修士学位論文

ATLAS 実験 Run2 における レベル 1 ミューオントリガーの 性能評価及び最適化の研究

2016年3月3日

神戸大学大学院理学研究科 博士課程前期課程

概要

欧州原子核研究機構 (CERN) にある陽子・陽子衝突型円形加速器 LHC (Large Hadron Collider) では、陽子同士を加速し衝突させている。その中の 1 つの ATLAS 実験は生成さ れた粒子の情報を再構成し、シミュレーションでの結果と比較して、新粒子の探索や標準模 型の精密測定など様々な研究を行っている。

陽子・陽子衝突により生成される膨大な事象の中から、目的とする物理事象のみを取得す るために ATLAS 実験では2 段階のトリガーシステムが用いられている。その1 段階目に 位置するレベル1 トリガーはカロリメータとミューオンシステムにより事象選別を行う。そ の中でもレベル1 ミューオントリガーではミューオンの横方向運動量 pT を概算してトリ ガー判定が行われる。その運動量の概算には Coincidence Window (CW) と呼ばれる参照 表が用いられるため、CW の性質によってレベル1 ミューオントリガーの性能が決定する。

2015 年の Run-2 では、ATLAS 実験は重心系エネルギー 13 TeV で積分ルミノシティ 4.0 fb⁻¹ の実験データを取得した。2016 年以降のルミノシティの増加に伴い、今のままだ とさらにトリガーレートが増えることが予想されている。そのためエンドキャップ部にお けるレベル 1 ミューオントリガーの発行を担う検出器である Thin Gap Chamber (TGC) でトリガー効率の $p_{\rm T}$ 閾値を 2012 年までの Run-1 と同じ値 ($p_{\rm T} > 15$ GeV) で維持しつ つ、トリガーレートを削減する必要がある。今までの解析結果から、陽子・陽子衝突由来で ない粒子によって発行されるトリガー (フェイクトリガー)が問題だった。その対策として、 Run-2 からは 1.05 < $|\eta| < 1.9$ (η : 擬ラピディティ)までの領域で Inner Coincidence と 呼ばれるコインシデンスを導入し、フェイクトリガーを抑えてトリガーレートを削減するこ とを考えられている。

本研究では新たに導入された Inner Coincidence によるトリガーレート削減とは別に、 1.05 < $|\eta|$ < 2.42 のエンドキャップ全領域でトリガーレートを抑える方法を模索し、評価 した。特に Run-2 では、 $|\eta|$ > 1.9 の領域でトリガーに使用できる検出器がないため、この 領域でのトリガーレート削減方法は CW の最適化による改良しかない。その方法の 1 つは TGC での $|\eta|$ > 1.9 の領域における簡易的な CW の調整を行った。また磁場が一様でない ために CW が複雑化され、 $p_{\rm T}$ 閾値の判定が難しい 1.05 < $|\eta|$ < 1.9 の領域において、Run2 の実データを用いた CW の最適化による改良を行うことで、実際にミューオンが TGC に ヒットした位置が分かるので、この領域でも CW 自体の調整が行える。これらの CW の最 適化による改良によって、トリガー効率の低下を抑えつつ、更なるトリガーレート削減の可 能性を示した。

目次

1章	序論	1	L
1.1	本研究	究の背景	1
1.2	本論	文の構成	2
2章	LHC	CとATLAS実験 :	3
2.1	LHC	加速器 :	3
2.2	ATL	AS 実験が目指す物理	5
2.2.1	1 7	本研究の動機となる物理の例	5
2.2.2	2 1	超対称性粒子 (SUSY) の探索	6
2.3	ATL	AS 検出器	9
2.3.	1 4	ATLAS 検出器の全体像	9
2.3.2	2 `	マグネットシステム	C
2.3.3	3	内部飛跡検出器	2
2.3.4	4 2	カロリメータ	5
2.3.	5	ミューオンスペクトロメータ	6
3章	ミュ・	ーオントリガーシステム 18	3
3.1	トリン	ガーシステム	3
3.1.1	1	レベル1トリガー	9
3.1.2	2	ハイレベルトリガー	9
3.2	レベ	ル1エンドキャップミューオントリガー1!	9
3.2.1	1 7	Thin Gap Chamber(TGC) の構造と動作原理	9
3.2.2	2 7	ΓGC の配置	1
3.2.3	3 [ΓGC エレクトロニクス	5
3.2.4	4	トリガースキーム	О
3.2.	5 (Coincidence Window(CW) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 32$	2
3.2.0	6 :	クロストークとデクラスタリングルール	6
3.3	トリン	ガーチェイン	7
3.4	レベ	ル1エンドキャップミューオントリガーの性能評価の方法	8
3.4.1	1	トリガー効率の算出....................................	8
3.4.2	2	トリガーレートの算出 4.	2
4章	Run	-1 におけるミューオントリガーの問題点と Run-2 での改善方法 43	3
4.1	Run-	.1 における問題点................................... 4:	3
4.1.	1	フェイクトリガー	3
	1章 1.1 1.2 2章 2.1 2.2 2.2. 2.3 2.3. 2.3. 2.3. 2.3. 2.3. 2.3. 3.1. 3.1. 3.2. 3.	1章序論 1.1 本研究 1.2 本研究 1.2 本研究 1.2 本研究 2章 LHC 2.1 LHC 2.2 ATL 2.2.1 第 2.2.1 第 2.2.1 第 2.2.1 第 2.3.1 1 2.3.2 1 2.3.3 1 2.3.4 2 3.1 トリ: 3.1.1 3.1.2 3.2.3 第 3.2.1 第 3.2.2 1 3.2.3 1 3.2.4 3.2.5 3.2.4 3.2.5 3.4 レベ 3.4 レベ 3.4.1 3.4.2 4 Run 4.1 Run	1章 序論 1 1.1 本研究の背景 1 1.2 本論文の構成 1 22章 LHC と ATLAS 実験 1 2.1 LHC 加速器 1 2.2 ATLAS 実験が目指す物理 1 2.2.1 本研究の動機となる物理の例 1 2.2.2 超好称性粒子 (SUSY) の探索 1 2.3.1 ATLAS 検出器 1 2.3.2 マグネットシステム 10 2.3.3 内部飛跡検出器 12 2.3.4 カロリメータ 11 2.3.5 ミューオンスペクトロメータ 11 2.3.5 ミューオンスペクトロメータ 14 3.1 レ)ガーシステム 14 3.1.1 レベル1トリガー 19 3.2 マグロレベルトリガー 19 3.2.1 Thin Gap Chamber(TGC)の構造と動作原理 19 3.2.2 TGC の配置 22 3.2.4 トリガースキーム 33 3.2.5 Coincidence Window(CW) 33 3.3 トリガーチェイン 33 3.4.1 トリガーシートの算出 33 3.4.1 トリガーレートの算出 33 3.4.1 トリガーレートの算出

4.2.1	EI/FI Coincidence	45
4.2.2	Tile Coincidence	46
4.2.3	Hot RoI Mask	46
4.3 本研	f究の目的	47
第5章 CW	/ trimming による性能評価	49
5.1 CW	trimming の方法	49
5.1.1	Hitmap の作成	49
5.1.2	CW trimming による評価方法	50
5.2 CW	trimming による評価	51
5.2.1	CW trimming におけるトリガー効率	51
5.2.2	CW trimming におけるトリガーレート	54
第6章 CW	/ optimization による性能評価	56
6.1 CW	optimization の方法	56
6.1.1	アライメントによる影響を考慮した Hitmap	56
6.1.2	Cell 毎の判定の指標	60
6.1.3	Cell recovery	62
6.1.4	Endcap 領域における CW optimization	64
6.1.5	Forward 領域における CW optimization	65
6.2 CW	optimization による評価	66
6.2.1	L1_MU20 における CW optimization の評価	66
6.2.2	L1_MU15 における CW optimization の評価	76
第7章 結論	ì	84
参考文献		\mathbf{v}

第1章 序論

1.1 本研究の背景

スイスのジュネーブ郊外にある欧州原子核研究機構 (CERN) に設置された大型ハドロン衝突型加速器 (LHC) は 2009 年に運転を開始し、その重心系エネルギーは 2011 年には 7TeV、2012 年には 8 TeV で、2015 年 6 月からは Run-2 として重心系エネルギー 13 TeV で世界最大の衝突エネルギーでの運転を再開した。2015 年の運転において、瞬間最高ルミノシティ 5.0×10^{33} cm⁻²s⁻¹ を記録し、積分ルミノシティ約 4.0 fb⁻¹ のデータを取得した [1]。LHC-ATLAS 実験は LHC で行われる実験の 1 つであり、2012 年 7 月に発見された ヒッグス粒子の精密測定、超対称性粒子や余剰次元模型などの標準模型を越える物理探索といった、多岐にわたる素粒子物理学の最先端の研究を目的とした実験である。

LHC 衝突頻度は 40.08 MHz であり、全てのデータを取得し、保存することが困難であ る。そこで、ATLAS 検出器では興味のある事象を選別するため、ハードウェアを用いるレ ベル1トリガー、ソフトウェアを用いるハイレベルトリガーの2 段階のトリガーシステムを 用いて段階的に事象選別を行っている。トリガーは電子、ミューオンなど観測したい粒子の 対象ごとに用意されている。今後更なる衝突ルミノシティの増加よって事象レートが増える ため、より効率的なトリガーシステムが要求されている。

本研究では、Thin Gap Chamber (TGC) というミューオン検出器でトリガー判定が行わ れるレベル1 エンドキャップミューオントリガーについての改良を行った。レベル1 エン ドキャップミューオントリガーでは、トロイド磁場によるミューオンの飛跡の曲がりから横 方向運動量 $p_{\rm T}$ を概算し、高い運動量を持つミューオンに対してトリガーを発行する。この 際、飛跡の曲がりと $p_{\rm T}$ の対応を関連づけたシミュレーションにより作成する Coincidence Window (CW) と呼ばれる参照表が用いられる。そのため、CW の調整を行うことでレベ ル1 エンドキャップミューオントリガーの性能を改良することが可能である。

以前より、この CW の作成・改良や実装といったレベル 1 エンドキャップミューオン トリガーに関する研究が行われてきた。Run-1 における研究では、TGC 自体に設置位置 (TGC アライメント)のズレや歪みがあることが判明している。またレベル 1 ミューオン トリガーで発行されるトリガーの大半は、陽子・陽子衝突由来でない粒子によるものであ ることも判明した。このようなトリガーはフェイクトリガーと呼ばれ、検出器内を漂う陽 子や中性子が磁石等の物質と相互作用することで発生する荷電粒子 (主に陽子)が原因であ る。トロイド磁場で曲げられる前の通過位置の情報を用いて、衝突点由来かどうかを判定す る Inner-Coincidence を Run-2 で新たに導入し、フェイクトリガーの削減を行った。この 改良では 1.05 < $|\eta|$ < 1.9 の領域のみで、1.9 < $|\eta|$ < 2.42 の領域ではトリガーレートを抑 える方法がまだ確立されていない。これは 1.9 < $|\eta|$ < 2.42 の領域でトロイド磁場の前に おいてトリガーに使用できる検出器がなく、そのためにコインシデンスがとれないからであ る。検出器等のハードウェアによる方法ではなく、トリガー条件の最適化による改良を行う 必要がある。トリガー条件を最適化することでトリガー効率の低下を抑えつつ、更なるトリ ガーレート削減の可能性を探った。それは $1.9 < |\eta| < 2.42$ の領域での CW を簡易的な方 法で調整し、今後の Run-2 で更なる瞬間最高ルミノシティと重心系エネルギーの増加によっ て、以前の Run-1 より厳しい要求を課すことでトリガーレートを削減しつつ、特に磁場で曲 げられづらい $p_{\rm T}$ が高い閾値に影響があるため、 $p_{\rm T}$ が高い真のミューオンを保持する CW を確立した。またシミュレーションではなく、実際のデータを用いてレートと検出効率を比 較することで、より効率的なトリガーの最適化が可能になる。その結果、TGC アライメン トのズレ、磁場の不均一性やハードウェアの不備を考慮することができる。このことから、 Run-2 の実データを用いた CW の最適化を行い、磁場が一様でなく、CW が複雑化されて いる $1.05 < |\eta| < 1.9$ の領域でもトリガー効率の $p_{\rm T}$ 閾値を維持しつつ、トリガーレートの 削減を図った。

1.2本論文の構成

本論文では本章に続き以下の章構成で展開される。

- 第2章: LHC 及び ATLAS 実験の概要、ATLAS 実験が目指している物理について 述べる。
- 第3章: ATLAS におけるトリガーの仕組みについて記述する。特に本研究の対象 である TGC と呼ばれるミューオン検出器のトリガーシステムの詳細について説明 する。
- 第4章:Run-1におけるレベル1ミューオントリガーの問題点、また Run-2へ向けた解決策及び本研究の目的について説明する。
- 第5章:トリガー効率の $p_{\rm T}$ 閾値を維持しつつ、トリガーレートを削減する方法として CW trimming という方法とその性能評価について述べる。
- 第6章:実データを用いた CW の最適化の方法及び性能評価について述べる。
- 第7章:本論文のまとめとする。

第2章 LHC と ATLAS 実験

本章では、LHC-ATLAS 実験の目的や各検出器の説明、物理的背景について述べる。

2.1 LHC 加速器

LHC (Large Hadron Collider)(Fig. 2.1) は、スイス・ジュネーブ郊外にある欧州原子 核研機構 (CERN) の地下約 100 m に建設 された世界最大の陽子・陽子衝突型加速器 である。陽子の質量は電子の約 1800 倍と 大きいため、加速によって生じるシンクロ トロン放射によるエネルギー損失が少ない。 そのため、LHC では TeV スケールの世界 最高エネルギーでの衝突を実現することが できる。Table. 2.1 に 2012 年の Run-1 及 び 2015 年の Run-2 の稼働状況における主 要パラメータ、Table. 2.2 に LHC のデザイ ンパラメータを示す。

Fig. 2.1: LHC の概観図 [1]

	Run-1 (2012)	Run-2 (2015)
主リング周長	26.7	′ km
重心系エネルギー (陽子・陽子)	8 TeV	$13 { m TeV}$
瞬間最高ルミノシティ	$7.7 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$	$5.0 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
バンチ数	1380 個	2244 個
バンチ間隔	50 ns (25 ns)	25 ns (50 ns)
1 バンチ当たりの陽子数	1.4×10 ¹¹ 個	1.1×10 ¹¹ 個
衝突点のビーム半径	$23~\mu{ m m}$	$17 \ \mu { m m}$

Table. 2.1: Run-1 及び Run-2 での LHC の主要なパラメータ

2015 年は最初バンチ間隔が 50 ns で開始され、8 月に 25 ns に移行して運転した。また 2015 年 11 月 7 日までに、LHC では積分ルミノシティ 4.2 fb⁻¹ のデータ量を供給し、そ のうち ATLAS 実験 では約 4.0 fb⁻¹ のデータ取得に成功した (Fig. 2.2)。Fig. 2.3 にも示 すように現在の重心系エネルギーと瞬間最高ルミノシティはまだデザイン値に達しておら ず、2016 年以降も改善していく方針である。2016 年には、瞬間最高ルミノシティは最大 $1.3 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ に達する予定である。

主リング周長	$26.7 \mathrm{~km}$
重心系エネルギー	$14 { m TeV}$
瞬間最高ルミノシティ	$o(10^{34}) \mathrm{~cm}^{-2} \mathrm{s}^{-1}$
バンチ数	2808 個
バンチ間隔	$24.95~\mathrm{ns}$
1 バンチ当たりの陽子数	1.15×10 ¹¹ 個
衝突点のビーム半径	$16.6 \ \mu \mathrm{m}$

Table. 2.2: LHC のデザインパラメータ [2]

LHC には衝突点が四ヶ所あり、ATLAS、CMS、ALICE、LHCb と呼ばれる 4 つの検出 器が設置され、各種の実験が行われている。

- ATLAS (A Toroidal LHC ApparatuS)
 標準模型の精密検証、超対称性粒子 (SUSY) など標準模型を超える物理の探索を目的
 とした陽子・陽子衝突型実験で、詳細は後述する。
- CMS (Compact Muon Solenoid)
 ATLAS 実験と同様に標準模型の精密検証や超対称性粒子 (SUSY) の探索を主な目的 とした実験。CMS 検出器は ATLAS 検出器より小型であり、より強いソレノイド磁 場を持つ。
- ALICE (A Large Ion Collider Experiment) 重イオン同士の衝突実験による Quark Gluon Plasma (QGP)の解明を目的とした 実験。
- LHCb (Large Hardon Collider beauty)

b クォークを含む B 粒子の CP 非保存などの稀崩壊現象を観測することにより、標準 模型を超える物理の探索を目的とした実験。

Fig. 2.4: CMS 検出器 [4]

Fig. 2.5: ALICE 検出器 [5]

Fig. 2.6: LHCb 検出器 [6]

2.2 ATLAS 実験が目指す物理

ヒッグス粒子は素粒子の基本的な振る舞いを記述する標準模型において、粒子に質量を与 えるとされ、その存在が予想されてから様々な実験で探索が続けられてきた。そして、2012 年7月、ATLAS 実験及び CMS 実験で、新たな粒子を発見し、その後さらに多くのデータ を解析した結果、2013 年 10 月にその新たな粒子がスピン 0 のヒッグス粒子であると確定し た。スピン 0 のヒッグス粒子が発見された今、LHC では主にヒッグス粒子の性質の精密測 定、標準模型を超える物理の探索を目的としている。

2.2.1 本研究の動機となる物理の例

現在の素粒子物理学の基礎を成しているのが標準模型である。標準模型に現れる粒子の一 覧は Fig. 2.7 の左側の粒子であり、クォーク、レプトン、力を媒介するゲージボゾンと、質 量の起源となるヒッグス 粒子から成る。ヒッグス粒子はゲージボゾンとフェルミオンに質量 を与える粒子である。

Fig. 2.7: 標準模型と超対称性粒子の一覧表 [7]。左が標準模型に現れる粒子、右が超対称性 模型 (SUSY 模型) に現れる粒子 (超対称性粒子)。

本研究では、トリガー効率の $p_{\rm T}$ 閾値を 2012 年までの Run-1 と同じ値で維持しつつ、ト リガーレートを削減することを目的としている。その理由として、ヒッグス粒子の性質測定 のための W ボソンの崩壊によるミューオンを捉えたいからである。特にヒッグス粒子の $b\bar{b}$ 崩壊の探索では Z ボソンや W ボソンを伴う生成過程 (Fig. 2.8) を用いるので、Z ボソン や W ボソンの特徴を利用してデータを選別する。W ボソンを経由しての終状態に $p_{\rm T}$ が高 いミューオンが存在するので、 $p_{\rm T}$ が高い真のミューオンを保持することが重要である。

Fig. 2.8: ベクターボソン随伴 (VH) 生成過程。2 つのクォークから生成されたベクターボソンの輻射によりヒッグス粒子が放出される過程。その過程上、終状態にベクターボソンが随 伴することが大きな特徴である [8]。

2.2.2 超対称性粒子 (SUSY) の探索

2012 年のヒッグス粒子の発見など様々な実験と高い精度で一致している素粒子物理学の 標準模型には、まだいくつかの未解決な問題が残されている。その1つに標準模型における ヒッグス粒子の質量項の輻射補正に対して2次発散が起こる階層性問題がある。標準模型に おけるヒッグス粒子は実スカラー場であることから、ヒッグスの質量発散には、4 点相互作 用を考えた時、ヒッグス粒子の自己エネルギーを計算すると、Fig. 2.9 の上部に示すファイ マンダイアグラムが質量 m_H のずれ (δm_H^2)を与える。 δm_H^2 は式 (2.1)で表される。ここ で、 λ は実スカラー場の自己相互作用項における定数で、 $\lambda \sim O(1)$ の量であり、 Λ は標準 模型が有効であるエネルギースケールの限界値で、運動量積分すると、2次発散してしまう。

$$\delta m_H^2 = \frac{\lambda}{32\pi^2} \left(\Lambda^2 - m_H^2 \log \frac{\Lambda^2}{m_H^2} \right)$$
(2.1)

ここで標準模型は繰り込み可能であり、ヒッグス粒子の裸の質量 (m_0^2) が 2 次発散を相殺 できるため、質量 m_H は式 (2.2) のように表される。

$$m_H^2 = m_0^2 + \delta m_H^2 = m_0^2 + \frac{\lambda_0}{32\pi^2} \Lambda^2$$
(2.2)

繰り込み理論の場合、2次発散を抑えたわけではないが、発散は摂動計算という便宜上で てきたものと解釈され、本質的な発散ではない。この人為的な発散を打ち消すように裸の質 量が導入される。この裸の質量を導入すると、次の階層性問題が発生する。標準模型が最終的に大統一理論 (GUT) に統一される場合、エネルギースケールは、 $\Lambda \sim M_{GUT} \sim 10^{15}$ GeV となる。ヒッグス粒子の繰り込みによる質量は電弱統一理論において真空期待値程度 $(m_H^2 \sim 10^2 \text{ GeV})$ にならなければならないので、ヒッグス粒子の裸の質量 (m_0^2) と Λ^2 との間で、 $m_H^2 / \Lambda^2 \sim 10^{-26}$ という微調整 (fine tuning) が必要となってくる。

Fig. 2.9: 4 点相互作用理論における 1 ループ近似での質量補正項 (上部)、超対称性で質量 補正項の 1 ループ近似に現れるフェルミオンループ (下部) のファイマンダイアグラム [9]

そこで、階層性問題を解決するための1つの方法として導入された超対称性模型 (SUSY 模型)が現在注目されており、その対称性によって標準模型のすべての粒子に対してスピン が1/2 だけ異なるスーパーパートナーと呼ばれる超対称性粒子の存在が予言されている。 Fig. 2.7 の右側に、標準模型粒子と対を成す形で並べられているのが超対称性粒子である。 超対称性粒子にはクォークの超対称性粒子であるスクォーク、レプトンの超対称性粒子であ るスレプトン、グルーオンの超対称性粒子であるグルイーノなどがある。超対称性理論とし て拡張された SUSY 模型では、ヒッグス粒子の質量に対する2次発散が、Fig. 2.9 で示した 湯川型相互作用によるトップクォークのループ (上)とスカラーのトップスクォークのルー プ (下)との間で打ち消し合う。もしも SUSY 模型が正しければ、LHC では強い相互作用を するスクォークやグルイーノ対が大量に生成され、それらの発見が期待されている。

