいシンチレータを用いること が難しい状況にあり,既存のシンチレータを用いて光生成反応の検出に取り組む必要があった.その結果とし て棒状の長いシンチレータを斜めに交差させることで3次元飛跡検出器を作ることになった.この検出器は光 生成反応を探索するには横方向の位置分解能が低いという問題点があるため,横方向の位置分解能が良い検出 器をデザインし直すことで光生成反応イベントの探索が容易になるであろうと考えられる.

2 つ目はバックグラウンドの低減を図ることである. 例えば, 6.4.3 節で述べたようなパイオンと電子の角度 分布の違いを利用して,実験装置と解析の両方において光生成反応によって生成されたパイオンが支配的な角 度範囲に感度を持たせることなどが挙げられる.

第8章

謝辞

本研究を行うにあたって、多くの方の多大なる助力を頂きましたのでこの場にて心より感謝申し上げます. 指導教員の山崎祐司教授には本研究の実施の機会だけでなく理論的背景から検出器の設計,組み立て、解析に ついてなど様々なことをご指導していただきました.私たちの遠足に行きたいという願いを叶えようと、奔走 していただきありがとうございました.また、藏重久弥教授をはじめとする粒子物理学研究室の教員の方々に は、貴重なお時間を割いて研究報告を聞いていただきご指導ご鞭撻を賜るなど大変お世話になりました.同研 究室博士後期課程水越彗太さんにはシミュレーションツールの使い方から解析の方法まで幅広い助言を頂きま した.同研究室博士後期課石浦宏尚さんには、本研究では使うことはかないませんでしたが検出器に使う電子 回路の設計、作成について助言を頂きました.また、同研究室 B4 の方々には日頃から有益な討論・助言を頂き ました.特に川田君には検出器の組立てを手伝って頂き、とても助かりました.ありがとうございました.本研 究において関わっていただいたすべての方々への感謝の気持ちをもって謝辞とさせて頂きます.

参考文献

- T. Ahmed et al. "Photoproduction of J / psi mesons at HERA". In: *Phys. Lett. B* 338 (1994), pp. 507–518. DOI: 10.1016/0370-2693(94)90806-0.
- [2] V.M. Budnev et al. "The two-photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation". In: *Physics Reports* 15.4 (1975), pp. 181-282. ISSN: 0370-1573. DOI: https://doi.org/10.1016/0370-1573(75)90009-5. URL: https://www.sciencedirect.com/science/article/pii/0370157375900095.
- [3] B. R. Webber R. K. Ellis W. J. Stirling. QCD and Collider Physics. Ed. by P. V. Landshoff T. Ericson. Cambridge University Press, 1996.
- [4] 竹馬 匠泰. easirodc manual.
- [5] 宇宙線を目で見よう スパークチェンバーの製作. https://www2.kek.jp/ksc/2nd_2008/gaiyou/ sc08/gaiyoufiles/02_text.pdf.
- [6] 浜松フォトニクス MPPC. https://www.hamamatsu.com/content/dam/hamamatsu-photonics/ sites/documents/99_SALES_LIBRARY/ssd/mppc_kapd0006j.pdf.
- [7] 丸元 星弥・小崎 大地・東田 愛美・吉田 隼輔. 宇宙線ミューオンを用いた磁気能率測定実験. https: //ppwww.phys.sci.kobe-u.ac.jp/seminar/pdf/muonG2_2020.pdf.