LHC-ATLAS 実験における超対称性粒子の探索の例として、トップクォークの超対称性 パートナーであるトップスクォークに関することを以下に述べる。トップスクォーク (\tilde{t}_1) の質量と超対称性粒子が崩壊した時に最終的に現れるヒッグス粒子の超対称性パートナー である最も質量の小さい安定な超対称性粒子 (LSP: Lightest Supersymmetry Particle) の ニュートラリーノ ($\tilde{\chi}_1^0$) の質量の探索結果を Fig. 2.10 に示す。このとき色のついた領域は、 それぞれトップスクォークからの崩壊過程を変えた場合を示し、2 つの粒子の存在を 95 % の 信頼度で棄却する質量領域を示している。この結果から、現状 700 GeV 未満のほとんどの 領域に超対称性粒子が存在しないと言える。

Fig. 2.10: \tilde{t}_1 と $\tilde{\chi}_1^0$ の質量相関図 [10]

	Model	e, μ, τ, γ	Jets	E_{T}^{miss}	∫£ dt[fb	Mass limit $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$	Reference
-			0.40.1-1-10				
	MSUGHA/CMSSM	0-3 e, µ/1-2 T	2-10 jets/3 2-6 jete	p Yes	20.3	9-8 1.8 lev m(g)=m(g)	1507.05525
0	$\tilde{a}\tilde{a} \rightarrow a\tilde{X}_{1}$ (compressed)	mono-iet	1-3 jets	Yes	20.3		1507.05525
Ē.	$\tilde{a}\tilde{a}, \tilde{a} \rightarrow a(\ell\ell/\ell\nu/\nu\nu)\tilde{\chi}_1^0$	2 e, µ (off-Z)	2 jets	Yes	20.3	 	1503.03290
2	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$	0	2-6 jets	Yes	20.3	8 1.33 TeV m(ξ ⁰ ₁)=0 GeV	1405.7875
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{a} \rightarrow qqW^{a}\tilde{\chi}_{1}^{0}$	0-1 e, µ	2-6 jets	Yes	20	2 1.26 TeV m(ξ ²)<300 GeV, m(ξ ²)=0.5(m(ξ ²))+m(g)) 1507.05525
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\ell\nu/\nu\nu)\tilde{\chi}_1^{\prime}$	2 e, µ	0-3 jets		20	3 1.32 TeV m(?)=0 GeV	1501.03555
	GGM (bino NLSP)	1-2 T + 0-1 i	. 0.2 jets	Vee	20.3	2 1.0 IeV unp 320	1407.0603
	GGM (bingsing-bing NLSP)	- / /	1 h	Yes	20.3		1507.05493
	GGM (higgsino-bino NLSP)	γ	2 jets	Yes	20.3	2 1.25 TeV m(C)<550 GeV.cr(NLSP)<0.1m	m. µ>0 1507.05493
	GGM (higgsino NLSP)	2 e, µ (Z)	2 jets	Yes	20.3	850 GeV m(NLSP)-430 GeV	1503.03290
	Gravitino LSP	0	mono-jet	Yes	20.3	F ^{1/2} scale 865 GeV m(G)>1.8 × 10 ⁻⁴ eV, m(g)=m(q)=	1.5 TeV 1502.01518
ri I	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow b\tilde{b}\tilde{\chi}_{1}^{0}$	0	3 b	Yes	20.1	2 1.25 TeV m(ξ ⁰ ₁)<400 GeV	1407.0600
ē	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}^0_{\lambda}$	0	7-10 jets	Yes	20.3	λ 1.1 TeV m(ξ ₁) <350 GeV	1308.1841
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_{1}$	0-1 e, µ	3 b	Yes	20.1	8 1.34 TeV m(?;)<400 GeV	1407.0600
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow bi\chi_1$	0-1 <i>e</i> ,µ	3 b	Yes	20.1	8 1.3 leV m(K)<300 GeV	1407.0600
8	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\ell}_1^0$	0	2 b	Yes	20.1	δ ₁ 100-620 GeV m(ξ ² ₁)<90 GeV	1308.2631
E	$b_1b_1, b_1 \rightarrow t\chi_1^-$	2 e, µ (SS)	0-3 b	Yes	20.3	$b_1 = 275-440 \text{ GeV}$ $m(t_1^2)=2 m(t_1^2)$	1404.2500
Ĩ.	$t_1 t_1, t_1 \rightarrow b \chi_1^-$	1-2 e, µ	1-2 b 0-2 iete/1-2	Yes 4	1.7/20.3	f ₁ 110-167 GeV 230-460 GeV m(ξ ₁) = 2m(ξ ₁), m(ξ ₁)=55 GeV	1209.2102, 1407.
5	$t_1 t_1, t_1 \rightarrow Wb \mathcal{K}_1 \text{ or } t \mathcal{K}_1$	0-2 2, μ	nono-iet/c-1	an Yee	20.3	1 90-191 GeV m(t)=1 GeV m(t)=1 GeV	1407.0608
30	Titi (natural GMSB)	2 e. u (Z)	1 h	Yes	20.3	1 150-580 GeV mit()-mit()-inf(1403.5222
5	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e, µ (Z)	1 b	Yes	20.3	72 290-600 GeV m(t) <200 GeV	1403.5222
	Lolo Zatro	2 c. u	0	Yes	20.3	7 90-325 GeV m(2)-0 GeV	1403.5294
	$\tilde{X}_{1} \tilde{X}_{1}, \tilde{X}_{1} \rightarrow \tilde{t} \gamma(\ell \tilde{y})$	2 e. µ	ō	Yes	20.3	ξ [*] 140-465 GeV m(ξ [*])=0 GeV, m(ξ [*])=0.5(m(ξ [*]))=	m(x ⁰ ₁)) 1403.5294
	$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu})$	2 τ		Yes	20.3	χ [±] 100-350 GeV m(ξ [±])=0 GeV, m(r, r)=0.5(m(ξ [±])+	m(x ⁰ ₁)) 1407.0350
S	$\tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\tilde{\gamma}\nu), \ell \tilde{\gamma} \tilde{\ell}_{L} \ell(\tilde{\gamma}\nu)$	3 e, µ	0	Yes	20.3	$\tilde{k}_{1}^{*}, \tilde{k}_{2}^{*}$ 700 GeV $m(\tilde{k}_{1}^{*})=m(\tilde{k}_{2}^{*}), m(\tilde{c}, \tilde{v})=0.5(m(\tilde{k}_{1}^{*})+$	m(t ⁰ ₁)) 1402.7029
5	$\tilde{\chi}_1^* \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 Z \tilde{\chi}_1^0$	2-3 e, µ	0-2 jets	Yes	20.3	ξ_1^{+}, ξ_2^{-} 420 GeV $m(\xi_1^{+})=m(\xi_2^{-}), m(\xi_1^{-})=0$, sleptons of	decoupled 1403.5294, 1402.3
	$\tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0}h \tilde{\chi}_{1}^{0}, h \rightarrow b\bar{b}/WW/\tau$	$\tau/\gamma\gamma e, \mu, \gamma$	0-2 b	Yes	20.3	χ [*] ₁ , χ [*] ₂ 250 GeV m(χ [*] ₁)=m(ζ [*] ₂), m(ζ [*] ₁)=0, skeptons i	decoupled 1501.07110
	$\chi_2\chi_3, \chi_{2,3} \rightarrow \ell_R \ell$	4 e, µ	0	Yes	20.3	$\chi_{2,3}$ $m(\chi_2)=m(\chi_2), m(\chi_1)=0, m(\ell, \bar{\nu})=0.5(m(\chi_2)+0.5(\ell_1))$	m(X_1)) 1405.5086
	GGM (WIND NESF) Weak prou	· τε,μ+γ		res	20.3	W 124-301 GeV creation	1507.05453
	Direct X1X1 prod., long-lived X	Disapp. trk	1 jet	Yes	20.3	x ₁ 270 GeV m(t ₁)-m(t ₁)-t60 MeV, r(t ₁)-0.	2 ns 1310.3675
	Stable stopped a R-badron	dE/dx trk	1.5 jate	Yee	27.0	Air 462 GeV m(t)-m(t) m(t) B 993 CeV m(t)	ns 1506.05332
2	Stable # R-hadron	trk	-	-	19.1	B32 GEV Interpreted Sev. To psergerio	1411 6795
2	GMSB stable $\tilde{\tau} = \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{c} \tilde{u})_{0.7}$	(e u) 1-2 µ	-	-	19.1	2° 537 GeV 10-tans-50	1411.6795
ž	GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$	2γ	-	Yes	20.3		1409.5542
	$\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow eev/e\mu v/\mu\mu v$	displ. ee/eµ/µ	μ -	-	20.3	\hat{k}_{1}^{u} 1.0 TeV 7 < $cr(\hat{k}_{1}^{0})$ < 740 mm, m(\hat{g})=1.3 Te	V 1504.05162
	GGM $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow Z\tilde{G}$	displ. vtx + je	ts -		20.3	\hat{x}_1^0 1.0 TeV 6 < $cr(\hat{x}_1^0)$ < 480 mm, m(\hat{g})=1.1 Te	v 1504.05162
	$LFV \; pp {\rightarrow} \bar{v}_\tau + X, \tilde{v}_\tau {\rightarrow} e\mu/e\tau/\mu\tau$	еµ,ет,µт	-		20.3	Pr 1.7 TeV A'_311=0.11, A_3132/133/233=0.07	1503.04430
	Bilinear RPV CMSSM	2 e, µ (SS)	0-3 b	Yes	20.3	9.8 1.35 TeV m(g)=m(g), cr _{LSP} <1 mm	1404.2500
	$\chi_1 \chi_1, \chi_1^* \rightarrow W \chi_1^o, \chi_1^o \rightarrow ee \tilde{\nu}_{\mu}, e\mu i$ $\tilde{\nu} + \tilde{\nu} - \tilde{\nu} + \dots \tilde{\nu} = 0$	4 e, µ		Yes	20.3	750 GeV m(t ₁)>0.2×m(t ₁), λ ₁₂₁ +0	1405.5086
	$\chi_1\chi_1, \chi_1 \rightarrow W\chi_1, \chi_1 \rightarrow \tau \tau \tilde{\nu}_e, e\tau \tilde{\nu}_e$	- <i>3 ε</i> ,μ+τ	6-7 jete	Yes	20.3	41 450 GeV m(k1)>0.2xm(k1), λ133≠0	1405.5086
	$\tilde{a}\tilde{a} \xrightarrow{\tilde{a}} a\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \rightarrow aaa$	0	6-7 jets	-	20.3	2 870 GeV m ² ⁽¹⁾ =500 GeV	1502.05686
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs$	2 e, µ (SS)	0-3 b	Yes	20.3	8 850 GeV	1404.250
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$	0	2 jets + 2	ь -	20.3	ř. 100-308 GeV	ATLAS-CONF-201
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b\ell$	2 e, µ	2 b		20.3	δ δ β β β β β δ β β δ β β β β β β β β	ATLAS-CONF-201
	Scalar charm and	0	2.0	Yes	20.3	a 490 GeV mtS-200 GeV	1501 01225

Fig. 2.11: ATLAS 実験による超対称性模型の各超対称性粒子の質量の制限領域 [10]

また、ATLAS 実験における超対称性粒子探索の現状の結果を Fig. 2.11 に示す。例えば、 グルイーノ経由からの第3世代スクォークの間接探索は 1.3 TeV、第3世代スクォークの直 接探索では 700 GeV までの質量を 95 % の信頼度で棄却している。今後の目標としては、さ らに重心系エネルギー及びルミノシティを高めることで、現在探索できない領域 (バックグ ラウンドとの区別が難しい領域やエネルギーが足りない数 TeV 領域) での探索を行うこと が求められている。また、第3世代スクォークの崩壊探索では、トップクォークに崩壊し、 そこから W ボソンとボトムクォークに崩壊するため、本研究の目的である *p*T が高い真の ミューオンを保持することは重要である。

2.3 ATLAS 検出器

2.3.1 ATLAS 検出器の全体像

ATLAS 検出器の全体像を Fig. 2.12 に示す。ATLAS 検出器は直径 22 m、長さ 44 m、 総重量 7000 t の大型汎用検出器である。衝突点に近い位置から順に、内部飛跡検出器、電磁 カロリメータ、ハドロンカロリメータ、ミューオンスペクトロメータと設置されている。内 部飛跡検出器とカロリメータの間には超伝導ソレノイド磁石、カロリメータとミューオンス ペクトロメーターの間には、超伝導トロイド磁石が存在する。

Fig. 2.12: ATLAS 検出器 [1]

また ATLAS 検出器の座標系を Fig. 2.13 に示す。陽子の衝突点を原点とし、LHC のビーム軸方向を z 軸とする。z 軸と直交する面内で、LHC のビームリングの中心方向を x 軸、 天頂方向を y 軸とする。このとき衝突点に対して +z 方向を A-Side、-z 方向を C-side と 呼ぶ。また図の通りに r, θ , ϕ (0 $\leq \theta < \pi$ 、 $-\pi \leq \phi < \pi$)を定義する。ここで擬ラピディ

Fig. 2.13: ATLAS 検出器の座標系

ティηという物理量を以下のように定義する。

$$\eta \equiv -\ln\left\{\tan\left(\frac{\theta}{2}\right)\right\} \tag{2.3}$$

η を用いるのは、ハドロンコライダーでは、η、φ で表すと生成粒子の分布が一様になる ためで、粒子のヒット位置を示すのによく用いられる。また、 $|\eta| \le 1.05$ の円筒の筒にあた る領域をバレル部、 $|\eta| > 1.05$ の領域をエンドキャップ部と呼ぶことにする。

2.3.2 マグネットシステム

ATLAS のマグネットシステムは4つの超伝導磁石からなる。その概観を Fig. 2.14 に示 す。内側に位置するのが超伝導ソレノイド磁石、それを覆うようにして3つ設置されている のが超伝導トロイド磁石である。

Fig. 2.14: ATLAS マグネットシステムの概観図 [11]

超伝導ソレノイド磁石

超伝導ソレノイド磁石は 2.3.3 節で述べる内部飛跡検出器において荷電粒子の横運動量を 測定する目的で、内部飛跡検出器とカロリメータの間に設置されている。z 方向の長さは 5.3 m、直径 2.4 m、径方向の厚さ 45 mm の円筒形をしており、z 方向に約2 T の磁束密度 を提供する。超伝導ソレノイド磁場の写真を Fig. 2.15 に示す。

Fig. 2.15: 超伝導ソレノイド磁石 [1]

超伝導トロイド磁石

超伝導トロイド磁石は 8 つのコイルがビーム軸に対して 8 回対称となるようにバレル部 に 1 つ、エンドキャップ部に各側に 1 つで計 3 つが設置されており、ミューオンの横運動 量 $p_{\rm T}$ を測定することを目的としている。バレル部超伝導トロイド磁石はカロリメータを覆 うように設置されており、長さ 25.3 m、内径 9.44 m、外径 20.1 m で、8 つの超伝導コイ ルにより ϕ 方向に約 0.5 T の磁束密度を提供する。バレル部超伝導トロイド磁石の写真を Fig. 2.16 に示す。また、エンドキャップ部超伝導トロイド磁石は最も内側のミューオンスペ クトロメータの外側に設置されており、長さが 5.0 m、内径 1.65 m、外径 10.7 m でバレル 部と同様に ϕ 方向に約 1 T の磁束密度を提供する。エンドキャップ部超伝導トロイド磁石 の写真を Fig. 2.17 に示す。

Fig. 2.16: バレル部超伝導トロイド磁石 [1]

Fig. 2.17: エンドキャップ部超伝導トロイド 磁石 [1]

また、 η の値に対するトロイド磁場の積分強度を Fig. 2.18 に示す。バレルトロイド磁場とエンドキャップトロイド磁場の境界である $\eta \sim 1.5$ 付近に磁場強度の弱い部分が存在する。この部分を通過する荷電粒子は磁場によって運動方向があまり変わらないため、 $p_{\rm T}$ の測定精度が悪くなる。更にトロイド磁場は主に ϕ 方向成分だが、磁場の不均一性は避けられないため、R方向及び z方向成分にも存在している (Fig. 2.19)。

Fig. 2.18: トロイド磁場強度の η 方向の依存性。 Transition region はバレルトロイド磁場とエン ドキャップトロイド磁場の境界領域を表している [11]。

Fig. 2.19: ビーム軸に垂直な平面 (x-y 平面) の磁力線の様子 [13]

2.3.3 内部飛跡検出器

ATLAS で用いられている内部飛跡検出器の外観を Fig. 2.20 に示す。内部飛跡検出器は ピクセル検出器 (Pixel)、シリコン検出器 (Semi-Conductor Tracker (SCT))、遷移輻射検出 器 (Transition Radiation Tracker (TRT)) の3つで構成されている。また η は2.5までカ バーし、ATLAS 検出器の中では最内層に位置する検出器であるため、放射線によるダメー ジが大きく、高い放射線耐性が必要とされる。

Fig. 2.20: 内部飛跡検出器の外観図 [1]

ピクセル検出器 (Pixel)

衝突点から最も近い領域に設置されている半導体検出器 (Fig. 2.21) で、内側から B-Layer, 1-Layer, 2-Layer と呼ばれる 3 層の円筒形の検出器と 3 層の円盤状の検出器から構成され る。総チャンネル数は 8040 万で、位置分解能は r 方向と ϕ 方向には 12 μ m、z 方向には 70 μ m である。現在では B-Layer のさらに内側に IBL(Insertable B-Layer) が挿入されて いる。

Fig. 2.21: バレル部における Pixel 検出器 [1]

Insertable B-Layer (IBL)

2015 年から 2022 年末に予定されている LHC のアップグレードまでの間、LHC の瞬間 最高ルミノシティはデザイン値の 10³⁴ cm⁻²s⁻¹ に達する可能性がある。このため衝突点近 傍では LHC のデザインパラメータよりも高密度環境になることから、従来の最内層に位置 するピクセル検出器の故障数が増加することや読み出し速度の限界に達することにより検 出効率が低下することが予想される。そのような飛跡再構成精度の悪化を防ぐため、Run-2 が開始される前の 2014 年に従来のピクセル検出器よりも高細分化されたセンサーと読み出 し速度の速いチップが搭載された IBL 検出器が ATLAS 検出器に導入された。IBL の導入 により高い飛跡再構成精度を維持できるほか、IBL は従来のピクセル検出器の最内層の更 に衝突点近傍に位置するために、粒子の生成崩壊位置の決定精度を向上できる。特にボトム クォーク由来のジェットの識別効率を向上することができる。

また IBL の導入に際しビームパイプは現行のものよりも外径が7 mm だけ小さい新しい

ビームパイプに入れ替えられ、衝突点から半径方向に 33.25 mm の位置に IBL のセンサー 中心がくるように配置されている (Fig. 2.22)。

Fig. 2.22: IBL のレイアウト $(R - \phi 平面)$ [14]

シリコン検出器 (SCT)

ピクセル検出器の外側に設置されているシリコンマイクロストリップを用いた位置検出器 である (Fig. 2.23)。精密に飛跡を検出する事に優れており、80 μ m × 128 mm のシリコン ストリップセンサーからできている。バレル部は4 層,エンドキャップ部は9 枚の円盤状の 検出器で構成されている。総チャンネル数は約 620 万で、位置分解能は r 方向と ϕ 方向に は 16 μ m, z 方向には 580 μ m である。

Fig. 2.23: バレル部における SCT 検出器 [1]

遷移輻射検出器 (TRT)

TRT はシリコン検出器より精密な飛跡測定を行う目的でシリコン検出器の外側に設置さ れている、遷移輻射の原理を用いたストロー型のガス増幅検出器である (Fig. 2.24)。ここで 遷移輻射とは荷電粒子が誘電率の異なる 2 つの物質を通るときに境界面において電磁的な放 射をする現象で、放射されるエネルギーは荷電粒子のローレンツ因子 γ = E/m に比例する。 これにより電子を識別することが可能である。三角形型の構造体を上下互い違いに貼り付け た層が3層あるバレル部と,20枚の円盤状の検出器を持つエンドキャップ部で構成されて いる。総チャンネル数は約30万で位置分解能は170 µm である。

Fig. 2.24: バレル部における TRT 検出器 [1]

2.3.4 **カロリメータ**

カロリメータは内部飛跡検出器の外側において粒子のエネルギーや放出角度を測定する検 出器で、内部飛跡検出器では識別できない中性粒子の検出と、粒子のエネルギーの測定を行 う。用途により電子や光子を検出する電磁カロリメータと、ハドロンを含むジェットを検出 するハドロンカロリメータに分かれる。カロリメータの全体像を Fig. 2.25 に示す。

Fig. 2.25: カロリメータの全体像 [1]

LAr 電磁カロリメータ

液体アルゴン (LAr) を使用したサンプリングカロリメータである。吸収体には鉛を使用 し、アコーディオンのような形状にすることで φ 方向の不感領域がなくなるように設計され ている。バレル電磁カロリメータは |η| < 1.48 をカバーし、エンドキャップ電磁カロリメー タは 1.38 < |η| < 3.2 をカバーしている。また、エネルギー分解能は以下のように表される。 第1項は電子数をエネルギーに換算する際の統計的な揺らぎによる項であり、第2項は較正 の精度や温度の揺らぎによる項である。

$$\frac{\Delta\sigma_E}{E} = \frac{9.5 \,[\%]}{\sqrt{E}} \oplus 0.7 \,[\%] \quad (E: \text{GeV}) \tag{2.4}$$

ハドロンカロリメータ

バレル部 ($|\eta| < 1.7$) には Tile カロリメータ、エンドキャップ部 ($1.5 < |\eta| < 3.2$) には Hadronic End-cap Calorimeter (HEC) が使用されている。

• Tile カロリメータ

Tile カロリメータは鉄板を吸収体とし、タイル状のプラスチックシンチレータを交 互に重ね合わせたサンプリングカロリメータである。シンチレータタイルの両端に波 長変換ファイバーがつながれており、2 つの光電子増倍管から読み出しを行う。

• LAr Hadronic Endcap Calorimeter (HEC)

HEC は電磁カロリメータと同じく LAr を用いたサンプルリングカロリメータで、 吸収体に銅を使用している。また、32 個の同一な形状のくさび形モジュールを組み合 せて円盤状になっている。

また、単一のハドロン粒子に対するエネルギー分解能は以下のように表される。

$$\frac{\Delta\sigma_E}{E} = \frac{52.3\,[\%]}{\sqrt{E}} \oplus 1.7\,[\%] \ (バレル部), \ \frac{62.4\,[\%]}{\sqrt{E}} \oplus 3.6\,[\%] \ (エンドキャップ部)$$
(2.5)

2.3.5 ミューオンスペクトロメータ

ミューオンスペクトロメータは ATLAS 検出器の最外部に配置されている、ミューオンの 位置測定等を行う検出器群のことである。ミューオンは物質の透過率が高いことからミュー オンスペクトロメータまで到達することができる。ミューオンスペクトロメータは位置の精 密測定を行う Monitored Drift Tube (MDT) と Cathod Strip Chamber (CSC)、トリガー の発行を担う Rasistive Plate Chamber (RPC) と Thin Gap Chamber (TGC) から構成さ れている。ミューオンスペクトロメータの全体図を Fig. 2.26 に示す。

Fig. 2.26: ミューオンスペクトロメータの全体図 [1]

高精度位置測定用検出器

• MDT (Monitored Drift Tube)

MDT はバレル部、エンドキャップ部の広いラピディティ領域をカバーし、r-z方向成分を精密に測定することができる。カソード径 30 mm、アノード径 50 μ m で あるドリフトチューブで構成される。粒子の通過位置をドリフト時間によって算出す る。位置分解能は 80 μ m で、総チャンネル数は 30 万チャンネルである。

• CSC (Cathod Strip Chamber)

CSC は放射線の多い 2.0 < $|\eta|$ < 2.7 の領域に設置されている運動量精密測定用の MWPC (Multi-Wire Proportional Chamber) である。ワイヤ間隔 2.54 mm、スト リップ読み出し間隔 5.08 mm で、位置分解能 60 μ m である。荷電粒子の入射強度の 上限が 150 Hz/cm² の MDT に代わり、読み出し速度の速い 1000 Hz/cm² の CSC を用いる。

トリガー用検出器

• RPC (Resistive Plate Chamber)

高抵抗板を電極として用いるガス検出器の一種である。ATLAS では互いに直交するストリップを用いて $z - \phi$ 二次元情報を取得できるようにしており、バレル部のトリガーに用いられる。 ϕ 方向の位置分解能は 5~10 mm 程度で、検出器の反応時間が短いタイムジッターは 1.5 ns より小さい。

TGC (Thin Gap Chamber)
 3 章で詳細を述べる。

第3章 ミューオントリガーシステム

本章では Thin Gap Chember (TGC) ミューオントリガーシステムについて説明する。 TGC は前章で説明したミューオンスペクトロメータの中でも、エンドキャップ部に設置さ れるトリガー用の検出器である。本章では TGC の構造とトリガー処理の一連の流れ、各エ レクトロニクスについて説明する。

3.1 トリガーシステム

ATLAS 実験では 40.08 MHz のバンチ衝突で、各バンチ衝突あたりの陽子陽子衝突数は 25 を超え、ATLAS 検出器の衝突点での非弾性散乱事象頻度は 1 GHz に及ぶ。これらの膨 大な事象をストレージに全て記録することは困難であるため、トリガーシステムを用いて 目的とする物理事象を同定し、事象選別を行う。ATLAS 実験のトリガーシステムは、カロ リーメータとミューオンシステムによるハードウェアでの高速処理を行うレベル 1 (L1)、ソ フトウェアを用いてより精度の良い選別を行い、最後にオフライン解析とほぼ同等の事象再 構成に基づく選別を行うハイレベルトリガー (HLT) の 2 段階で構成されている。ATLAS 実験におけるトリガーシステムの概要を Fig. 3.1 に示す。

Fig. 3.1: トリガーシステムの概略図 [12]。大きく分けて 2 段階のトリガーで構成されている。

このトリガーシステムによりオンラインで目的の物理事象を探索、収集するための判断を 行い、最終的に事象レートは1 kHz まで落とすことが要求されている。

3.1.1 レベル1トリガー

レベル1トリガーではカロリメータとミューオンシステムにより事象選別を行う。カロ リメータあるいはミューオンシステムでトリガーの対象となった信号が観測された領域を Region of Interest (RoI) と呼ぶ。レベル1トリガーでは衝突点で発生した1GHz の事象 レートを 100 kHz 程度にまで落とすことを目的としている。レベル1トリガー処理の流れ は Fig. 3.1 に示している。カロリメータでは E_{T}^{miss} 、 e/γ 、 τ 、jet などのオブジェクトに対 するエネルギー閾値が設定されており、ミューオンスペクトロメータでは横方向運動量 p_{T} に対する閾値が設定されている。トリガーの閾値を超えたトリガー情報は Central Trigger Processor (CTP) に送られ、最終的なレベル1トリガーの判定を行う。

3.1.2 ハイレベルトリガー

ハイレベルトリガー (HLT) はレベル1トリガーからイベントレートを1kHz 程度にまで 落とすことを目的としている。Run1 ではレベル2トリガーとイベントフィルター (EF) に よって構成されていたが、Run2 ではこれらを統合して、HLT という単一システムにした。 レベル1トリガーにより選定された RoI の情報を元にレベル1 で用いられなかった MDT、 CSC、ID 等の位置情報を利用してより精度の高い選別を行い、RoI 付近の情報のみを対象 とすることで計算の効率化を図っている。ここでは全ての検出器の情報を用いて粒子を再構 成・識別し、トリガーの判定を行う。最終的にトリガーと判定されたイベントはオフライン 解析のためにデータストレージに書き込まれる。

3.2 レベル1エンドキャップミューオントリガー

レベル 1 エンドキャップミューオントリガーは TGC によって発行されるトリガーであ り、1.05 < $|\eta|$ < 2.42 をカバーしている。レベル 1 エンドキャップミューオントリガーの 目的は高い横方向運動量 p_T を持つミューオンの選別である。

3.2.1 Thin Gap Chamber(TGC) の構造と動作原理

TGC のチェンバーの断面図を Fig. 3.2 に示す。TGC は MWPC (Multi Wire Proportional Chamber) の一種であり, 直交するアノードワイヤとストリップによる $R - \phi$ の 2 次元の読み出しが可能になっている。Fig. 3.2 に示すように、ワイヤ間の距離が 1.8 mm なの に対してワイヤとカソードの間は 1.4 mm と短いのが特徴である。ワイヤの間隔が狭いのは 電子のドリフト時間を短くし、バンチクロッシング間隔 (25 ns) に対応できるようにするためである。 ワイヤとストリップの間隔が狭いのは陽イオンのドリフト距離を短くし、粒子が高レートで入射してきても検出効率を落とさないようにするためである。またワイヤ径を太くすることで、電場が強い領域がガス領域に拡がり、ガスゲインを上げて不感領域を減らす ためである。

Fig. 3.2: TGC の断面図

TGC 構造はアノード (陽極) として直径 50 m の金メッキをしたタングステンワイヤが台 形の上底、下底に平行に張られている。カソード (陰極) はガラスエポキシ板に表面抵抗が約 1 M Ω /square のカーボンを塗布してある。ガラスエポキシ板を挟んだ反対の面には 1 面を 32 分割した扇形の銅のストリップがワイヤに直交して並べてある。ワイヤにはガスギャッ プの距離を一定に保つため約 30 cm 毎にワイヤサポートがあり、局所的な不感領域を作って いる (Fig. 3.3)。ワイヤは 6 ~ 20 本 (幅にして 10.8 ~ 36 mm) をまとめて 1 つのチャンネ ルとして読み出す。ストリップは 32 本あり、それぞれが 1 つのチャンネルとして読み出さ れる。これにより TGC は 2 次元の読み出しが可能で、ワイヤにより R 方向を、ストリッ プにより ϕ 方向の位置の検出を行うことができる。

Fig. 3.3: TGC チェンバーの模式図 [15]

TGC の内部は CO₂/n-pentane (55/45) 混合ガスで満たされており、CO₂ は電離ガスの 役割、n-pentane はクエンチャーの役割を担っている。ワイヤには 2.9 kV 程度の高電圧が 印加されており、ガス中を荷電粒子が通過すると、その経路にあるガス分子が電離されイオ ン化され、生成された電子はアノード・カソード間の強電場によってアノードに向かう。そ して最も近傍のワイヤに近づくと急激に加速され、周辺のガス分子をイオン化して電子雪崩 を起こす。ワイヤはこの電子雪崩を信号として読み出す。ワイヤー近傍の電子雪崩によって 生成された陽イオンはカソード方向に移動していき、カソード面では陽イオンが引き寄せら れる。それによってカーボン面の裏側のストリップ に電荷を誘起することでストリップ側 の信号を得ることが出来る。電子とイオンの再結合の際に生じる紫外線は n-pentane が吸収 し、必要以上の電子雪崩が発生するのを抑えている。

ATLAS 実験では TGC は1 層単独では用いずに、2 層または3 層を重ねた構造にして用 いている (Fig. 3.4)。Doublet (2 層) の場合は2 層のワイヤ面と2 層のストリップ面から読 み出しが行われる。Triplet (3 層) では、2 層目にはストリップがなく、3 層のワイヤ面と2 層のストリップ面から読み出しが行われる。多層にすることで各層のコインシデンスを取っ てバックグラウンドによるフェイク信号の影響を減らすだけでなく、ワイヤサポートによる 不感領域の影響も減らすことができる。

Fig. 3.4: TGC の Triplet (左) と Doublet (右) の構造 [11]

3.2.2 TGC の配置

TGC は前章で説明した通り、ミューオンスペクトロメータのエンドキャップ領域(1.05 < $|\eta| < 2.70$)をカバーしているトリガー用の検出器である。 $|z| \simeq 7.0$ m, 7.4 m に配置されるインナーステーション(EI/FI)と $|z| \simeq 13.4$ m, 14.7 m, 15.2 m に配置されるミドルステーション(BW, Big Wheel)に分けられる。TGC はエンドキャップ部を円盤状にカバーするため、各チェンバーの形は台形をしており、その大きさは配置場所によって多少の異なりはあるが一辺が 1~2 m 程度である。Fig. 3.5 に TGC の位置及び構造を示す。Fig. 3.5 の赤く示された両サイドの円形部分が TGC を表している。

Fig. 3.5: TGC の配置と構造

TGC の配置図を Fig. 3.6 に示す。TGC のシステムは M1(triplet)、M2(middle)、 M3(pivot) と EI(Endcap Inner)、FI(Forward Inner) の5 つから構成されている。M1 は 3 層のチェンバー、M2・M3・EI・FI はそれぞれ 2 層のチェンバーから成っている。トリ ガー判定には M1・M2・M3 の計 7 層でトリガー判定を行う。M1・M2・M3・EI・FI の5 つがそれぞれ ATLAS 検出器の両側のエンドキャップで円盤状に並べられて配置されてい る。BW の位置座標は内側から順に M1(z = 13.4m)、M2(z = 14.7m)、M3(z = 15.2m) となっている。M1 と M2 の間は 1 m ほど間隙があり、ここに MDT が入っている。

Fig. 3.6: TGC *R*-*z* 平面図

Big Wheel (BW)

Fig.3.7 に BW(Big Wheel) の写真を載せる。TGC は 1/12 円をひとつの単位とし、デー タ処理や TGC の建設はこの単位で行われている。BW のカバーする 1.05 < $|\eta| < 2.42$ の 領域のうち、1.05 < $|\eta| < 1.90$ を Endcap 領域、1.90 < $|\eta| < 2.42$ を Forward 領域と呼 ぶ。TGC は後述のトリガーセクターという単位で領域を分けて信号処理を行うが、この $|\eta| = 1.90$ はトリガーセクターの境界であり、チェンバーの境目でもある。また、2.42 < $|\eta| < 2.70$ の領域は M1 しかカバーしていないため、トリガー情報生成は行われず位置測定 のみ行われる。

Fig. 3.7: Big Wheel (BW) [16]

トリガーセクター

TGC の組み立てや実際のデータ処理等は, 円盤を ϕ 方向に 1/12 分割した"セクター"と いう単位で行われる。また Forward 領域はチェンバー 1 枚, Endcap 領域は R 方向に連続 した 4 枚 (M1) または 5 枚 (M2, M3) の集合をトリガーセクターと呼ぶ。。Fig.3.8 に示すよ うに、1 セクターには Forward のトリガーセクターが 2 つ (ϕ 0, ϕ 2)、Endcap のトリガー セクターが 4 つ (ϕ 0 ~ ϕ 3) 含まれている。トリガーセクターはトリガー情報を生成する際 の単位であり、トリガーセクターの ϕ 方向の幅がちょうど TGC1 枚の幅と一致している。

これらはさらに小さいサブセクターに分けることができる (Fig. 3.9)。1 つのサブセク ターをワイヤ・ストリップともに 8 チャンネルで構成すると, Endcap 領域では 37(R) × 4(ϕ) = 148 サブセクター、Forward 領域では 16(R) × 4(ϕ) = 64 サブセクターに分割され る。サブセクターはトリガー判定の最小単位であり、TGC における RoI に相当する。また、 サブセクターを R 方向に 2 つ、 ϕ 方向に 4 つ (計 8 つ) まとめた単位を SSC(Sub Sector Cluster) と呼ぶ。この SSC という単位は、後述のトリガー処理の際に使用する単位である。 ATLAS 検出器に設置されている TGC の総数は、約 3700 枚あり、全チャンネル数は R 方 向で約 22 万、 ϕ 方向で約 10 万に及ぶ。

Fig. 3.8: TGC の 1/12 セクター

Fig. 3.9: TGC のサブセクターナンバリング

Inner Station (EI/FI)

Fig. 3.10 に EI/FI の写真、Fig. 3.11 に EI/FI の概形を示す。EI (Endcap Inner) は、 バレル部にインストールされているトロイド磁石のコイルや配管等によって全ての ϕ 領域を 覆っていない。Run-1 において、EI, FI はトリガー判定には用いられず、オフライン解析で のミューオン飛跡の再構成に必要な位置情報の測定のみを行っていた。2015 年の Run-2 で FI をトリガー判定に使用した。詳細は 4.2 節で述べる。

Fig. 3.10: Small Wheel [1]

Fig. 3.11: EI/FI の概形。EI にはトロイド磁 石と干渉するため、設置できない領域がある。

3.2.3 TGC エレクトロニクス

TGC エレクトロニクスの概要を Fig. 3.12 に示す。TGC システムのデータの流れには次の3つがある。

Fig. 3.12: TGC エレクトロニクスの概要

トリガー系

レベル 1 ミューオントリガー判定のための情報処理を行う。Fig. 3.12 の赤線 (MUCTPI)で表される。

- リードアウト系
 レベル1トリガーの発行に応じてデータを渡す。Fig. 3.12の青線 (ROB) で表される。
- コントロール系 TGC エレクトロニクスの各モジュールをコントロールする。Fig. 3.12の緑線 (Configuration)で表される。

以下にこれらの詳細について記述する。

トリガー系

トリガー系の流れを Fig. 3.13 に示す。信号は ASD (Amplifier Shaper Discriminator) Board, PP ASIC (PatchPanel ASIC), SLB ASIC (Slave Board ASIC), HPT (High-p_T Board)、SL (Sector Logic) の順に処理される。TGC から出力されるアナログ信号は ASD Board に送られ、信号の増幅・整形・デジタル化が行われたあと、PP ASIC へと送られ る。PP ASIC では各チャンネルへ粒子が到達するまでの飛行時間やケーブル遅延などから 生じるタイミングのズレを調整し、バンチ識別(信号を LHC のバンチクロックに同期させ ること)を行う。SLB ASIC では、PP ASIC からの信号を受け取り、M2 及び M3 からな る4層からの信号をもとにコインシデンス処理が行われ、トリガー判定がなされる(low-pr トリガー)。また M1 からの信号についてもコインシデンス処理が行われる。HPT では、 SLB ASIC で測定した M1・M2・M3 のコインシデンスが取られ、その結果は光ケーブル で USA15 というコントロールルームに設置された SL に送られる。SL では、それまで独立 して扱われていたワイヤとストリップの情報を統合し、コインシデンス処理及び横方向運動 量 *p*_T の概算が行われる。TGC のトリガー系の最終的な情報として *p*_T が大きな 2 つのト ラックをセクター毎に選別する。これらのエレクトロニクスの詳細は後述する。SL の結果 は Muon-CTPInterface (MUCTPI) に送られ、RPC の情報と合わせてミューオンシステム の最終的なトリガー判定がなされる。

Fig. 3.13: レベル1 におけるトリガー系の流れ

リードアウト系

リードアウト系の流れを Fig. 3.14 に示す。PP ASIC から送られてきたデータは、SLB ASIC の中にあるレベル 1 バッファに蓄えられる。このバッファの保持時間は 2.5 μ s で あり、保持時間内にトリガー信号である L1A が SLB ASIC に戻ってくる設計になってい る。L1A を受けたデータはバッファから SSW (Star Switch) へと送り出される。SSW で はデータの圧縮を行い、規格フォーマットにデータを変換する。またトリガー情報 (コイン シデンス処理結果) は SL に搭載された SLB ASIC から同様に SSW へと送られる。変換 されたデータは光ケーブルで ROD (Readout Driver) に送られ、それらのデータと TTC (Timing Trigger Control) から送られてくる情報との整合性を確認し、PC ベースの Read Out System に出力する。

Fig. 3.14: レベル1 におけるリードアウト系の流れ

コントロール系

VME モジュールは直接 PC で制御される。一方、実験ホール内にある TGC 外縁上の VME クレートには、VME マスターとして HSC (High- p_{T} Board SterSwitch Controller) が置か れ、CCI (Crate Control Interface) から光ケーブルで遠隔操作する。また、TGC モジュー ル面に設置される PS Board は、SSW から JTAG プロトコルを用いて制御する。この時、 PS Board 上のルーティングには専用の JRC (JTAG Route Controller) が使用される。更 に別系統として、DCS (Detector Control System) が TGC 外縁上の VME クレートと PS Board に制御系を持ち、TGC の HV (High Voltage supply) や ASD 閾値などの設定、監 視が行われる (Fig. 3.15)。

Fig. 3.15: レベル1 におけるコントロール系の流れ

次にトリガー系及びリードアウト系の読み出しに用いられる各モジュールについて概要を 述べる。

Amplifier Shaper Discriminator (ASD) Board

ASD Board は TGC の側面に取り付けられ、4 チャンネル分の処理ができる ASD ASIC が4 個搭載され、1 つのボードで 16 チャンネルを処理する。ASD ASIC では、TGC から のアナログ信号を増幅・整形し、設定しきい値電圧を超えた信号のみを LVDS (Low Voltage Differential Signal:低電圧作動信号) レベルの信号で出力する。また ASD 以降のエレクト ロニクスの診断やタイミングの調整のために擬似的な TGC の出力信号を出力することも可 能である。

Patch Panel ASIC (PP ASIC)

ASD から送られてくる信号の TOF やケーブル遅延によるタイミングのズレを調整し、 バンチ識別を行う。さらに TGC の重なった部分での二重カウントを防ぐため、その部分に 対しては OR ロジックを通して信号を出力する。PP ASIC は1 つで 32 チャンネルの信号 を処理できる。また ASD Board に向けてテスト用の擬似信号を発生させるための回路を搭 載している。

Slave Board ASIC (SLB ASIC)

SLB ASIC は大きく分けてトリガー部とリードアウト部からなる。トリガー部では、 TGC からの入力信号に対してコインシデンス処理を行う。SLB ASIC の段階ではワイヤと ストリップ、Doublet と Triplet は別々に扱うため、設定により5 種類のコインシデンス処 理 (ワイヤ-Doublet、ストリッ プ-Doublet、ワイヤ-Triplet、ストリップ-Triplet、FI)を切 り替え可能な実装になっている。また、トリガー部には PP ASIC からの信号に 1/2 clock 単位で遅延をかける機能や、各チャンネルをマスクする機能、連続したチャンネルにヒット があったときにその中の1 つのチャンネルだけから信号を出力させるデクラスタリングとい う機能 (3.2.6 参照) がある。リードアウト部はレベル1 トリガーの判定を受けたデータの読 み出しを行う。データは CTP からの L1A が与えられるまで保持され、L1A が与えられる と該当データとその前後1 バンチずつのデータを SSW に送る。

High- p_{T} Board (HPT)

SLB ASIC までに独立に処理されてきた M2・M3 と M1 のデータを統合して High- p_{T} コインシデンス情報を生成する。M1 は M2・M3 間の間隔よりも離れた位置に配置されてい る。そのため M1 を用いることにより磁場によってあまり曲げられることがなかった大きな p_{T} を持つミューオンを選別できる。HPT ではワイヤーとストリップは独立して処理され、 最終的なミューオンの p_{T} 判定に用いるコインシデンス情報 ($\Delta R, \Delta \phi$) を出力する。ただし HPT でコインシデンスがとれなかった場合、SLB のコインシデンス処理の結果 (low- p_{T}) が代わりに出力される。出力データは光ファイバーによって 90~100 m 離れた USA15 に ある SL へと送信される。Endcap 領域には 4 つ、Forward 領域には 3 つの HPT ASIC が High- p_{T} Board 上に搭載されている。

Sector Logic (SL)

TGC エレクトロニクスの最終的な部分を担当し、トリガーデータを集めるモジュール で、2 トリガーセクタ分の信号を処理する。SL は主に R- ϕ コインシデンス、プレトラック セレクタ、ファイナルトラックセレクタから構成される。HPT まで独立に処理されていた R 方向 (ワイヤ) と ϕ 方向 (ストリップ) の HPT 信号から両者のコインシデンス (R- ϕ コイ ンシデンス) をとることにより、6 段階の $p_{\rm T}$ 閾値でミューオンを分類する。 $p_{\rm T}$ 判定には各 閾値に対応した Coincidence Window (CW) と呼ばれる参照表が用いられている。これは シミュレーションによってつくられるもので、($\Delta R, \Delta \phi$) の組み合わせに対応する $p_{\rm T}$ 閾値 を記述し、これをハードウェア言語に変換して SL の集積回路内に実装する。この集積回路 は書き換え可能なモジュール (FPGA: Field-Programmable Gate Array) であり、CW の 変更に対応することが可能である。プレトラックセレクタは各しきい値に用意され、 η の小 さい順に 2 つのトラックを選択して、計 12 トラックがファイナルトラックセレクタに送ら れる。ファイナルトラックセレクタではプレトラックセレクタから送られた 1 トリガーセク ター分のトラックから $p_{\rm T}$ の大きいものを 2 つ選択し、それらに対する 6 段階の $p_{\rm T}$ 判定と 位置情報を MUCTPI に送る。SL が処理に使用した HPT からのデータと SL での処理結 果は USA15 に設置された SSW に送られる。

Star SWitch (SSW)

SLB AISC のリードアウト情報を収集・圧縮し、規定のフォーマットへ変換し ROD へ送る。1 つの SSW で最大 23 個の SLB ASIC のデータを受け取る。

Read Out Driver (RDO)

TGC エレクトロニクスシステムにおけるリードアウトのデータが最終的に集まるモ ジュールで、複数の SSW からのデータを、トリガー情報をもとに同じイベント毎にまとめ、 ROB (Read Out Buffer) に送信する。

3.2.4 トリガースキーム

TGC で発行されるレベル1 エンドキャップミューオントリガーでは、検出されたミュー オンの *p*_T を基にトリガー判定を行う。*p*_T はミューオンの磁場による曲がりから概算され る。以下に *p*_T の概算方法及びトリガー判定について述べる。

*p*_T 算出の概要

Fig. 3.16 は衝突点に対し、TGC が M1(triplet),M2 (middle),M3(pivot) という順番で 設置されている様子を表している。TGC による *p*_T 算出の流れを次に示す。

- 1. 衝突点で陽子同士が衝突し, W ボゾンの崩壊などによりミューオンが生成される。
- 2. ミューオンは Big Wheel (BW) に到達する前にエンドキャップトロイド磁場によっ て曲げられる。
- トロイド磁場を通過した後、TGC BW の M1, M2, M3 を順に通過する。ヒットした 各点で TGC が生成した信号をフロントエンドエレクトロニクスが処理し、2 次元情 報 (*R*, φ) が生成される。
- 4. 最外層の TGC (M3) での検出点とビームの衝突点を結ぶ直線を無限運動量を持つ ミューオンのトラックと仮定する (Fig. 3.16 の青線)。この直線と磁場で曲がった実 際の飛跡とのずれ (ΔR , $\Delta \phi$) から p_T を算出する。 p_T が高いほど磁場で曲げられに くいので ΔR , $\Delta \phi$ は小さくなる。ここまでの処理は R, ϕ 独立に行い、最後に $R - \phi$ 間のコインシデンスを要求する。理想的なトロイド磁場の場合、磁場は ϕ 方向なので $\Delta \phi = 0$ のはずであるが、実際には、磁場の非一様性から R 方向の磁場成分も存在 し、 ϕ 方向の変位 $\Delta \phi$ も考慮する必要がある。

Fig. 3.16: p_T 測定の原理。無限運動量での飛跡と磁場で曲がった実際の飛跡のずれから p_T を算出する [17]。

コインシデンス処理の概要

トリガー判定の流れを Fig. 3.17 に示す。ミューオントリガシステムでは、2-Station、 3-Station と呼ばれる 2 種類のコインシデンスを設けている。2-Station コインシデンスは M2、M3 の Hit 情報に対して R 方向、 ϕ 方向独立にコインシデンス処理が施され low- p_{T} 判定が行われる。また 3-Station コインシデンスの場合は、2-Station コインシデンスの条 件に加えて、M1 においてワイヤでは 3 層のうち 2 層以上で、ストリップでは 2 層のうち 1 層以上で Hit があることと、Fig. 3.16 に示される hi- p_{T} Window に Hit が収まっている かどうかを判定する (hi- p_{T} 判定)。最後にこれまで独立で処理されてきた R 方向、 ϕ 方向 それぞれの情報が統合される。このコインシデンス情報 (ΔR , $\Delta \phi$) を用いて Coincidence Window (CW) と呼ばれる参照表 (Look Up Table : LUT) を参照することでトリガーを発 行する。また low- p_{T} トリガーが設定されてある場合、3-Station コインシデンスの条件を 満たさなくても M2 での ΔR , $\Delta \phi$ 情報を用いることでトリガーが発行される。low- p_{T} ト リガーは実験初期のルミノシティが低く、トリガー頻度に余裕のある場合など使用条件は限 られている。従って以降一般に CW と言う場合、high- p_{T} トリガー用の CW を指す事とす る。

Fig. 3.17: TGC トリガーの判定方法。low-*p*_T 及び high-*p*_T でのコインシデンス処理を表 している [17]。

3.2.5 Coincidence Window(CW)

レベル1ミューオントリガーでは閾値を複数設定してミューオンの $p_{\rm T}$ を pt1 ~ pt6 の6 段階に分ける。Coincidence Window (CW) とは SL に届いた (ΔR , $\Delta \phi$) の組に対してそ れが6 段階のどの pt に相当するかをマップしたものである。CW は SL に Look Up Table として実装されており、SL は ΔR , $\Delta \phi$ 情報をアドレスに変換して対応する $p_{\rm T}$ の値を読み 出す。Fig. 3.18 は CW の一例であり、(ΔR , $\Delta \phi$) と $p_{\rm T}$ との対応を図示したものである。

Fig. 3.18: High- $p_{\rm T}$ CW の一例。pt2(水色) は $p_{\rm T} > 6$ GeV、pt4(緑) は $p_{\rm T} > 11$ GeV、pt5(オレンジ) は $p_{\rm T} > 15$ GeV、pt6(赤) は $p_{\rm T} > 20$ GeV を意味する。(pt3 ($p_{\rm T} > 10$ GeV) は使用していない)
横軸が $\Delta \phi$ 、縦軸が ΔR , であり、 ΔR の大きさによって pt の領域が移っていくのが見え る。CW は各 RoI 毎に用意されている。エンドキャップ部のトロイド磁場の 8 回対称性か ら 1/8 円 (オクタント) について考えればよい。1/8 円 (オクタント) は Endcap 領域でトリ ガーセクター 6 つ分、Forward 領域でトリガーセクター 3 つ分に相当する。それぞれ含ま れる RoI の数を数えると、合計 6 × 148 (Endcap 領域) + 3 × 64 (Forward 領域) = 1080 個の CW を用意する必要がある。CW 内に入った時に発行される Run-2 でのレベル 1 トリ ガーメニューと $p_{\rm T}$ の関係を Table. 3.1 に表す。それぞれ L1_MU4(pt1)、L1_MU6(pt2)、 L1_MU10(pt3)、L1_MU11(pt4)、L1_MU15(pt5)、L1_MU20(pt6) に対応している。

L1 menu	$pt1\sim 6$	condition
L1_MU4	pt1	$p_{\rm T} > 4 { m GeV}$
$L1_MU6$	pt2	$p_{\rm T} > 6~{\rm GeV}$
L1_MU10	pt3	$p_{\rm T} > 10 { m ~GeV}$
L1_MU11	pt4	$p_{\rm T} > 11~{\rm GeV}$
L1_MU15	pt5	$p_{\rm T} > 15 { m ~GeV}$
$L1_MU20$	pt6	$p_{\rm T} > 20 {\rm ~GeV}$

Table. 3.1: Run-2 でのレベル1 トリガーメニュー

L1_MU6 ~ L1_MU20 に関しては 3-Station コインシデンスを要求している。L1_MU4 に 関しては、3-Station コインシデンスの L1_MU4 の範囲に入ったものに加えて、一部の RoI において 2-Station コインシデンスがとられたものに対して CTP で L1_MU4 のトリガー を発行している。3-Station コインシデンス及び 2-Station コインシデンスにおける ΔR と $\Delta \phi$ の範囲を Table. 3.2 に示す。low- $p_{\rm T}$ CW の一例を Fig. 3.19 に示す。

Table. 3.2: CW の ΔR と $\Delta \phi$ の範囲。high- p_T CW は 3-Station コインシデンスのみ、 low- p_T CW は 3-Station コインシデンス及び 2-Station コインシデンスの組み合わせに よって、トリガーを発行している。

	ΔR	$\Delta \phi$
3-Station コインシデンス	$-15 \sim +15$	$-7 \sim +7$
2-Station コインシデンス	$-7 \sim +7$	$-3 \sim +3$

Fig. 3.19: Low- p_T CW の一例。一部の RoI において、左側は ΔR が high- p_T 、 $\Delta \phi$ が low- p_T 、中央は ΔR が low- p_T 、 $\Delta \phi$ が high- p_T 、右側は ΔR が low- p_T 、 $\Delta \phi$ が low- p_T で コインシデンスを取っている。

CW の作成方法

実際の検出器では磁場や構造物などの様々な要素を考慮する必要があるため、CW を数式に よって計算・作成するのは困難である。そこで、衝突点から飛来するミューオンに対する検 出器やトリガーシステムの挙動をシミュレーションし、ミューオンの *p*_T と各 RoI における *ΔR、 Δφ* の対応を調べることで CW を作成する。ATLAS 実験におけるデータの処理・解 析は Athena と呼ばれるソフトウェアフレームワークに従って行われる。Athena によるシ ミュレーションは大別して 4 つのプロセスから構成されている。シミュレーションサンプル はモンテカルロ (MC) 法に従って生成されることから MC サンプルと呼ぶことがある。以 下にトリガーシミュレーションの仕組み及びトリガーシミュレーションによって得られた結 果から CW の作成までの流れを以下に述べる。

イベント生成 (Event generation)

検出器に入射させるための物理事象そのもののシミュレーションを行う。理論に よって予測される陽子・陽子衝突で起こる物理事象をモデル化し、モンテカルロシ ミュレーションを用いて再現する。

● 検出器シミュレーション (Simulation)

Genat4 というシミュレータを用いて測定器の詳細な形状と磁場分布に応じて粒子 がどのような飛跡をたどるかを再現する。イベント生成のプロセスによって生成され た事象情報を受け取り、衝突点付近から発生した粒子の測定器や構造体中での相互作 用をシミュレートし、飛跡を求める。ミューオンが検出器の有感領域に作ったヒット はエネルギーや時間、位置などの情報を持つ。その結果は Hit と呼ばれるデータとして出力される。

デジタイゼーション (Digitization)

粒子の通過時刻、位置とエネルギー損失の情報から実際の検出器の信号をシミュ レートする。このとき検出器の検出効率や、粒子の入射角度による信号の時間差など が考慮される。この過程を経て、シミュレーションは ATLAS 検出器による実際の データと等価な情報となる。ここで生成されるフォーマットを Digit と呼ぶ。Digit は同等の情報を含む RDO(Raw Data Object) と呼ばれるデータとしてに変換さ れる。

• 再構成 (Reconstruction)

検出器で読み出された信号からコインシデンス処理が行われ、荷電粒子の飛跡、運 動量、エネルギーや、コインシデンスのとれた RoI、 ΔR 、 $\Delta \phi$ といった後の解析に 必要な情報が再構成される。その結果を ESD (Event Summary Data) として保存す る。実際には解析のための物理情報を集約した AOD (Analysis Object Data) も生 成される。さらに、ESD もしくは AOD をさらに Ntuple (ROOT と呼ばれる解析ソ フトウェアで読み込めるフォーマット) というフォーマットに変換する。

本研究では、検出器の性能評価のためのシングルミューオン事象をシミュレートした MC サンプルを用いている。実際には、L1TGCNtuple という TGC のヒット情報など TGC に 関する情報が多く保存されている Ntuple を用いる。この Ntuple には、ミューオンの運動 量 p_T 、コインシデンスのとれた RoI、 ΔR 、 $\Delta \phi$ などが事象毎に含まれている。このシミュ レーションデータから p_T と ΔR 、 $\Delta \phi$ の対応関係を調べて、CW の作成を行う。

次に上述したトリガーシミュレーションで得られた結果から CW を作成する流れを述べる。

- 1. 電荷・ p_T 閾値毎にシングルミューオン事象を生成し、検出器の応答をシミュレート する。そこで得られた結果から、各 RoI、各 p_T 閾値毎に ΔR と $\Delta \phi$ の情報を抜き出 し、 ΔR - $\Delta \phi$ の分布図 (Hitmap) を作成する。
- 2. 作成した HitMap を元に、ミューオンのエントリー数の多い cell($\Delta R \ge \Delta \phi$ で区 切られた 1 マスを cell と呼ぶ) から順次ウィンドウを開いていく。この際、開いた cell のエントリー数の合計が、Hitmap 全体のエントリー数に対してある一定の割合 (Endcap 領域: 98 %、Forward 領域: 95 %) に達するまで処理を続ける。また、異な る p_T で同じ cell を開く場合は、 p_T の高い方を優先する。これは、 p_T の高いミュー オンに対して p_T の低いミューオン事象としてトリガーを発行してしまい、 p_T の高い 事象を取りこぼしてしまうことを防ぐためである。
- 3. 各 RoI、各 p_T 閾値毎に cell の処理をし、そのデータを cell 毎にまとめる。その後 ハードウェア言語に変換してから SL の集積回路内に実装する。

これにより、シミュレーションによる CW の作成を行い、本研究では、Run-2 の実デー タを用いて最適化した CW との比較を行う。その詳細は 6 章で述べる。

3.2.6 クロストークとデクラスタリングルール

クロストークにより、本来信号を出すべきでないストリップが信号を出すことがある。 Fig. 3.20 はミューオンが TGC を通過する様子を表した模式図である。Fig. 3.20 の右側の ように、ミューオンが通過したストリップのみでなく、その近傍のストリップも信号を出力 することをクロストークと呼ぶ。これは、荷電粒子が通過したストリップが近傍のストリッ プにも電荷を誘起し、複数のストリップで信号が生じてしまうためである。この信号が ASD の閾値を超えた場合、偽の Hit 情報として記録されクロストークとなる。

Fig. 3.20: クロストークの模式図。赤色の丸がミューオン、矢印がミューオンの飛跡を表す。 また、縦に並べた長方形が TGC のストリップを表し、青く塗られた長方形は信号を出力し ていることを表す [18]。

クロストークを避けるために TGC にはデクラスタリングルールというものが存在する。 デクラスタリングルールとは Hit 情報からコインシデンスを取り、 $\Delta R \ge \Delta \phi$ を計算する際 に、複数のチャンネルに Hit があった場合に対象とするチャンネルを1 つに絞り込むルール である。Fig. 3.21 にデクラスタリングルールの概念図を示す。SLB ASIC にて実装されて おり、このルールを適用することで複数のトリガーを発行することを防ぐ。連続したヒット があった場合、その中のチャンネル番号の小さい順から2つ目のものを選び出す仕様になっ ている。

Fig. 3.21: デクラスタリングルール [17]

3.3 トリガーチェイン

レベル1 (L1) とハイレベルトリガー (HLT) を組み合わせて、1 つのトリガーとして選別 を行う。この組のことをトリガーチェインと呼ぶ。LHC-ATLAS 実験では複数のトリガー チェインがいくつも平行に動作している。新粒子探索や TeV スケールの新しい物理探索に 用いる高い $p_{\rm T}$ の電子やミューオンなどを取得するために、トリガーの各段階で閾値を設け たトリガー選別が行われる。また、B 粒子の崩壊などからの低い運動量の粒子を取得するた め、低い閾値のトリガーも用意されている。これらの目的に応じて、異なるトリガーチェイ ンが用意されている。しかし、 $p_{\rm T}$ 閾値の低いミューオントリガーは $p_{\rm T}$ 閾値の高いものに 比べ、当然データ量及び記録レートは大きくなってしまうため、稼働レートを削減 (プリス ケール) して事象を間引きながら運転している。プリスケールされてしまうために、低い $p_{\rm T}$ のミューオンや電子を単一で要求するトリガーは統計が少なくなる。そのため、低い $p_{\rm T}$ の ミューオンや電子を必要とする場合は粒子が複数あることを要求する、もしくは他の粒子と 組み合わせるなどの付加的な要求をする必要がある。

また各トリガーチェインと各段階のトリガーには固有の名称が名付けられている。ト リガーチェインの名前は、最終的に要求する HLT の名前で呼ばれる。トリガーチェ インの中で L1 から HLT までの流れの例を以下に示す。例えば、トリガーチェイン HLT_mu20_iloose_L1_MU15 では、まずレベル 1 で CW の $p_{\rm T}$ 閾値が 15 GeV と判定 された L1_MU15 を用いており、その RoI をシードして HLT で HLT_mu20_iloose を要求 している。ここで iloose は内部飛跡検出器を用いて算出された孤立した飛跡を緩い制限で要 求したものである。

3.4 レベル1 エンドキャップミューオントリガーの性能評価の方法

レベル1 エンドキャップミューオントリガーの性能は主にトリガー効率とトリガーレート の二点で評価する。本節ではその二点について定義と測定方法を述べる。

3.4.1 トリガー効率の算出

レベル1 エンドキャップミューオントリガーにおけるトリガー効率 *ε* を式 (3.1) で定義す る。ここで測定するトリガー効率 *ε* は、オフラインで再構成されるミューオンに対してレベ ル1トリガーにかかった割合と定義する。オフラインとは全てのトリガーシステムで処理が 完了し、物理解析で使用するために保存されたデータを示す。

$$\varepsilon \equiv \frac{\nu \prec \nu 1 \land \nu 1 \land \nu 1 \land \nu 2}{\lambda 7 \neg \gamma 4 \lor \nu 2}$$
(3.1)

このトリガー効率 ε は、Tag&Probe 法と呼ばれる手法を用いて測定する。

Tag&Probe 法

Tag&Probe 法とは、J/ ψ や Z などのダイミューオン崩壊から生成されたミューオンを 選び出し、トリガー効率を測定する手法のことである。実データはトリガー選別後の事象し か残っていないので、トリガー効率を測定するためには、トリガーにはよらない再構成され たミューオンが必要になる。この手法により、イベントのトリガーとは独立なミューオンを 用いることが可能となり、トリガー効率をバイアスなく求めることができる。また、ダイ ミューオン崩壊チャンネルを使うことで、ミューオンの同定及び運動量測定の確実性を高め ることができる。本研究では、 $Z \rightarrow \mu\mu$ 事象 (Fig. 3.22) を用いた Tag&Probe 法によりト リガー効率を算出する。以下に Run-2 の実データを用いたトリガー効率の算出の手順につ いて述べる。

Fig. 3.22: $Z \rightarrow \mu\mu$ の候補事象のディスプレイ [1]

1. Z boson mass (m_Z) の再構成

ATLAS 実験でのミューオンの飛跡再構成の1 つとして、内部飛跡検出器とミュー オンスペクトロメータでそれぞれ独立に再構成された飛跡を結合することで得られ るミューオン候補を選ぶ。まず、1 回のバンチ衝突でこの再構成するアルゴリズムに よって、ミューオンが2 つ以上ある事象を選ぶ。その事象の中で異符号の電荷を持つ ミューオン対を選択し、不変質量 $M_{\mu\mu}$ を算出する。この算出した $M_{\mu\mu}$ が 80 GeV < $M_{\mu\mu}$ < 100 GeV を満たすとき、これらのミューオン対は Z ボソンの崩壊から生 成したものとみなす。Fig. 3.23 に不変質量 $M_{\mu\mu}$ の分布図を示す。

Fig. 3.23: Tag muon と Probe muon による不変質量 $M_{\mu\mu}$ 分布。80 GeV < $M_{\mu\mu}$ < 100 GeV にある 2 つのミューオンを Tag muon 及び Probe muon の候補とする。

2. Tag muon の選択

次に、選別した 2 つのミューオンのうち任意の片方を選ぶ。このミューオンの衝突 点での運動量方向を η_{μ} 、 ϕ_{μ} と表す。また、ハイレベルトリガー (HLT) で再構成さ れ、HLT_mu20_iloose_L1MU15 トリガーが発行された飛跡の衝突点での運動量方向 を η_{HLT} 、 ϕ_{HLT} と表す。このとき、 $d\eta = \eta_{\mu} - \eta_{\text{HLT}}$ 、 $d\phi = \phi_{\mu} - \phi_{\text{HLT}}$ として、2 つ の飛跡の衝突点での運動量方向の差 $dR_{\text{tag,HLT}}$ を次のように定義する。

$$dR_{\text{tag,HLT}} \equiv \sqrt{(d\eta)^2 + (d\phi)^2} \tag{3.2}$$

このときの $dR_{tag,HLT}$ の分布を Fig. 3.24 に示す。 ここで $dR_{tag,HLT} < 0.01$ (Fig. 3.24 の黒の破線で区切られた左側)を満たす場合、このミューオンに対し て HLT トリガーが発行されていると判断し、Tag muon とする。HLT トリガーが 発行されている場合、同イベント内に含まれる他のミューオンは発行されているト リガーに関係なく保存されるため、Tag muon と対になるもう一方のミューオンは Probe muon と呼ばれ、HLT によるトリガーとは独立なミューオンサンプルであり、 かつ低バックグラウンドで衝突由来のミューオンである。

Fig. 3.24: Tag muon の選択における $dR_{\text{tag,HLT}}$ の分布。 $dR_{\text{tag,HLT}} < 0.01$ を Tag muon とする。

3. Probe muon の選択

不変質量を組んだペアの Tag muon でない方のミューオンを Probe muon と定義す る。そして Probe muon の進む方向がエンドキャップ方向 (1.05 < $|\eta|$ < 2.42) であ れば、式 (3.1) の分母に加える。さらにこの Probe muon に対して、RoI の方向を η_{RoI} 、 ϕ_{RoI} と表し、 $d\eta = \eta_{\mu} - \eta_{\text{RoI}}$ 、 $d\phi = \phi_{\mu} - \phi_{\text{RoI}}$ として、式 (3.2) に代入して、 L1_MU20 トリガーが発行された RoI との距離 $dR_{\text{probe,RoI}}$ を式 (3.3) のように定義 する。このときの $dR_{\text{probe,RoI}}$ の分布を Fig. 3.25 に示す。

$$dR_{\text{probe,RoI}} \equiv \sqrt{(d\eta)^2 + (d\phi)^2}$$
 (3.3)

Fig. 3.25: Probe muon 選択における $dR_{\text{probe,RoI}}$ の分布。 $dR_{\text{probe,RoI}} < 0.1$ を Probe muon とする。

dR_{probe,RoI} < 0.1 (Fig. 3.25 の黒の破線で区切られた左側) を満たす RoI が存在する 場合、式 (3.1) の分子に加えてトリガー効率を算出する。

1~3 の手順で横軸にミューオンの横方向運動量 $p_{\rm T}$ を取り、 2015 年の実データを用いて、L1_MU20 ($p_{\rm T}$ > 20 GeV と判定されたトリガー)のトリガー効率を算出する。このトリガー効率を $p_{\rm T}$ の関数でみたものを Fig. 3.26 に示す。

Fig. 3.26: 2015 年における L1_MU20 のトリガー効率。Plateau efficiency(赤)、Resolution(青)、Threshold(緑) はそれぞれトリガー効率の性能評価のパラメータを表す。

 $p_{\rm T} \sim 20$ GeV で緩やかに立ち上がり、高い $p_{\rm T}$ 領域では平坦になっている。この平坦な領 域を Plateau と呼び、この領域でのトリガー効率を Plateau efficiency と呼ぶ。L1_MU20 トリガーの場合、このグラフは理想的には $p_{\rm T} = 20$ GeV を境とした階段関数になるが、 TGC の分解能などの影響で緩やかなカーブを描く分布 (Turn-on curve) になっている。こ こで、トリガー効率を次のように定義したフェルミ関数 $F(p_{\rm T})$ によってフィットした。

$$F(p_{\rm T}) \equiv \frac{P}{1 + exp\{-\frac{p_{\rm T} - T}{R}\}}$$
(3.4)

式 (3.4) において、P、R、T はそれぞれ Fig. 3.26 における赤で示した Plateau efficiency、 青で示した Resolution、緑で示した Threshold を表す。ここで、Threshold はトリガー効率 の $p_{\rm T}$ 閾値を指し、Resolution は立ち上がりの鋭さを指す。5,6 章のトリガー効率の評価の 際、それぞれ Plateau efficiency、Resolution、Threshold の 3 つのパラメータで評価する。

3.4.2 トリガーレートの算出

トリガーレートとは、実データにおける時間あたり (ルミノシティあたり) のトリガーが発 行された事象数である。ここでは HLT を通過しているかどうかのバイアスを防ぐために、レ ベル1トリガーのみを要求し、HLT は passthrough のトリガーである HLT_noalg_L1MU20 の事象を用いる。Fig. 3.27 は 2015 年で取得されたデータを用いて算出したトリガーレート のη 依存性である。

Fig. 3.27: 2015 年における L1_MU20 のトリガー発行された数の η 分布。1.3 < |η| < 1.9 において FI コインシデンス (詳細は 4.2.1 節) を要求しているデータを用いた。

第4章 Run-1 におけるミューオントリガーの問題点と Run-2 での改善方法

本章では Run-1 でのエンドキャップトリガーシステムの問題点の把握、その問題に対す る Run-2 に向けた改善点、及びトリガーレートが厳しくなった場合の対処法となりうる本 研究の動機について述べる。

4.1 Run-1 における問題点

ATLAS 実験で Run-1 に取得されたデータにおいて、ミューオン由来ではない信号によってトリガーが大量に発行されていることが判明した。

4.1.1 フェイクトリガー

2012 年の Run-1 で取得されたデータにおいて、 $p_T \ge 20$ GeV と判定されたレベル 1 ミューオントリガー (L1_MU20) とオフライン解析で再構成されたミューオンそれぞれの η 分布を Fig. 4.1 に示す。この分布は、HLT の判定を行わず、純粋な L1_MU20 のトリガー レートである。ミューオンの η 分布 (青色のヒストグラム)の方は L1_MU20 が発行された 中から、オフライン解析で再構成された飛跡とのマッチングがとれたものを表している。こ の 2 つのヒストグラムの差は衝突点から飛来するミューオン以外によって発行されたトリ ガーであり、本来取得すべきでない事象である。

Fig. 4.1: Run-1 での L1_MU20 (黄) とオフライン解析で再構成されたミューオン (青) の η 分布 [19]

この様なトリガーをフェイクトリガーと呼び、Run-1 では TGC で発行したミューオント リガーの約 60 % を占めていた。Run-1 の設定のままで、Run-2 における重心系エネルギー 13 TeV とルミノシティの増加 (瞬間最高ルミノシティ $2.0 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$) を考慮したトリ ガーレートの予想値は 34 kHz と予想されている (Table. 4.1)。

Table. 4.1: Run2 におけるトリガーレートの増加量 [13]

LVL1 Muon Trigger	Run-1 (\sim 2012)	Run-2 (2015 \sim)	
p_T 閾値 [GeV]	15	20	
トリガーレート [kHz]	9	34	

このままでは Run-2 で許容される全体のレベル1トリガー (100 kHz) に対してミューオ ンが使用する割合が大部分を占めてしまうため、このようにトリガーの多くの割合を占める フェイクトリガーを削減することが課題となっている。

フェイクトリガーの原因

Endcap 領域におけるフェイクトリガーの原因に二次生成粒子が考えられる。陽子・陽子 衝突後に ATLAS 検出器内を漂う陽子や中性子が、磁場領域付近のビームパイプやトロイド 磁石といった物質に衝突することで荷電粒子 (主として陽子)が生じる。この荷電粒子が磁 場によって曲げられ、衝突点から来たように見えてしまう。この衝突点由来ではない二次生 成粒子と *p*T の高い衝突点由来の粒子の飛跡が TGC 上で似ている場合、高い *p*T のミュー オンと同じような信号を残してトリガーされてしまい、これがフェイクトリガーになる。二 次生成粒子と衝突点由来の粒子の模式図を Fig. 4.2 に示す。二次生成粒子と衝突点由来の飛 跡は TGC 単体では同じ飛跡に見えてしまい、フェイクトリガーとなる。そのため、上述の 原因で生じた粒子が TGC に残すような事象を削減することが必要となる。

4.2 Run-2 に向けた変更点

レベル1 エンドキャップミューオントリガーにおいて、Run-2 からはこれまで使用されて いなかった TGC Inner Station と Tile Calorimeter のコインシデンスが導入される。この 新たに導入されるコインシデンスを Inner Coincidence という。Inner Coincidence の導入 によって、エンドキャップトロイド磁場の前での通過位置を要求することで、衝突点からき ていることを保証する。Inner Coincidence をとることで、衝突点由来でないフェイクトリ ガーの削減が期待される。現在は、TGC Big Wheel (M1、M2、M3) と Inner Station (FI のみ) のコインシデンスのみが使われている。

Fig. 4.2: 衝突点由来の粒子と二次生成粒子の飛跡。A は衝突点由来の粒子を表し、B 及び C は二次生成粒子を表す [20]。

4.2.1 EI/FI Coincidence

EI/FI Coincidence は、TGC Big Wheel (M1、M2、M3) と Inner Station との間でと られるコインシデンスで、エンドキャップ部の RoI でトリガーが発行されたイベントに対 し、ワイヤー (*R* 方向) とストリップ (ϕ 方向) のコインシデンスが取られた後に要求される。 EI/FI を含む TGC の配置と形状を Fig. 4.3 に示す。なお、EI が設置されている位置とバ レルトロイド磁石が設置されている位置は重なる部分がある。そのため、EI には TGC が設 置されていない部分があり、全 ϕ 領域の約 60 % しか占めていないため、EI は現状コイン シデンスに使用されていない。FI Coincidence は全ての RoI に対して要求されるのではな

Fig. 4.3: EI/FI を含む TGC の配置と形状 [18]

く予め FI Coincidence を要求する領域 (1.3 < $|\eta|$ < 1.9)を決定し、それ以外の RoI には 現行のトリガーを用いる。FI は BW と比ベカバーする領域が小さく、全ての RoI に Inner Coincidence を要求することは出来ないからである。FI とのコインシデンスは RoI を 8 つ まとめた Sub Sector Cluster(SSC)毎に、FI のどのチャンネル (ワイヤー、ストリップそれ ぞれ)に Hit を要求するかを決める。また、SL で発行されるどの $p_{\rm T}$ 閾値に対してコインシ デンスを要求するかも決めている。

4.2.2 Tile Coincidence

前述したように、1.05 < $|\eta|$ < 1.3 では、EI が全 ϕ 領域をカバーできていない。そこで Inner Station よりもさらに内側に設置されている Tile Calorimeter と BW とのコインシ デンスをとる。Fig. 4.4 は ATLAS 検出器の r - z 平面におけるクォーターカットを表して おり、桃色の点線で η の範囲を区切っている。現在、Tile Calorimeter はコミッショニング 中である。

Fig. 4.4: InnerStation 及び Tile Calorimeter の配置 [21]

4.2.3 Hot RoI Mask

Fig. 2.18 に示したように、エンドキャップ部の特定の領域ではバレル・トロイドとエンドキャップ・トロイドとの境界になっているため、積分磁場が弱くなっている。そのためミューオンを十分に曲げることが出来ず運動量分解能が悪いため、 $p_{\rm T}$ の低いミューオンに対してもトリガーが発行されてしまい、トリガーレートが高くなってしまう。トリガーレートが特に高い RoI (Hot RoI)をマスクすることで効率低下を最小限に抑えつつ、トリガーレートの削減が行える。トロイド磁場は ϕ 方向に 8 回対称なので、Hot RoI も 8 回対称に存在する。Fig. 4.5 に、Endcap 領域の 1 オクタント単位についての Hot RoI 分布を示す。Fig. 4.5 において丸で囲んだ RoI ($|\eta| \sim 1.4$, $|\eta| \sim 1.6$)はトリガーレートが他の RoI と比べてトリガーレートが 5~10 倍ほど高い。各 RoI の値に対してスレッショルドを定めて、スレッショルド以上の RoI を Hot RoI として、1.3 < $|\eta| < 1.7$ の領域で 0.3 % をマスクする。これらをマスクすることで効率低下を抑えつつ、効率よくトリガー削減が行える [19]。

Fig. 4.5: Hot RoI 分布。1 つ 1 つの四角が RoI を表し、1 オクタント全体で発行したトリ ガー数を分母、各 RoI で発行したトリガー数を分子として定義した割合をプロットしている [19]。

4.3 本研究の目的

4.2 節の改良では Endcap 領域のみで、Forward 領域ではトリガーレートを抑える方法が まだ確立されていない (Fig. 4.6)。Fig. 4.7 に Run-1 の実データを用いて L1_MU20 が発行 された予想される Run-2 での η 分布を示す。Fig. 4.7 で示すように、1.9 < $|\eta|$ < 2.42 に おける Forward 領域で大量のトリガーが発行されたままである。Run-2 では、Forward 領 域でトリガーに使用できる検出器がないため、この領域では、ハードウェアによる方法では なく、トリガー条件の最適化による改良を行う必要がある。

トリガー効率の低下を抑えつつ、更なるトリガーレート削減の可能性として Forward 領 域での CW を調整し、最高ルミノシティと重心系エネルギーの向上によるトリガーレート の増加に対処する。この詳細を5章に述べる。

また Endcap 領域においても、Run-2 から導入された Inner Coincidence を用いて、現在ト リガーレートの削減を行っているが、統計量の多い Run-2 の実データを用いることで、CW の最適化を行い、更なるトリガーレートの削減を狙う。この詳細を6章に述べる。

Fig. 4.6: ミューオンスペクトロメータ近傍のr-z断面図。 $1.3 < |\eta| < 1.9$ の領域に対し ては Big Wheel に対して FI とのコインシデンスを要求する。 $1.9 < |\eta| < 2.42$ における Forward 領域ではトリガーに使用できる検出器がないため、コインシデンスがとれない。

Fig. 4.7: 予想される Run2 でのトリガーレート。白色が Run1 でのトリガーレートで、青 色が予想される Run2 でのトリガーレートを表している。

第5章 CW trimming による性能評価

ミューオンの横方向運動量 $p_{\rm T}$ を判定するために用いる CW を調整することで、レート 削減の可能性があると考えている。CW を改良するために、CW の ΔR をトリガーレー ト削減の指標として用いて、 ΔR の範囲の大きさでトリガー性能を評価する。この方法は Endcap 領域では、磁場が一様でなく、1 つの RoI 内でも CW が複雑化して ΔR の大きさ のみで評価できないが、Forward 領域では $\Delta \phi$ 方向には広がらないためこの方法で評価でき る。具体的には CW の L1_MU20 ($p_{\rm T}$ > 20 GeV の閾値) と呼ばれる範囲で $|\Delta R|$ を横 1 列毎に削減していく。この方法を CW trimming と呼ぶ。本章では CW trimming による ミューオンの $p_{\rm T}$ 閾値の維持と、更なるトリガーレート削減について述べる。

5.1 CW trimming の方法

理想的なトロイド磁場の場合、 p_{T} によって分離されるミューオンの飛跡の検出位置の情報 (ΔR , $\Delta \phi$) の内、 ΔR の大きさで評価できる。CW の p_{T} > 20 GeV の閾値 (L1_MU20) の両端で p_{T} の低いミューオンの割合が多くなるため、CW を最適化する為に L1_MU20 で 両端から ΔR を横 1 列毎に削減し、どこまで p_{T} 閾値を維持させつつトリガーレートを削減 できるかを 2012 年の実データを用いて評価した。この CW trimming によるトリガーレート削減方法の評価の過程を以下に示す。

5.1.1 Hitmap の作成

CW trimming をする際に、Fig. 5.1 の赤色部分の L1_MU20 において、 ΔR を外側から 横 1 列毎に削減して評価した。このとき用いた Hitmap ($\Delta R - \Delta \phi$ の分布図 (Fig. 5.2)) の 作成過程を次に示す。

Hitmap の作成過程

- 1. 3.4.1 節 で示した Tag&Probe 法によって、ミューオン候補となっている粒子の中か ら、L1_MU20 を満たす RoI に最も近いものを選択する (詳細は 5.2.1 節で説明する)。
- 2.1 で選択した粒子に対して、High-p_Tを選択する。(L1_MU20 での評価なので、 3-Stasion コインシデンスをを要求する。)
- 3. 2 で選択した粒子に対応する各 RoI (Forward 領域は RoI が 64 個) 毎に $\Delta R \ge \Delta \phi$ の情報を抜き出し、 $\Delta R = \Delta \phi$ の分布図 (Hitmap) を作成する。

この過程によって、L1_MU20 における Hitmap を作成し、トリガー効率及びトリガー レートを算出した。

Fig. 5.1: Forward 領域における CW の一例。RoI number: 32 での CW を表している。

Fig. 5.2: L1_MU20 における Hitmap。図に示した L1_MU20 の範囲にある Hitmap の外 側から $|\Delta R|$ を横 1 列 (赤線で囲んだ部分) 毎に削減する。

5.1.2 CW trimming による評価方法

作成した Hitmap を用いて $|\Delta R|$ を横 1 列毎に削減していく方法を示す。Fig. 5.2 に示 した CW の L1_MU20 の範囲で ΔR の両側の横 1 列毎に削減していくことで、 $p_{\rm T}$ 閾値が 20 GeV 付近にある $p_{\rm T}$ が閾値より低い運動量のミューオンを削減できる。Fig. 5.2 の ΔR に対し、 $\Delta R = -3 \sim 10$ から最外側の部分を 1 つずつ削減する (一つ目なら $\Delta R = -3, 10$ の部分を削減する)。 これにより、L1_MU20 における CW の $|\Delta R|$ を横 1 列毎に削減した ときの変化を評価する。 また、このデータはハイレベルトリガー (HLT) による判定を通っているので、オフラインで再構成出来る衝突点からのミューオンが含まれる。このとき、L1_MU20 の場合、最終的に Run-1 ではイベントフィルター (EF) で EF_mu24 ($p_{\rm T} > 24$ GeV の閾値)を要求している。CW trimming した際に、Plateu efficiency は HLT の $p_{\rm T}$ 閾値である 24 GeV 以上では維持する必要がある (Fig. 5.3)。

Fig. 5.3: CW trimming における Plateau efficiency の維持。CW trimming した際に、 Plateau efficiency はレベル 1 の $p_{\rm T}$ 閾値である 20 GeV (黒線) 及び HLT の $p_{\rm T}$ 閾値の 24 GeV 以上で維持する必要がある。

5.2 CW trimming による評価

CW の $|\Delta R|$ を横1列毎に削減したときのトリガー効率及びトリガーレート削減量について 2012 年 8 TeV の実データを用いて見積もる。

5.2.1 CW trimming におけるトリガー効率

2012 年 Run-1 の実データを用いたトリガー効率算出時の $Z \rightarrow \mu\mu$ による Tag&Probe 法を用いた時の Event selection の詳細について以下に示す [22] (詳細は 3.4.1)。

- 少なくとも2つ以上のミューオンを要求
- $\sum p_{\rm T}(\Delta R < 0.2) / p_{\rm T}({\rm muon}) < 0.1$ (Isolation cut)
- $|z_{0toPV}| \le 10 \text{ mm}$
- それぞれ異符号の電荷を持つミューオンを選択 $(q_{tag} \cdot q_{probe} < -1)$
- Z ボソン崩壊に伴う粒子であることを要求 (|M_Z M_{µµ}| < 10 GeV)

ここで、 $|z_{0toPV}|$ は内部飛跡検出器によって再構成された Primary Vertex (PV)からの ミューオン軌跡の z 方向の距離を表し、PV 由来のミューオンであることを保証している。 $\sum p_{T}(\Delta R < 0.2)$ はミューオンの $\Delta R < 0.2$ の範囲におけるミューオン以外の荷電粒子飛 跡の p_{T} の和を取り、 $\sum p_{T}(\Delta R < 0.2) / p_{T}(muon) < 0.1$ を要求することでで周囲に荷 電粒子があまり存在しない孤立したミューオンを選ぶ (Isolation cut)。 q_{tag} は Tag muon の 電荷、 q_{probe} は Probe muon の電荷を表し、 M_{Z} は Z ボソンの質量で $M_{Z} = 91.1876$ GeV である。次に Tag muon selection 及び Probe muon selection の詳細について示す。

Tag muon selection

- $|\eta| \le 2.42, p_{\rm T} > 20 \, {\rm GeV}$
- トリガー (EF_mu24i_tight) とマッチングが取れることを要求 ($dR_{tag,EF} < 0.01$)

 $|\eta| \leq 2.42$ は TGC のアクセプタンスである。Run-1 では、イベントフィルター (EF)に おいて発行されるトリガーの一種 EF_mu24i_tight トリガーは $p_{\rm T}$ 閾値は 24 GeV に設定さ れ、そのミューオンの近くに他の粒子の飛跡が少ないことを要求するものである。これと マッチングが取れる $dR_{\rm tag, EF} < 0.01$ (Fig. 5.4)を要求することで、Tag muon と対とな るもう一方の Probe Muon はイベントトリガーとは独立なミューオンサンプルだとみなせ る。

Fig. 5.4: Tag muon 選出における dR_{tag,EF} 分布

Probe muon selection

- $1.05 \le |\eta| \le 2.42, \ p_{\rm T} > 10 \ {\rm GeV}$
- レベル1トリガーの RoI の位置とマッチングが取れることを要求 (dR_{probe,RoI} < 0.5)

 $1.05 \leq |\eta| \leq 2.42$ は TGC におけるエンドキャップ部のアクセプタンスである。Probe muon に対してレベル1トリガーが発行された RoI との距離が $dR_{\text{probe,RoI}} < 0.5$ (Fig. 5.5) を満たせば、3.4.1 節で示したトリガー効率の式の分子に加えてトリガー効率を算出する。ここで、Low- p_{T} に対しても適用するために、Fig. 5.5 の点線で示したように、広く許容範囲をとったため、 $dR_{\text{probe,RoI}} < 0.5$ の条件で解析を行った。

Fig. 5.5: Probe muon 選出における dR_{probe,RoI} 分布

 $Z \rightarrow \mu\mu$ による Tag&Probe 法を用いて算出した CW trimming の効果によるトリガー効 率を Fig. 5.6 に示す。 No CW trimming (黒) は CW trimming を用いていない L1_MU20 におけるトリガー効率、 $|\Delta R|$ 1 bin cut (赤)、 $|\Delta R|$ 2 bin cut (緑) は、 $|\Delta R|$ 3 bin cut (青) は $|\Delta R|$ をそれぞれ横 1, 2, 3 列削減した場合の L1_MU20 におけるトリガー効率をそれぞ れ表している。Fig. 5.6 から、 $|\Delta R|$ を横 2 列目以降削減してしまうと、Plateau efficiency は HLT の $p_{\rm T}$ 閾値である 24 GeV 以上で維持できなくなる。横 1 列目 ($|\Delta R|$ 1 bin cut) まで削減した場合、Plateau efficiency の維持ができる。

Fig. 5.6: CW trimming によるトリガー効率 (L1_MU20)。黒は CW trimming を用いてい ない L1_MU20 におけるトリガー効率、赤、緑、青はそれぞれ $|\Delta R|$ を横 1, 2, 3 列削減した 場合の L1_MU20 におけるトリガー効率をそれぞれ表している。

3.4.1 節で示したトリガー効率をフィットした式 (3.4) の 3 つのパラメータ Plateau efficiency、Resolution、Threshold で CW trimming によるトリガー効率を評価する。 $|\Delta R|$ を横 1 列毎に削減していく場合、それぞれのパラメータを Table. 5.1 にまとめた。横 1 列 目 ($|\Delta R|$ 1 bin cut) まで削減したとき、Plateau efficiency($p_{\rm T} > 20$ GeV) は 0.1 % 低下 し、Resolution は 0.23 GeV 悪化することが見積もられた。Resolution は多少悪化するが、Plateau efficiency は HLT の $p_{\rm T}$ 閾値である 24 GeV までで維持できているので、横 1 列 目まで削減することが可能である。

5.2.2 CW trimming におけるトリガーレート

トリガーレートの評価で用いたデータは Run-1 (2012 年 8 TeV, バンチ間隔 25 ns) にお ける Enhanced Bias data (HLT トリガーに依らないレベル 1 トリガーのみで取得された データ) で、Tile Calorimeter と EI/FI コインシデンスを取り、4.2.3 節で示した Hot RoI Mask を考慮に入れたこれからの Run-2 を予想したデータである。これはトリガーレートの 増加に対応するものを全て考慮に入れており、2015 年のデータには Tile Calorimeter 及び EI のコインシデンスは導入されていないため、2015 年のデータは使わず、2012 年のデー タから全てのトリガーレート削減の対策を用いた場合の予想されるデータを用いた。CW trimming の効果によるトリガーレートを Fig. 5.7 に示す。また、そのトリガーレート削減 率 (Rate reduction) を $|\Delta R|$ を横 1 列毎に削減したときでまとめたものを Table. 5.1 に示 す。ここで、Rate reduction は以下の式 (5.1) によって定義する。

Rate reduction
$$\equiv 1 - \frac{R_{\text{after}}}{R_{\text{before}}}$$
 (5.1)

ここで R_{before} は CW trimming する前の L1_MU20 におけるトリガーレート (白)、 R_{after} は $|\Delta R|$ を横 1 列毎に削減したときのトリガーレート (赤、緑、青) を表している。

Fig. 5.7: CW trimming によるトリガーレート (L1_MU20)。白は CW trimming を用いて いない L1_MU20 におけるトリガーレート、赤、緑、青は $|\Delta R|$ を横 1, 2, 3 列削減した場合 の L1_MU20 におけるトリガーレートをそれぞれ表している。

Table. 5.1: CW trimming によるトリガーの性能評価。 $|\Delta R|$ を横1列毎に削減していく時の Plateau efficiency、Resolution、Threshold、トリガーレート削減率 (Rate reduction) を表している。

	No CW trimming	$ \Delta R $ 1 bin cut	$ \Delta R $ 2 bin cut	$ \Delta R $ 3 bin cut
Plateau efficiency [%]	89.95 ± 0.04	89.85 ± 0.04	89.51 ± 0.04	88.26 ± 0.06
Threshold [GeV]	13.15 ± 0.03	14.31 ± 0.03	16.28 ± 0.03	19.06 ± 0.03
Resolution [GeV]	1.610 ± 0.024	1.838 ± 0.022	2.650 ± 0.023	4.266 ± 0.029
Entries	149953	136261	114390	91184
Rate reduction $[\%]$		9.13	23.72	39.19

Forward 領域 (1.90 $\leq |\eta| \leq 2.42$) において、CW の $|\Delta R|$ を横 1 列目まで削減したとき、 Plateau efficiency($p_{\rm T} > 20$ GeV) は 0.1 の % 低下で抑えつつ、トリガーレートは 9.1 % 削 減できることが見込めた。この結果、更なるルミノシティの増加により、トリガーレートが 検出器等のハードウェアで抑えられない場合のトリガーレート削減に有効な方法になる。

第6章 CW optimization による性能評価

本章では、TGC の設置位置のズレや歪みを考慮した CW の最適化を行う方法について 述べる。特に Endcap 領域では、磁場が一様でなく、R 方向にもあり、ミューオンが ϕ 方 向にも曲がってしまう。そのため 1 つの RoI 内でも CW が複雑化して、5 章で説明した Forword 領域における CW trimming と同じ方法が取れない。そのため、CW を cell 毎に 判定することによって最適化し、トリガー効率の閾値を維持しつつ、トリガーレート削減を 目指す。この CW を cell 毎に判定する方法を CW optimization と呼ぶ。2015 年 Run-2 の 実データを用いた CW optimization によるトリガー効率及びトリガーレートについての評 価を以下に述べる。

6.1 CW optimization の方法

2015 年 Run-2 の主要なレベル 1 ミューオントリガーは L1_MU15 であり、2016 年以降の Run-2 ではルミノシティが上がった場合、L1_MU20 に引き上げる。本研究では、L1_MU15 及び L1_MU20 においての CW の最適化を行った。CW の最適化を行うための CW optimization の過程について L1_MU20 の場合を例に挙げて述べる。

6.1.1 アライメントによる影響を考慮した Hitmap

シミュレーションにおいて TGC は設計通りの位置に設置されているが、実際の検出器で は、その設置位置 (TGC アライメント) にズレが生じている。3.2.5 節で示したように、CW はシミュレーションから作成するため、作成された CW は TGC の設置位置によるズレが 考慮されていない。この CW を適用すると、トリガー効率の *p*T 分布において、立ち上がり (3.4.1 節で定義した Resolution) が鈍くなる原因となる。そこで、実データから TGC のズ レの大きさを各チェンバー毎に見積もり、その値に従って CW に補正を加えることでトリ ガー効率の Resolution についての改善している。

シミュレーションにより作成した CW に対する TGC アライメントの補正方法につい て以下に述べる。TGC のアライメントのズレの測定方法はこれまでの研究で既に確立さ れている [23]。本研究で用いた TGC アライメントの補正をするパラメータ (Alignment parameter) についての概念を Fig. 6.1 に示す。TGC 上での検出点 R_{TGC} と、内部飛跡検 出器とミューオン検出器から再構成されたミューオン飛跡を TGC の表面まで外挿した点 を R_{track} と定義する。その差分 $\delta\rho$ を $\delta\rho = R_{track} - R_{TGC}$ と定義する。差分 $\delta\rho$ を用いた Alignment parameter(dR_{-pull}) を以下のように定義する。

$$dR_{-}\text{pull} \equiv \frac{\delta\rho_{\text{M1}}}{W_1/3} - \frac{\delta\rho_{\text{M3}}}{W_3/2} \tag{6.1}$$

ここで $\delta \rho_{M1}, \delta \rho_{M3}$ はそれぞれ M1, M3 上での差分で、 W_1, W_3 はそれぞれ M1, M3 上

に対応するチャンネル幅を表している。M1 の TGC が動径方向 (R 方向) の正の方向にず れれいる場合 (ビーム軸方向 (z 軸方向) のズレや傾きはないと仮定)、 $dR_{pull} > 0$ となる。 このとき、CW は動径方向の負の方向にずらすべきであるが、CW の ΔR の定義では符号 が逆転しているので、実際には正の方向にずらさなくてないけない。例えば、CW で ΔR 方 向に +1 ずれた場合、 Hitmap では ΔR 方向に - 1 ずらす必要がある。

Fig. 6.1: Alignment parameter (dR_{-pull})の概念図。 青色で示しているのが 理想的な TGC の位置で、実際にずれている TGC の位置を赤色で表している。M1 と M3 との相対 位置のずれ $\delta\rho_{M1}$ 、 $\delta\rho_{M3}$ を考える。

この Alignment parameter を用いて CW を補正するために、TGC アライメントによる 影響を考慮した Hitmap を作成する。このとき作成した Hitmap の Event selection を以下 に述べる。

- オフラインミューオンが1つある
- $1.05 \leq |\eta| \leq 2.42$
- レベル1トリガーの RoI の位置とマッチングが取れることを要求 ($dR_{RoI} < 0.5$)

1.05 $\leq |\eta| \leq 2.42$ は TGC のアクセプタンスで、 $dR_{\text{RoI}} < 0.5$ はミューオン候補である ことを要求するもので Low- p_{T} に対しても適用できるようにしたため、許容範囲を広くし ている。CW の L1_MU20($p_{\text{T}} > 20$ GeV の閾値) の場合、閾値付近の $p_{\text{T}} \leq 20$ GeV, $p_{\text{T}} > 20$ GeV のそれぞれの Hitmap を作成し、Alignment parameter による補正を適用する。 Run-2 の実データでミューオンがトリガーにかかった全事象を用いて、Endcap 領域のある RoI における Alignment parameter による補正前と補正後の L1_MU20 における Hitmap と CW の比較を Fig. 6.2 に示す。

Fig. 6.2: L1_MU20 における Alignment parameter を適用した Hitmap と CW の比較。 RoI number: 102 の Hitmap 及び CW で、上が補正前、下が補正後、左が $p_{\rm T} \leq 20$ GeV, 右が $p_{\rm T} > 20$ GeV での Hitmap を表している。 図中に示した赤色の枠線が CW の L1_MU20($p_{\rm T} > 20$ GeV の閾値) の範囲である。

また、CW には 1 つの cell が TGC の 1 チャンネルに対応する領域と 2 チャンネルに対応する領域が存在する。 $|\Delta R| \ge 11$ 、 $|\Delta \phi| \ge 4$ が 2 チャンネルに対応する領域である。この 2 チャンネルに対応する領域では、1 つの cell を 2 つに区切り TGC アライメントの補正を行った。チャンネルが $|\Delta R|$ での 2 マス分の所 ($|\Delta R| \ge 11$) で、例えば $|\Delta R| \ge 11$ を 1 マスだけ動かす場合、そのチャンネル中の Event 数の半分を 1 マス分動かした。この方法によって、Alignment parameter による補正をした Hitmap を作成した。

TGC は隙間が出来ないように、隣り合うチェンバーを前後にすらして一部が重なるよう に設置されている (Fig. 6.3)。そのため、セクター番号 (Endcap 領域: 0~47、Forward 領域: 0~23)が偶数のチェンバーと奇数のチェンバーでは衝突点からの距離が異なる。ジ オメトリーを考慮せず CW を作成すると、無限運動量をもつミューオンの飛跡の ΔR のズ レを平均化したものとなる。そのような CW はジオメトリーを考慮して作成した CW と比 ベ開いている cell の数が増え、トリガー効率の Resolution の悪化やトリガーレートが増加 する原因になる。その対策として、Forward 領域のセクターに関しては、Endcap 領域のよ うに 1/8 円 (オクタント)を基準とするのではなく、1/4 円を基準として作成した [18]。ま た、オクタントの中でもチェンバー毎にモジュールナンバーが割り振られている。モジュー ルナンバーについては Fig. 6.4 に示す。

隣り合うチェンバーを前後にすらして一部が て、a, b と分けられており、順に 2a, 5b, 8a, 重なるように設置されている。

Fig. 6.4: オクタント (1/8 円) におけるモ ジュールナンバー。0, 1, 3, 4, 6, 7(Endcap 領域)、2, 5, 8(Forward 領域) で表され、特に Fig. 6.3: TGC チェンバーの配置の様子 [18]。 Forward 領域では、チェンバーの前後によっ 2b, 5a, 8b と付けられている [7]。

Endcap 領域及び Forward 領域について、シミュレーションにより作成した CW は 1/8 円 (オクタント) 及び 1/4 円ごとにまとめられているので、実データを用いた Hitmap は 1/8 円 (オクタント) 及び 1/4 円にまとめた。前述した Alignment parameter は A-side 及 び C-side で適用するので、それぞれ適用した後に 1/8 円 (オクタント) 及び 1/4 円でまとめ ることができる。また RoI 毎に作成しているので、ある RoI での統計量の不足を補うため にもオクタントでまとめる必要がある。Fig. 6.5 に Fig. 6.2 で示した Alignment parameter による補正をした Hitmap をオクタントでまとめたものを示す。

Fig. 6.5: Endcap 領域におけるオクタントでまとめた Hitmap。この Hitmap を用いて、 CW を cell 毎に判定する際、評価することができる。図中に示した赤色の枠線が CW の L1_MU20($p_T > 20$ GeV の閾値) の範囲である。

このアライメントによる影響を考慮した Hitmap を用いて、CW を cell 毎に判定する際の評価に用いる。

6.1.2 Cell 毎の判定の指標

オクタントでまとめたアライメントによる影響を考慮した Hitmap を用いて、CW optimization (CW の cell 毎の判定) を行う。このとき、cell 毎の判定を行う指標として、式 (6.2) に定義される指標 x を用いて、先ほど作成したオクタントでまとめた RoI 毎の Hitmap で cell 毎の判定を行う。

$$x \equiv \frac{R_{high}}{\sqrt{(R_{low})^2 + (R_{high})^2}} \tag{6.2}$$

ここで L1_MU20 の場合、 R_{low} は $p_T \leq 20$ GeV での全 entry 数に対する 1 つの cell 内 の event 数の割合、 R_{high} は $p_T > 20$ GeV での全 entry 数に対する 1 つの cell 内の event 数の割合を表している。このときの x の分布図を Fig. 6.6 に示す。ここで $p_T \leq 20$ GeV 及び $p_T > 20$ GeV での 2 つの Hitmap で 1 つの cell 内の event 数の和が 20 以下である 場合、cell による判定を行わないようにし、cell 削減の対象にした (Fig. 6.6 の空白の部分)。 赤色の枠線内で、x の値がより低い cell は、cell の判定でその p_T 閾値より低い可能性を示 し、x の値がより高い cell は、cell の判定でその p_T 閾値より高い可能性を示している。

Fig. 6.6: Endcap 領域における L1_MU20 での x 分布。2 つの Hitmap(R_{low} 及び R_{high}) で 1 つの cell 内の event 数の和が 20 以下である場合、cell による判定を行わないようにし、 cell 削減の対象にした。

また、Fig. 6.6 で示した x の分布図を縦軸を CW の cell 数、横軸を x で表したものを Fig. 6.7 に示す。白色が全 p_T 閾値 (High- p_T CW の全範囲)、赤色が L1_MU20 ($p_T > 20$ GeV の閾値) のみの範囲にある cell 数を表す。この x 分布を用いることで、後述する cell 毎の判定の評価を行うことができる。

Fig. 6.7: Endcap 領域における cell 数に対する x 分布。白色が全 $p_{\rm T}$ 閾値、赤色が L1_MU20 ($p_{\rm T} > 20$ GeV の閾値) のみの CW の範囲にある cell 数を表す。

6.1.3 Cell recovery

Fig. 6.7 で示した cell 削減の指標 x の分布から、x の値が高い領域で少なからず L1_MU20 以外に判定された cell が存在する (例えば、 $x \ge 0.9$ の領域で CW の全 p_T 閾値 (白) の分布 が見える部分が L1_MU20 以外に判定された cell を表している)。これは本来の p_T 閾値で あるはずの cell がより低い p_T 閾値に判定されてしまっているためである。そのため、トリ ガー効率の Resolution の悪化につながる一因になっている。Resolution の悪化を防ぐため に、cell 削減の指標 x の分布 (Fig. 6.7) を用いて、他の p_T 閾値として判定されている cell を本来の p_T 閾値に復元させる必要がある。本来の CW の p_T 閾値の範囲外にある cell を 復元する方法を Cell recovery と呼ぶことにする。Endcap 領域において、 $x \ge 0.9$ 及び x ≥ 0.95 で L1_MU20 の範囲外にある cell を Fig. 6.4 で示した各モジュールナンバーごとに Cell recovery した cell 数を縦軸とし、横軸を RoI number(0~147) としたものを Fig. 6.8、 Fig. 6.9 にそれぞれ示す。

Fig. 6.8: Endcap 領域における Cell recovery $(x \ge 0.9)$ により復元される cell 数。各モ ジュールナンバー (0, 1, 3, 4, 6, 7) で、特に RoI number = 55 付近で多くの cell が復元さ れているのは、ハードウェアによる故障が原因で CW の ΔR が離れた位置に Hit があるた めである。

Fig. 6.9: Endcap 領域における Cell recovery ($x \ge 0.95$)。Fig. 6.8 と同様の理由で、CW の ΔR が離れた位置に実際の Hit があるため、そのまま Cell recovery した。

Endcap 領域における各モジュールナンバー (0, 1, 3, 4, 6, 7) で、ある RoI で多くの cell が復元されているのは、ハードウェアが原因で、20 GeV 以上のミューオンでヒット位置か ら求めた ΔR は小さいが、High- p_T モジュールに送るときに、間違った ΔR を送ってし まっている (Fig. 6.10)。ハードウェアによる問題なので、実際に $p_T > 20$ GeV のミューオ ンの ΔR が大きくなっており、Cell recovery を行った。より顕著に $x \ge 0.9$ の場合で Cell recovery される cell 数が多い RoI の傾向が見られた。また、4.3.2 節で説明した Hot RoI Mask により、元々マスクされてしまって、L1_MU20 及び L1_MU15 が判定されていない RoI では、Cell recovery は行わないようにした。

Fig. 6.10: Endcap 領域における Cell recovery する cell 数が多い RoI の一例。モジュー ルナンバー: 0、RoI number: 56 での x 分布。ハードウェアによる故障で ΔR が大きく なってしまって離れた位置に出ている。

6.1.4 Endcap 領域における CW optimization

前述した Cell recovery を行った後に、低い $p_{\rm T}$ をもつミューオンを多く含む cell の削減 を行う。Fig. 6.7 で示した x の分布図から、x の値が低い領域でも L1_MU20 として判定さ れている。また、Fig. 6.6 から x の値が低い領域の cell を削減するということは、 $p_{\rm T}$ 閾値 内で外側部分で、 $p_{\rm T}$ の低いミューオンを削減することになる。従って、x の値が低い領域 にある cell を削減することでよりトリガー効率を維持しながら、トリガーレートを削減する ことができる。また、Endcap 領域において、Fig. 6.11 に示すような $p_{\rm T}$ 閾値の判定に飛び 地ができている。このような飛び地ができている理由は、シミュレーションにより作成した CW に統計的な揺らぎがあり、揺らぎの処理 [18] が特定の RoI に対して不十分だったこと が要因である。また、L1_MU20 の場合、 $p_{\rm T} = 20$, 40, 100 GeV という特定の運動量をもつ ミューオンサンプルでつくられている。そのため、 $p_{\rm T}$ 閾値付近の運動量を持つミューオン の場合、CW の端の統計量が実際のミューオンの分布より大きくなる傾向があり、これも飛 び地ができる要因になる。

Fig. 6.11: Endcap 領域における CW の飛び地の一例。モジュールナンバー: 0、RoI number: 129 での CW (左) と x の分布図 (右)

このような飛び地をなくし、CW を最適化するためには、cell 毎の判定を行い、本来の $p_{\rm T}$ 閾値でない cell を削減する必要がある。

6.1.5 Forward 領域における CW optimization

Endcap 領域と同様に、Forward 領域においても CW の最適化を行う。5 章で示した Forward 領域における CW trimming では、CW の $|\Delta R|$ の大きさのみで評価していたが、 実際は CW の $|\Delta R|$ を横 1 列毎に簡易的な削減していたため、 $\Delta \phi$ 方向に関しては、削減 できる cell かどうかまで正確には判断していなかった。Forward 領域でもより正確にトリ ガーレート削減を行うため、Endcap 領域と同様の方法で、cell 毎の判定の指標 x を用い て、CW optimization(Cell recovery 及び cell 削減) を行った。また、Forward 領域でも Endcap 領域より数は少ないが Fig. 6.12 に示すような $p_{\rm T}$ 閾値の判定に飛び地ができてい る。Forward 領域においても CW を最適化する必要があり、CW の cell 毎の判定により、 CW trimming より厳密化した CW の調整が行える。

Fig. 6.12: Forward 領域における CW の飛び地の一例。モジュールナンバー: 2b、RoI number: 60 での CW (左) と *x* の分布図 (右)

6.2 CW optimization による評価

CW optimization による評価として、L1_MU20 及び L1_MU15 でのトリガー効率及びト リガーレート削減量を見積もった。ここで使用した実データは 2015 年 Run2 の後半から導 入された FI コインシデンスによってとられたものを含むミューオンがトリガーにかかった 全事象を用いた。

6.2.1 L1_MU20 における CW optimization の評価

3.4.1 節で示した $Z \rightarrow \mu\mu$ による Tag&Probe 法を用いて、L1_MU20 及び L1_MU15 で のトリガー効率を算出した。このときの Event selection の詳細について以下に示す。

- 少なくとも2つ以上のミューオンを要求
- $\sum p_{\rm T}(\Delta R < 0.2) / p_{\rm T}({\rm muon}) < 0.1$ (Isolation cut)
- それぞれ異符号の電荷を持つミューオンを選択 ($q_{tag} \cdot q_{probe} < -1$)
- Z ボソン崩壊に伴う粒子であることを要求 (|M_Z M_{µµ}| < 10 GeV)

これらの Event selection については 5.2.1 節で説明したので割愛する。次に Tag muon selection 及び Probe muon selection の詳細について示す。

Tag muon selection

- $|\eta| \le 2.42, p_{\rm T} > 20 \,\,{\rm GeV}$
- トリガー (HLT_mu20_iloose_L1MU15) とマッチングが取れることを要求 (dR_{tag,HLT}
 < 0.01)

Run2 では、HLT_mu20_iloose_L1MU15 トリガー用いて、Fig. 3.24 で示した *dR*_{tag,HLT} < 0.01 を満たす場合、この CB muon に対して HLT トリガーが発行されていると判断し、 Tag muon とする。

Probe muon selection

- $1.05 \le |\eta| \le 2.42$
- レベル1トリガーの RoI の位置とマッチングが取れることを要求 (dR_{probe,RoI} < 0.1)

 $1.05 \leq |\eta| \leq 2.42$ は TGC におけるエンドキャップ部のアクセプタンスである。Fig. 3.25 で示した Probe muon に対してレベル 1 トリガーが発行された RoI との距離が $dR_{\text{probe,RoI}}$ < 0.1 を満たせば、トリガー効率の式 (3.1) の分子に加えてトリガー効率を算出する。

Endcap 領域での L1_MU20 の性能評価

Endcap 領域での L1_MU20 における Cell recovery ($x \ge 0.95$) を行ったときの関数を $p_{\rm T}$ としたトリガー効率を Fig. 6.13 に示す。同様に L1_MU20 における Cell recovery ($x \ge 0.9$) を行ったときのトリガー効率を Fig. 6.14 に示す。

Fig. 6.13: Endcap 領域での L1_MU20 における Cell recovery によるトリガー効率 ($x \ge 0.95$)。上がトリガー効率のグラフで、黒色は Cell recovery 前、赤色は Cell recovery 後を表 している。下が Ratio プロットで Cell recovery 前後の比をとったものである。点線は Cell recovery 後の増減 ± 1 % を表している。

Fig. 6.14: Endcap 領域での L1_MU20 における Cell recovery によるトリガー効率 ($x \ge 0.9$)。Fig. 6.13 と比較すると、より立ち上がり付近の cell が復元していることが分かる。

トリガー効率をフィットした式 (3.4) の 3 つのパラメータ Plateau efficiency、Resolution、 Threshold で Endcap 領域における Cell recovery によるトリガー効率 (L1_MU20) を評価 する。 $x \ge 0.95$ 及び $x \ge 0.9$ でのそれぞれのパラメータを Table. 6.1 にまとめた。
Table. 6.1: Endcap 領域における Cell recovery によるトリガー効率 (L1_MU20) の性能評価。 cell 削減前 (No CW optimization) と $x \ge 0.95$ 及び $x \ge 0.9$ で Cell recovery した時の Plateau efficiency、Resolution、Threshold を表している。

	No CW optimization	Cell recovery $(x \ge 0.95)$	Cell recovery $(x \ge 0.9)$
Plateau efficiency [%]	87.84 ± 0.05	87.88 ± 0.05	87.89 ± 0.05
Threshold [GeV]	12.498 ± 0.046	12.495 ± 0.046	12.490 ± 0.046
Resolution [GeV]	1.538 ± 0.031	1.538 ± 0.031	1.536 ± 0.031

Endcap 領域における Cell recovery によるトリガー効率 (L1_MU20) は cell 毎の判定の 指標 x の閾値を下げると、その分 Plateau efficiency は回復し、Resolution は改善される。 後述する Cell recovery によるトリガーレートとの関係性が重要なので、ここでは両方の条 件を用いて、CW optimization によるトリガー効率 (L1_MU20) の算出を行った。 $x \ge 0.9$ で Cell recovery した後の CW optimization によるトリガー効率 (L1_MU20) を Fig. 6.15 に示す。また、Table. 6.2 に Cell recovery の条件 ($x \ge 0.95$ 及び $x \ge 0.9$) で分けた CW optimization による cell を削減していくときのそれぞれのパラメータ (Plateau efficiency、 Resolution、Threshold) をまとめた。

Fig. 6.15: Endcap 領域における CW optimization によるトリガー効率 (L1_MU20)。 $x \ge 0.9$ の条件で Cell recovery した時の $x \ge 0.1, 0.2, 0.3, 0.4, 0.7$ で cell を削減した時の L1_MU20 におけるトリガー効率を表している。

Table. 6.2: Endcap 領域における cell 削減でのトリガー効率 (L1_MU20) の性能評価。そ れぞれの Cell recovery の条件 ($x \ge 0.95$ (上), $x \ge 0.9$ (下)) での cell 削減前 (No CW optimization) 及び $x \ge 0.1, 0.2, 0.3, 0.4, 0.7$ で cell を削減した時の Plateau efficiency、 Resolution、Threshold を表している。

$(x \ge 0.95)$	No CW optimization	$x \ge 0.1$	$x \ge 0.2$
Plateau efficiency [%]	87.88 ± 0.05	87.62 ± 0.05	87.58 ± 0.06
Threshold [GeV]	12.495 ± 0.046	12.804 ± 0.046	13.012 ± 0.047
Resolution $[GeV]$	1.538 ± 0.031	1.632 ± 0.032	1.725 ± 0.032
	$x \ge 0.3$	$x \ge 0.4$	$x \ge 0.7$
Plateau efficiency [%]	87.52 ± 0.06	87.46 ± 0.06	87.09 ± 0.06
Threshold [GeV]	13.169 ± 0.048	13.332 ± 0.048	13.964 ± 0.051
Resolution $[GeV]$	1.813 ± 0.033	1.902 ± 0.033	2.281 ± 0.035
$(x \ge 0.9)$	No CW optimization	$x \ge 0.1$	$x \ge 0.2$
Plateau efficiency [%]	87.89 ± 0.05	87.63 ± 0.05	87.59 ± 0.06
Threshold [GeV]	12.490 ± 0.046	12.801 ± 0.046	13.009 ± 0.047
Resolution $[GeV]$	1.536 ± 0.031	1.631 ± 0.032	1.724 ± 0.032
	$x \ge 0.3$	$x \ge 0.4$	$x \ge 0.7$
Plateau efficiency [%]	87.53 ± 0.06	87.47 ± 0.06	87.10 ± 0.06
Threshold [GeV]	13.165 ± 0.048	13.328 ± 0.048	13.958 ± 0.051
Resolution [GeV]	1.811 ± 0.033	1.901 ± 0.033	2.278 ± 0.035

これらの結果から、Endcap 領域における CW の L1_MU20 の場合、Cell recovery を $x \ge 0.9$ とし、cell 削減が $x \ge 0.2$ までの範囲であれば、トリガー効率の Resolution を改善 させつつ、Plateau efficiency を維持することができる。

次に CW optimization によるトリガーレートの評価を行う。CW optimization によるトリガーレートを見積もる際に、L1_MU20 の場合、HLT_noalg_L1_MU20 を要求し、L1_MU15 の場合、HLT_noalg_L1_MU15 を要求したレベル 1 トリガーのみが発行されたものを用いた。Endcap 領域での L1_MU20 における Cell recovery を行ったときのトリガーレートをそれぞれの条件 ($x \ge 0.95$, $x \ge 0.9$) で Fig. 6.16、Fig. 6.17 に示す。

Fig. 6.16: Endcap 領域での L1_MU20 における Cell recovery ($x \ge 0.95$) によるトリガー レート。上がレベル 1 トリガーのみが発行された回数を示す η 分布で、黄色は Cell recovery 前、赤色は Cell recovery 後を表している。下が Ratio プロットで Cell recovery 前後の比 をとったものである。点線は Cell recovery 後の増減 ± 1 % を表している。

Fig. 6.17: Endcap 領域での L1_MU20 における Cell recovery $(x \ge 0.9)$ によるトリガー レート。多くて +1 % ほどトリガーレートが増加している。

Cell recovery によるトリガーレートの増加の割合 (Increasing rate) について評価する。 Increasing rate は Cell recovery 前のトリガーレート $R_{no\ recovery}$ に対する、Cell recovery 後のトリガーレート $R_{recovery}$ の増加の割合で表す。Increasing rate を以下の式 (6.3) で定 義する。

Increasing rate
$$\equiv \frac{R_{\text{recovery}}}{R_{\text{no recovery}}} - 1$$
 (6.3)

Endcap 領域における L1_MU20 での Increasing rate を $x \ge 0.95$ 及び $x \ge 0.9$ の条件で まとめたものを Table. 6.3 に示す。

Table. 6.3: Endcap 領域における Cell recovery によるトリガーレート (L1_MU20) の評価。Cell recovery 前 (No CW optimization) と $x \ge 0.95$ 及び $x \ge 0.9$ で Cell recovery した時の HLT_noalg_L1_MU20 トリガーを要求したときの発行回数と Cell recovery による Increasing rate を表している。

	No CW optimization	Cell recovery $(x \ge 0.95)$	Cell recovery $(x \ge 0.9)$
Entries	455348	455862	456376
Increasing rate [%]		0.113	0.226

Cell recovery ($x \ge 0.95$ 及び $x \ge 0.9$)を行った後、CW optimizatin によるトリガーレート (L1 MU20)の算出を行う。 $x \ge 0.9$ の条件で Cell recovery した後の CW optimization によるトリガーレート (L1_MU20)を Fig. 6.18 に示す。

Fig. 6.18: Endcap 領域における CW optimization によるトリガーレート (L1_MU20)。 $x \ge 0.9$ の条件で Cell recovery した時の $x \ge 0.1, 0.2, 0.3, 0.4, 0.7$ で cell を削減した時の L1_MU20 におけるトリガーレートを表している。

また式 (5.1) によって定義したトリガーレート削減率 (Rate reduction) を Cell recovery の条件 ($x \ge 0.95$, $x \ge 0.9$) に分けてまとめたものを Table. 6.4 に示す。

Table. 6.4: Endcap 領域における cell 削減でのトリガーレート (L1_MU20)の評価。Cell recovery の条件 ($x \ge 0.95$ (上), $x \ge 0.9$ (下)) での cell 削減前 (No CW optimization) 及び $x \ge 0.1, 0.2, 0.3, 0.4, 0.7$ で cell 削減を行ったときのトリガーレート削減率 (Rate reduction) を表している。

$(x \ge 0.95)$	No CW optimization	$x \ge 0.1$	$x \ge 0.2$
Entries	455862	384493	360577
Rate reduction [%]		15.66	20.90
	$x \ge 0.3$	$x \ge 0.4$	$x \ge 0.7$
Entries	343310	329203	285645
Rate reduction [%]	24.69	27.78	37.34
$(x \ge 0.9)$	No CW optimization	$x \ge 0.1$	$x \ge 0.2$
Entries	456376	3874847	360931
Rate reduction [%]		15.58	20.82
	$x \ge 0.3$	$x \ge 0.4$	$x \ge 0.7$
Entries	343662	329547	285977
Rate reduction [%]	24.61	27.71	37.27

以上の結果から、Cell recovery で $x \ge 0.9$ 、cell 毎の削減で $x \ge 0.2$ の場合、効率的なト リガーレートの削減が行うことができ、CW が複雑になっている Endcap 領域でも CW の 調整を行うことによって、20.82 % のトリガーレートの削減が見込めた。次から同様の手順 で L1_MU20 における Forward 領域及び L1_MU15 についての評価を順に行う。

Forward 領域での L1_MU20 の性能評価

Endcap 領域と同様にして、トリガー効率をフィットした式 (3.4) の 3 つのパラメータ Plateau efficiency、Resolution、Threshold で Forward 領域における Cell recovery による トリガー効率を評価する。 $x \ge 0.95$ 及び $x \ge 0.9$ でのそれぞれのパラメータを Table. 6.5 にまとめた。

Table. 6.5: Forward 領域における Cell recovery によるトリガー効率 (L1_MU20) の性能 評価。 cell 削減前 (No CW optimization) と $x \ge 0.95$ 及び $x \ge 0.9$ で Cell recovery した 時の Plateau efficiency、Resolution、Threshold を表している。

	No CW optimization	Cell recovery $(x \ge 0.95)$	Cell recovery $(x \ge 0.9)$
Plateau efficiency [%]	89.42 ± 0.08	89.43 ± 0.08	89.43 ± 0.08
Threshold [GeV]	14.117 ± 0.070	14.115 ± 0.070	14.115 ± 0.070
Resolution [GeV]	1.526 ± 0.044	1.524 ± 0.044	1.524 ± 0.044

 $x \ge 0.9$ の条件で Cell recovery した後の CW の cell 削減による Forward 領域でのトリ ガー効率を Fig. 6.19 に示す。また、Cell recovery の条件 ($x \ge 0.95$ 及び $x \ge 0.9$) での CW optimization によるそれぞれのフィットパラメータを Table. 6.6 にまとめた。

Fig. 6.19: Forward 領域における CW optimization によるトリガー効率 (L1_MU20, $x \ge 0.95$ (上), $x \ge 0.9$ (下))。

Table. 6.6: Forward 領域における cell 削減でのトリガー効率 (L1_MU20) の性能評価。 Cell recovery の条件 ($x \ge 0.95$ (上), $x \ge 0.9$ (下)) での cell 削減前 (No CW optimization) 及び $x \ge 0.1 \sim 0.7$ で cell を削減した時のそれぞれのフィットパラメータを表している。

$(x \ge 0.95)$	No CW optimization	$x \ge 0.1$	$x \ge 0.2$
Plateau efficiency [%]	89.43 ± 0.08	89.29 ± 0.08	89.28 ± 0.08
Threshold [GeV]	14.115 ± 0.070	14.893 ± 0.071	15.176 ± 0.071
Resolution [GeV]	1.524 ± 0.044	1.762 ± 0.045	1.848 ± 0.045
	$x \ge 0.3$	$x \ge 0.4$	$x \ge 0.7$
Plateau efficiency [%]	89.27 ± 0.08	89.25 ± 0.08	89.10 ± 0.08
Threshold [GeV]	15.467 ± 0.072	15.734 ± 0.072	16.545 ± 0.074
Resolution $[GeV]$	1.954 ± 0.045	2.058 ± 0.045	2.392 ± 0.046
$(x \ge 0.9)$	No CW optimization	$x \ge 0.1$	$x \ge 0.2$
$(x \ge 0.9)$ Plateau efficiency [%]	No CW optimization 89.43 ± 0.08	$x \ge 0.1$ 89.29 ± 0.08	$x \ge 0.2$ 89.28 ± 0.08
$\begin{tabular}{ c c c c } \hline (x \ge 0.9) \\ \hline \\ $	No CW optimization 89.43 ± 0.08 14.115 ± 0.072	$x \ge 0.1$ 89.29 ± 0.08 14.893 ± 0.073	$x \ge 0.2$ 89.28 ± 0.08 15.176 ± 0.071
$(x \ge 0.9)$ Plateau efficiency [%] Threshold [GeV] Resolution [GeV]	No CW optimization 89.43 ± 0.08 14.115 ± 0.072 1.523 ± 0.043	$x \ge 0.1$ 89.29 ± 0.08 14.893 ± 0.073 1.761 ± 0.045	$x \ge 0.2$ 89.28 ± 0.08 15.176 ± 0.071 1.848 ± 0.045
$(x \ge 0.9)$ Plateau efficiency [%] Threshold [GeV] Resolution [GeV]	No CW optimization 89.43 ± 0.08 14.115 ± 0.072 1.523 ± 0.043 $x \ge 0.3$	$\begin{array}{c} x \geq 0.1 \\ \\ 89.29 \pm 0.08 \\ \\ 14.893 \pm 0.073 \\ \\ 1.761 \pm 0.045 \\ \\ x \geq 0.4 \end{array}$	$\begin{array}{c} x \geq 0.2 \\ \\ 89.28 \pm 0.08 \\ 15.176 \pm 0.071 \\ \\ 1.848 \pm 0.045 \\ \\ x \geq 0.7 \end{array}$
$(x \ge 0.9)$ Plateau efficiency [%] Threshold [GeV] Resolution [GeV] Plateau efficiency [%]	No CW optimization 89.43 ± 0.08 14.115 ± 0.072 1.523 ± 0.043 $x \ge 0.3$ 89.27 ± 0.08	$x \ge 0.1$ 89.29 ± 0.08 14.893 ± 0.073 1.761 ± 0.045 $x \ge 0.4$ 89.25 ± 0.08	$\begin{array}{c} x \geq 0.2 \\ \\ 89.28 \pm 0.08 \\ 15.176 \pm 0.071 \\ 1.848 \pm 0.045 \\ \hline x \geq 0.7 \\ \\ 89.10 \pm 0.08 \end{array}$
$(x \ge 0.9)$ Plateau efficiency [%] Threshold [GeV] Resolution [GeV] Plateau efficiency [%] Threshold [GeV]	No CW optimization 89.43 ± 0.08 14.115 ± 0.072 1.523 ± 0.043 $x \ge 0.3$ 89.27 ± 0.08 15.467 ± 0.072	$x \ge 0.1$ 89.29 ± 0.08 14.893 ± 0.073 1.761 ± 0.045 $x \ge 0.4$ 89.25 ± 0.08 15.734 ± 0.072	$\begin{array}{c} x \geq 0.2 \\ \\ 89.28 \pm 0.08 \\ 15.176 \pm 0.071 \\ 1.848 \pm 0.045 \\ \hline x \geq 0.7 \\ \\ 89.10 \pm 0.08 \\ 16.545 \pm 0.074 \end{array}$

次に CW optimization によるトリガーレートの評価を行う。Forward 領域における L1_MU20 での Increasing rate を $x \ge 0.95$ 及び $x \ge 0.9$ の条件でまとめたものを Table. 6.7 に示す。

Table. 6.7: Forward 領域における Cell recovery によるトリガーレート (L1_MU20) の評価。Cell recovery 前 (No CW optimization) と $x \ge 0.95$ 及び $x \ge 0.9$ で Cell recovery した時の HLT_noalg_L1_MU20 トリガーを要求したときの発行回数と Cell recovery による Increasing rate を表している。

	No CW optimization	Cell recovery $(x \ge 0.95)$	Cell recovery $(x \ge 0.9)$
Entries	371609	371716	371822
Increasing rate [%]		0.029	0.057

 $x \ge 0.9$ の条件で Cell recovery した後の CW optimization によるトリガーレート (L1_MU20) を Fig. 6.20 に示す。

Fig. 6.20: Forward 領域における CW optimization によるトリガーレート (L1_MU20)。 $x \ge 0.9$ の条件で Cell recovery した時の $x \ge 0.1, 0.2, 0.3, 0.4, 0.7$ で cell を削減した時の L1_MU20 におけるトリガーレートを表している。

また、式 (5.1) によって定義したトリガーレート削減率 (Rate reduction) を Cell recovery の条件 ($x \ge 0.95$, $x \ge 0.9$) に分けてまとめたものを Table. 6.8 に示す。

Table. 6.8: Forward 領域における cell 削減でのトリガーレート (L1_MU20)の評価。Cell recovery の条件 ($x \ge 0.95$ (上), $x \ge 0.9$ (下))を含めて、cell 削減前 (No CW optimization) と $x \ge 0.1 \sim 0.7$ で cell 削減を行ったときのトリガーレート削減率 (Rate reduction)を表している。

$(x \ge 0.95)$	No CW optimization	$x \ge 0.1$	$x \ge 0.2$
Entries	371716	336429	331264
Rate reduction [%]		9.49	10.88
	$x \ge 0.3$	$x \ge 0.4$	$x \ge 0.7$
Entries	326377	321215	300010
Rate reduction $[\%]$	12.20	13.59	19.29
$(x \ge 0.9)$	No CW optimization	$x \ge 0.1$	$x \ge 0.2$
Entries	371822	336493	331328
Rate reduction [%]		9.48	10.87
	$x \ge 0.3$	$x \ge 0.4$	$x \ge 0.7$
Entries	326441	321279	300075
Rate reduction [%]	12.18	13.57	19.27

以上の結果から、Forward 領域の場合でも、Cell recovery を $x \ge 0.9$ とし、cell 削減が $x \ge 0.2$ までの範囲であれば、効率よくトリガーレートの削減が行うことができ、10.87 % のトリガーレート削減が見積もれた。

6.2.2 L1_MU15 における CW optimization の評価

L1_MU15 では L1_MU20 の結果を元にして、L1_MU20 の Cell recovery 及び cell 毎の 削減 でトリガー効率の Resolution を改善させつつ、Plateau efficiency を維持できる Cell recovery($x \ge 0.9$)、cell 毎の削減 ($x \ge 0.2$) の条件をあらかじめ設定しておき、Cell recovery では、L1_MU15 でも同様に Cell recovery をし、cell 毎の削減では、L1_MU20 で削減した cell を L1_MU15 にして、cell 削減の評価を行った (Fig. 6.21)。

Fig. 6.21: L1_MU15 での評価方法。赤線で囲んだ cell は、cell 毎の削減によって、L1_MU20 から L1_MU15 に変わる cell。青線で囲んだ cell は、Cell recovery により、L1_MU20 とし て判定される cell で L1_MU15 の評価では扱わないものとした。

Endcap 領域での L1_MU15 の性能評価

前述した条件で Cell recovery ($x \ge 0.95$ 及び $x \ge 0.9$) を行ったときの関数を $p_{\rm T}$ としたト リガー効率ををフィットした式 (3.4) の 3 つのパラメータ Plateau efficiency、Resolution、 Threshold で Endcap 領域における Cell recovery によるトリガー効率 (L1_MU15) を評価 する。 $x \ge 0.95$ 及び $x \ge 0.9$ でのそれぞれのパラメータを Table. 6.9 にまとめた。

Table. 6.9: Endcap 領域における Cell recovery によるトリガー効率 (L1_MU15) の性能評価。cell 削減前 (No CW optimization) と $x \ge 0.95$ 及び $x \ge 0.9$ で Cell recovery した時の Plateau efficiency、Resolution、Threshold を表している。

	No CW optimization	Cell recovery $(x \ge 0.95)$	Cell recovery $(x \ge 0.9)$
Plateau efficiency [%]	88.23 ± 0.05	88.24 ± 0.05	88.25 ± 0.05
Threshold [GeV]	10.279 ± 0.044	10.266 ± 0.044	10.264 ± 0.044
Resolution [GeV]	1.112 ± 0.030	1.106 ± 0.030	1.110 ± 0.030

 $x \ge 0.9$ の条件で Cell recovery した後の CW の cell 削減によるトリガー効率を Fig. 6.22 に示す。また、Cell recovery の条件 ($x \ge 0.95$ 及び $x \ge 0.9$) で CW optimization による cell を削減していくときの 3 つのパラメータ (Plateau efficiency、Resolution、Threshold) を Table. 6.10 にまとめた。

Fig. 6.22: Endcap 領域における CW optimization によるトリガー効率 (L1_MU15)。 $x \ge 0.9$ の条件で Cell recovery した時の $x \ge 0.1, 0.2, 0.3, 0.4, 0.7$ で cell を削減した時の L1_MU15 におけるトリガー効率を表している。

Table. 6.10: Endcap 領域における cell 削減でのトリガー効率 (L1_MU15) の性能評価。 Cell recovery の条件 ($x \ge 0.95$ (上), $x \ge 0.9$ (下)) での cell 削減前 (No CW optimization) 及び $x \ge 0.1 \sim 0.7$ で cell を削減した時のそれぞれのフィットパラメータを表している。

$(x \ge 0.95)$	No CW optimization	$x \ge 0.1$	$x \ge 0.2$
Plateau efficiency [%]	88.24 ± 0.05	88.10 ± 0.05	88.09 ± 0.05
Threshold [GeV]	10.266 ± 0.044	10.289 ± 0.044	10.297 ± 0.044
Resolution [GeV]	1.106 ± 0.030	1.120 ± 0.031	1.128 ± 0.031
	$x \ge 0.3$	$x \ge 0.4$	$x \ge 0.7$
Plateau efficiency [%]	88.07 ± 0.05	88.06 ± 0.05	87.94 ± 0.05
Threshold [GeV]	10.318 ± 0.057	10.341 ± 0.045	10.388 ± 0.046
Resolution [GeV]	1.146 ± 0.031	1.166 ± 0.032	1.213 ± 0.033
$(x \ge 0.9)$	No CW optimization	m > 0.1	$\pi > 0.2$
(2 2 010)	NO C W Optimization	$x \ge 0.1$	$x \ge 0.2$
Plateau efficiency [%]	1000000000000000000000000000000000000	$x \ge 0.1$ 88.10 ± 0.05	$x \ge 0.2$ 88.09 ± 0.05
Plateau efficiency [%] Threshold [GeV]	$\frac{88.25 \pm 0.05}{10.264 \pm 0.044}$	$\frac{x \ge 0.1}{88.10 \pm 0.05}$ 10.289 ± 0.044	$\frac{x \ge 0.2}{88.09 \pm 0.05}$ 10297 ± 0.044
Plateau efficiency [%] Threshold [GeV] Resolution [GeV]	$\frac{88.25 \pm 0.05}{10.264 \pm 0.044}$ 1.110 ± 0.030	$\frac{x \ge 0.1}{88.10 \pm 0.05}$ 10.289 ± 0.044 1.120 ± 0.031	$\frac{x \ge 0.2}{88.09 \pm 0.05}$ 10297 ± 0.044 1.128 ± 0.031
Plateau efficiency [%] Threshold [GeV] Resolution [GeV]	$\frac{88.25 \pm 0.05}{10.264 \pm 0.044}$ $\frac{1.110 \pm 0.030}{x \ge 0.3}$	$\begin{array}{c} x \ge 0.1 \\ \\ 88.10 \pm 0.05 \\ 10.289 \pm 0.044 \\ 1.120 \pm 0.031 \\ \\ x \ge 0.4 \end{array}$	$\begin{array}{c} x \ge 0.2 \\ \\ 88.09 \pm 0.05 \\ 10297 \pm 0.044 \\ \\ 1.128 \pm 0.031 \\ \\ x \ge 0.7 \end{array}$
Plateau efficiency [%] Threshold [GeV] Resolution [GeV] Plateau efficiency [%]	$\begin{array}{c} 88.25 \pm 0.05 \\ 10.264 \pm 0.044 \\ 1.110 \pm 0.030 \\ \hline x \geq 0.3 \\ \hline 88.07 \pm 0.05 \end{array}$	$\begin{array}{c} x \ge 0.1 \\ \\ 88.10 \pm 0.05 \\ 10.289 \pm 0.044 \\ 1.120 \pm 0.031 \\ \hline x \ge 0.4 \\ \\ 88.06 \pm 0.05 \end{array}$	$\begin{array}{c} x \ge 0.2 \\ \\ 88.09 \pm 0.05 \\ 10297 \pm 0.044 \\ 1.128 \pm 0.031 \\ \hline x \ge 0.7 \\ \\ 87.94 \pm 0.05 \end{array}$
Plateau efficiency [%] Threshold [GeV] Resolution [GeV] Plateau efficiency [%] Threshold [GeV]	$\begin{aligned} & 88.25 \pm 0.05 \\ & 10.264 \pm 0.044 \\ & 1.110 \pm 0.030 \\ & x \ge 0.3 \\ & 88.07 \pm 0.05 \\ & 10.318 \pm 0.057 \end{aligned}$	$\begin{aligned} x &\geq 0.1 \\ \\ 88.10 &\pm 0.05 \\ 10.289 &\pm 0.044 \\ 1.120 &\pm 0.031 \\ x &\geq 0.4 \\ \\ 88.06 &\pm 0.05 \\ 10.341 &\pm 0.045 \end{aligned}$	$\begin{array}{c} x \ge 0.2 \\ \\ 88.09 \pm 0.05 \\ 10297 \pm 0.044 \\ 1.128 \pm 0.031 \\ \hline x \ge 0.7 \\ \\ 87.94 \pm 0.05 \\ 10.388 \pm 0.046 \end{array}$

次に CW optimization によるトリガーレートの評価を行う。Endcap 領域における L1_MU15 での Increasing rate を $x \ge 0.95$ 及び $x \ge 0.9$ の条件でまとめたものを Table. 6.11 に示す。

Table. 6.11: Endcap 領域における Cell recovery によるトリガーレート (L1_MU15) の評価。Cell recovery 前 (No CW optimization) と $x \ge 0.95$ 及び $x \ge 0.9$ で Cell recovery した時の HLT_noalg_L1_MU15 トリガーを要求したときの発行回数と Cell recovery による Increasing rate を表している。

	No CW optimization	Cell recovery $(x \ge 0.95)$	Cell recovery $(x \ge 0.9)$
Entries	1063777	1066330	1068024
Increasing rate $[\%]$		0.240	0.399

 $x \ge 0.9$ の条件で Cell recovery した後の CW optimization によるトリガーレート (L1_MU15) を Fig. 6.23 に示す。

Fig. 6.23: Endcap 領域における CW optimization によるトリガーレート (L1_MU15)。 $x \ge 0.9$ の条件で Cell recovery した時の $x \ge 0.1, 0.2, 0.3, 0.4, 0.7$ で cell を削減した時の L1_MU15 におけるトリガーレートを表している。

式 (5.1) によって定義したトリガーレート削減率 (Rate reduction) を Cell recovery の条件 ($x \ge 0.95, x \ge 0.9$) に分けてまとめたものを Table. 6.12 に示す。

Table. 6.12: Endcap 領域における cell 削減でのトリガーレート (L1_MU15) の評価。Cell recovery の条件 ($x \ge 0.95$ (上), $x \ge 0.9$ (下)) での cell 削減前 (No CW optimization) 及 び $x \ge 0.1 \sim 0.7$ で cell 削減を行ったときのトリガーレート削減率 (Rate reduction) を表 している。

$(x \ge 0.95)$	No CW optimization	$x \ge 0.1$	$x \ge 0.2$
Entries	1066330	1018906	1007542
Rate reduction [%]		4.45	5.51
	$x \ge 0.3$	$x \ge 0.4$	$x \ge 0.7$
Entries	998704	990608	962289
Rate reduction [%]	6.34	7.10	9.76
$(x \ge 0.9)$	No CW optimization	$x \ge 0.1$	$x \ge 0.2$
Entries	1068024	1021586	1009998
Rate reduction [%]		4.35	5.43
	$x \ge 0.3$	$x \ge 0.4$	$x \ge 0.7$
Entries	1001002	992908	964520
Rate reduction [%]	6.28	7.08	9.69

以上の結果から、Endcap 領域の場合、Cell recovery を $x \ge 0.9$ とし、cell 削減が $x \ge 0.2$ までの範囲であれば、効率よくトリガーレートの削減が行うことができ、5.43 % のトリガー レート削減が見込め、L1_MU15 でも CW の最適化によるトリガーレートの削減を行うこと ができる。

Forward 領域での L1_MU15 の性能評価

Endcap 領域と同様に、Cell recovery によるトリガー効率を評価する。 $x \ge 0.95$ 及び $x \ge 0.9$ でのそれぞれのパラメータを Table. 6.13 にまとめた。

Table. 6.13: Forward 領域における Cell recovery によるトリガー効率 (L1_MU15) の性能 評価。cell 削減前 (No CW optimization) と $x \ge 0.95$ 及び $x \ge 0.9$ で Cell recovery した 時の Plateau efficiency、Resolution、Threshold を表している。

	No CW optimization	Cell recovery $(x \ge 0.95)$	Cell recovery $(x \ge 0.9)$
Plateau efficiency [%]	89.84 ± 0.07	89.84 ± 0.07	89.85 ± 0.07
Threshold [GeV]	11.080 ± 0.069	11.078 ± 0.069	11.078 ± 0.069
Resolution $[GeV]$	1.012 ± 0.041	1.010 ± 0.041	1.011 ± 0.041

 $x \ge 0.9$ の条件で Cell recovery した後の CW の cell 削減によるトリガー効率 (L1_MU15) を Fig. 6.24 に示す。

Fig. 6.24: Forward 領域における CW optimization によるトリガー効率 (L1_MU15)。 $x \ge 0.9$ の条件で Cell recovery した時の $x \ge 0.1, 0.2, 0.3, 0.4, 0.7$ で cell を削減した時の L1_MU15 におけるトリガー効率を表している。

また Cell recovery の条件 ($x \ge 0.95$ 及び $x \ge 0.9$) で CW optimization による cell を削減していくときの 3 つのパラメータ (Plateau efficiency、Resolution、Threshold) を Table. 6.14 にまとめた。

Table. 6.14: Forward 領域における cell 削減でのトリガー効率 (L1_MU15) の性能評価。 Cell recovery の条件 ($x \ge 0.95$ (上), $x \ge 0.9$ (下)) での cell 削減前 (No CW optimization) 及び $x \ge 0.1 \sim 0.7$ で cell を削減した時のそれぞれのフィットパラメータを表している。

$(x \ge 0.95)$	No CW optimization	$x \ge 0.1$	$x \ge 0.2$
Plateau efficiency [%]	89.84 ± 0.07	89.72 ± 0.07	89.71 ± 0.07
Threshold [GeV]	11.078 ± 0.069	11.160 ± 0.071	11.223 ± 0.072
Resolution [GeV]	1.010 ± 0.041	1.053 ± 0.041	1.084 ± 0.041
	$x \ge 0.3$	$x \ge 0.4$	$x \ge 0.7$
Plateau efficiency [%]	89.70 ± 0.07	89.70 ± 0.07	89.65 ± 0.07
Threshold [GeV]	11.269 ± 0.074	11.281 ± 0.074	11.358 ± 0.077
Resolution [GeV]	1.109 ± 0.042	1.116 ± 0.042	1.163 ± 0.043
(
$(x \ge 0.9)$	No CW optimization	$x \ge 0.1$	$x \ge 0.2$
$(x \ge 0.9)$ Plateau efficiency [%]	No CW optimization 89.85 ± 0.07	$x \ge 0.1$ 89.72 ± 0.07	$x \ge 0.2$ 89.71 ± 0.07
$(x \ge 0.9)$ Plateau efficiency [%] Threshold [GeV]	No CW optimization 89.85 ± 0.07 11.078 ± 0.069	$\frac{x \ge 0.1}{89.72 \pm 0.07}$ 11.160 \pm 0.071	$x \ge 0.2$ 89.71 ± 0.07 11.223 ± 0.072
$(x \ge 0.9)$ Plateau efficiency [%] Threshold [GeV] Resolution [GeV]	No CW optimization 89.85 ± 0.07 11.078 ± 0.069 1.011 ± 0.041	$\frac{x \ge 0.1}{89.72 \pm 0.07}$ 11.160 ± 0.071 1.053 ± 0.041	$x \ge 0.2$ 89.71 ± 0.07 11.223 ± 0.072 1.084 ± 0.041
$(x \ge 0.9)$ Plateau efficiency [%] Threshold [GeV] Resolution [GeV]	No CW optimization 89.85 ± 0.07 11.078 ± 0.069 1.011 ± 0.041 $x \ge 0.3$	$\begin{array}{c} x \ge 0.1 \\ \\ 89.72 \pm 0.07 \\ 11.160 \pm 0.071 \\ 1.053 \pm 0.041 \\ \\ x \ge 0.4 \end{array}$	$\begin{aligned} x &\ge 0.2 \\ \\ 89.71 &\pm 0.07 \\ 11.223 &\pm 0.072 \\ 1.084 &\pm 0.041 \\ \\ x &\ge 0.7 \end{aligned}$
$(x \ge 0.9)$ Plateau efficiency [%] Threshold [GeV] Resolution [GeV] Plateau efficiency [%]	No CW optimization 89.85 ± 0.07 11.078 ± 0.069 1.011 ± 0.041 $x \ge 0.3$ 89.70 ± 0.07	$x \ge 0.1$ 89.72 ± 0.07 11.160 ± 0.071 1.053 ± 0.041 $x \ge 0.4$ 89.70 ± 0.07	$x \ge 0.2$ 89.71 ± 0.07 11.223 ± 0.072 1.084 ± 0.041 $x \ge 0.7$ 89.65 ± 0.07
$(x \ge 0.9)$ Plateau efficiency [%] Threshold [GeV] Resolution [GeV] Plateau efficiency [%] Threshold [GeV]	No CW optimization 89.85 ± 0.07 11.078 ± 0.069 1.011 ± 0.041 $x \ge 0.3$ 89.70 ± 0.07 11.269 ± 0.074	$\begin{aligned} x &\ge 0.1 \\ \\ & 89.72 \pm 0.07 \\ & 11.160 \pm 0.071 \\ & 1.053 \pm 0.041 \\ \hline x &\ge 0.4 \\ \\ & 89.70 \pm 0.07 \\ & 11.281 \pm 0.074 \end{aligned}$	$\begin{aligned} x &\ge 0.2 \\ \\ 89.71 &\pm 0.07 \\ 11.223 &\pm 0.072 \\ 1.084 &\pm 0.041 \\ \hline x &\ge 0.7 \\ \\ 89.65 &\pm 0.07 \\ 11.358 &\pm 0.077 \end{aligned}$

次に CW optimization でのトリガーレートの評価を行う。式 (6.3) で定義されたトリガー レートの増加の割合 (Increasing rate) について評価する。Endcap 領域における L1_MU15 での Increasing rate を $x \ge 0.95$ 及び $x \ge 0.9$ の条件でまとめたものを Table. 6.15 に示す。

Table. 6.15: Forward 領域における Cell recovery によるトリガーレート (L1_MU15) の評価。Cell recovery 前 (No CW optimization) と $x \ge 0.95$ 及び $x \ge 0.9$ で Cell recovery した時の HLT_noalg_L1_MU15 トリガーを要求したときの発行回数と Cell recovery による Increasing rate を表している。

	No CW optimization	Cell recovery $(x \ge 0.95)$	Cell recovery $(x \ge 0.9)$
Entries	1345446	1347232	1348023
Increasing rate [%]		0.133	0.192

 $x \ge 0.9$ の条件で Cell recovery した後の CW optimization による L1_MU15 のトリガー レートを Fig. 6.25 に示す。

Fig. 6.25: Forward 領域における CW optimization によるトリガーレート (L1_MU15)。 $x \ge 0.9$ の条件で Cell recovery した時の $x \ge 0.1, 0.2, 0.3, 0.4, 0.7$ で cell を削減した時の L1_MU15 におけるトリガーレートを表している。

式 (5.1) によって定義したトリガーレート削減率 (Rate reduction) を Cell recovery の条件 ($x \ge 0.95$, $x \ge 0.9$) に分けてまとめたものを Table. 6.16 に示す。

Table. 6.16: Forward 領域における cell 削減でのトリガーレート (L1_MU15)の評価。Cell recovery の条件 ($x \ge 0.95$ (上), $x \ge 0.9$ (下)) で cell 削減前 (No CW optimization) 及び $x \ge 0.1, 0.2, 0.3, 0.4, 0.7$ で cell 削減を行ったときのトリガーレート削減率 (Rate reduction) を表している。

$(x \ge 0.95)$	No CW optimization	$x \ge 0.1$	$x \ge 0.2$
Entries	1347232	1260343	1253351
Rate reduction [%]		6.45	6.97
	$x \ge 0.3$	$x \ge 0.4$	$x \ge 0.7$
Entries	1249248	1244980	1228836
Rate reduction [%]	7.27	7.59	8.79
$(x \ge 0.9)$	No CW optimization	$x \ge 0.1$	$x \ge 0.2$
Entries	1348023	1262080	1254899
Rate reduction [%]		6.38	6.91
	$x \ge 0.3$	$x \ge 0.4$	$x \ge 0.7$
Entries	1250857	1246356	1230541
Rate reduction [%]	7.21	7.54	8.72

以上の結果から、Forward 領域の場合でも、Cell recovery を $x \ge 0.9$ とし、cell 削減が $x \ge 0.2$ までの範囲であれば、効率よくトリガーレートの削減が行うことができ、6.91 % の トリガーレート削減が見込める。L1_MU15 の場合でも、L1_MU20 と同様に Endcap 領域 及び Forward 領域で、実データを用いた CW の最適化を行うことで、トリガー効率の $p_{\rm T}$ 閾値を維持し、トリガーレートを削減することができる。

第7章 結論

本研究では Run-2 においてトリガー効率の *p*T 閾値を維持し、トリガーレートを削減す る方法として、レベル1 エンドキャップミューオントリガーを判定する際の CW の調整を 行った。

Run-2 で新たに導入された Inner Station によるトリガーレートの削減は Endcap 領域 と呼ばれる領域のみで、Forward 領域と呼ばれるところでは、トロイド磁場の前において、 Inner Station のコインシデンスがとれないので、トリガー条件の最適化による改良を行っ た。磁場が一様な Forward 領域 (1.90 $\leq |\eta| \leq 2.42$) で CW の $|\Delta R|$ を横 1 列毎に削減す る CW trimming で、Plateau efficiency ($p_{\rm T} > 20$ GeV) は 0.1 % 低下で抑えつつ、トリ ガーレートは 9.1 % 削減することができた。今後、更なる瞬間最高ルミノシティと重心系エ ネルギーの増加によって、トリガーレートが圧迫された時の簡易的な対策方法として、CW trimming を用いることで、 $p_{\rm T}$ 閾値を維持し、トリガーレートの削減が行える。

シミュレーションによる CW ではなく、実際のデータを用いた CW でトリガー効率とト リガーレートを比較することで、より効率的なトリガー条件の最適化が可能になり、TGC ア ライメントのズレ、磁場の不均一性やハードウェアの不備を考慮することができる。Endcap 領域では磁場が一様でなく、CW が複雑になっているため、CW の ΔR だけでは評価する ことは難しいが、CW の cell 毎に評価できる指標を設けることで、トリガー効率の $p_{\rm T}$ 閾 値を維持し、トリガーレート削減できる CW の最適化を行った。また Forward 領域に対し ても同様に行い、 $\Delta \phi$ でも評価するため、トリガー効率の低下を抑えつつ、トリガーレート 削減に有効な手段であるといえる。それぞれの領域で、cell 毎の判定の指標 x を用いるこ とで $x \ge 0.9$ で CW の cell を回復 (Cell recovery) させて、トリガー効率の回復及びトリ ガー効率の Resolution の改善を試みた。cell 毎の削減では、Cell recovery ($x \ge 0.9$) した 後、cell の削減を行うことで、 $x \ge 0.2$ の場合、L1_MU20 では、20.9 % (Endcap 領域)、 10.9 % (Forward 領域) のトリガーレートの削減ができる。さらに L1_MU15 では、5.5 % (Endcap 領域)、7.0 % (Forward 領域) のトリガーレートの削減ができる。本研究で用いた 方法で CW の最適化を行うことで、トリガー効率の低下を抑えつつ、更なるトリガーレート 削減ができることが示せた。

2016 年には、瞬間最高ルミノシティが最大 1.3×10^{34} cm⁻²s⁻¹ に達する予定で、本研 究で調整した CW を用いて、トリガー効率の低下を抑えつつ、トリガーレート削減を目指 す。今後、統計量が増え、実データを用いた CW の最適化を行うことによって、本研究で 用いた 2015 年 Run2 データよりもさらに精度よく CW optimization で用いた cell 毎の 判定の指標 x の閾値を精度よく決めることができる。また High- $p_{\rm T}$ での CW (L1_MU20, L1_MU15) のみの調整を行ったが、Low- $p_{\rm T}$ での CW (L1_MU6 等) でも cell 毎の判定を行 い、 $p_{\rm T}$ が低いミューオンに対しても、効率的なトリガー判定ができる CW を作成すること を目指している。

図目次

2.1	LHC の概観図	3
2.2	積分ルミノシティの遷移	4
2.3	瞬間最高ルミノシティの遷移	4
2.4	CMS 検出器	5
2.5	ALICE 検出器	5
2.6	LHCb 検出器	5
2.7	標準模型と超対称性粒子の一覧表	5
2.8	ベクターボソン随伴 (VH) 生成過程	6
2.9	4 点相互作用理論における 1 ループ近似での質量補正項及び超対称性で質	
	量補正項の1ループ近似に現れるフェルミオンループ	7
2.10	$ ilde{t}_1$ と $ ilde{\chi}_1^0$ の質量相関図	8
2.11	ATLAS 実験による超対称性模型の各超対称性粒子の質量の制限領域	8
2.12	ATLAS 検出器	9
2.13	ATLAS 検出器の座標	10
2.14	ATLAS マグネットシステムの概観図	10
2.15	超伝導ソレノイド磁石	11
2.16	バレル部超伝導トロイド磁石	11
2.17	エンドキャップ部超伝導トロイド磁石	11
2.18	トロイド磁場強度の η 方向の依存性	12
2.19	ビーム軸に垂直な平面 (x-y 平面) の磁力線の様子	12
2.20	内部飛跡検出器の外観図.............................	13
2.21	バレル部における Pixel 検出器	13
2.22	IBL のレイアウト $(R - \phi \oplus \overline{m})$	14
2.23	バレル部における SCT 検出器	14
2.24	バレル部における TRT 検出器	15
2.25	カロリメータの全体像	15
2.26	ミューオンスペクトロメータの全体図...............	17
3.1	トリガーシステムの概略図...........................	18
3.2	TGC の断面図	20
3.3	TGC チェンバーの模式図	20
3.4	TGC の Triplet と Doublet の構造	21
3.5	TGC の配置と構造	22
3.6	TGC $R-z$ 平面図	22
3.7	Big Wheel (BW)	23
3.8	TGC の 1/12 セクター	24

3.9	TGC のサブセクターナンバリング	24
3.10	Small Wheel	25
3.11	EI/FI の概形	25
3.12	TGC エレクトロニクスの概要	25
3.13	レベル 1 におけるトリガー系の流れ	26
3.14	レベル1におけるリードアウト系の流れ	27
3.15	レベル1におけるコントロール系の流れ	28
3.16	p_T 測定の原理	31
3.17	TGC トリガーの判定方法	32
3.18	High- $p_{\rm T}$ CW の一例	32
3.19	Low- p_T CW の一例	34
3.20	クロストークの模式図	36
3.21	デクラスタリングルール	37
3.22	$Z \rightarrow \mu \mu$ の候補事象	38
3.23	Tag muon と Probe muon による不変質量分布	39
3.24	Tag muon の選択における dR の分布	40
3.25	Probe muon 選択における dR の分布	40
3.26	2015 年における L1_MU20 のトリガー効率	41
3.27	2015 年における L1_MU20 のトリガーが発行された数の η 分布	42
4.1	L1_MU20 とオフライン解析で再構成したミューオンの η 分布	43
4.2	衝突点由来の粒子と二次生成粒子の飛跡	45
4.3	EI/FI を含む TGC の配置と形状	45
4.4	InnerStation 及び Tile Calorimeter の配置	46
4.5	Hot RoI 分布	47
4.6	ミューオンスペクトロメータ近傍の <i>r – z</i> 断面図	48
4.7	予想される Run2 でのトリガーレート	48
5.1	Forward 領域における CW の一例	50
5.2	L1_MU20 における Hitmap	50
5.3	CW trimming における Plateau efficiency の維持	51
5.4	Tag muon 選出における $dR_{ m tag, EF}$ 分布	52
5.5	Probe muon 選出における dR _{probe,RoI} 分布	53
5.6	CW trimming によるトリガー効率 (L1_MU20)	54
5.7	CW trimming によるトリガーレート (L1_MU20)	55
6.1	Alignment parameter の概念図	57
6.2	Alignment parameter を適用した Hitmap と CW の比較 (L1_MU20)	58
6.3	TGC チェンバーの配置の様子	59
6.4	オクタント (1/8 円) におけるモジュールナンバー	59

6.5	Endcap 領域におけるオクタントでまとめた Hitmap	60
6.6	Endcap 領域における L1_MU20 での x 分布	61
6.7	Endcap 領域における cell 数に対する x 分布	61
6.8	Endcap 領域における Cell recovery $(x \ge 0.9)$ により復元される cell 数	62
6.9	Endcap 領域における Cell recovery($x \ge 0.95$) により復元される cell 数	63
6.10	Endcap 領域における Cell recovery する cell 数が多い RoI の一例	64
6.11	Endcap 領域における CW の飛び地の一例	65
6.12	Forward 領域における CW の飛び地の一例	66
6.13	Endcap 領域での L1_MU20 における Cell recovery によるトリガー効率 (x	
	$\geq 0.95) \dots \dots$	68
6.14	Endcap 領域での L1_MU20 における Cell recovery によるトリガー効率 (x	
	≥ 0.9)	68
6.15	Endcap 領域における CW optimization によるトリガー効率 (L1_MU20) .	69
6.16	Endcap 領域での L1_MU20 における Cell recovery ($x \ge 0.95$) によるトリ	
	ガーレート	71
6.17	Endcap 領域での L1_MU20 における Cell recovery $(x \ge 0.9)$ によるトリ	
	ガーレート	71
6.18	Endcap 領域における CW optimization によるトリガーレート (L1_MU20)	72
6.19	Forward 領域における CW optimization によるトリガー効率 (L1_MU20) .	74
6.20	Forward 領域における CW optimization によるトリガーレート (L1_MU20)	75
6.21	L1_MU15 での評価方法	77
6.22	Endcap 領域における CW optimization によるトリガー効率 (L1_MU15) .	78
6.23	Endcap 領域における CW optimization によるトリガーレート (L1_MU15)	79
6.24	Forward 領域における CW optimization によるトリガー効率 (L1_MU15) .	81
6.25	Forward 領域における CW optimization によるトリガーレート (L1_MU15)	82

表目次

. 4
. 33
. 33
. 44
. 55
. 69
. 70

6.3	Endcap 領域における Cell recovery によるトリガーレート (L1_MU20) の	
	評価	72
6.4	Endcap 領域における cell 削減でのトリガーレート (L1_MU20) の評価	73
6.5	Forward 領域における Cell recovery によるトリガー効率 (L1_MU20) の性	
	能評価	73
6.6	Forward 領域における cell 削減でのトリガー効率 (L1_MU20) の性能評価 .	74
6.7	Forward 領域における Cell recovery によるトリガーレート (L1_MU20) の	
	評価	75
6.8	Forward 領域における cell 削減でのトリガーレート (L1_MU20) の評価	76
6.9	Endcap 領域における Cell recovery によるトリガー効率 (L1_MU15) の性	
	能評価	77
6.10	Endcap 領域における cell 削減でのトリガー効率 (L1_MU15) の性能評価	78
6.11	Endcap 領域における Cell recovery によるトリガーレート (L1_MU15) の	
	評価	79
6.12	Endcap 領域における cell 削減でのトリガーレート (L1_MU15) の評価	80
6.13	Forward 領域における Cell recovery によるトリガー効率 (L1_MU15) の性	
	能評価	80
6.14	Forward 領域における cell 削減でのトリガー効率 (L1_MU15) の性能評価 .	81
6.15	Forward 領域における Cell recovery によるトリガーレート (L1_MU15) の	
	評価	82
6.16	Forward 領域における cell 削減でのトリガーレート (L1_MU15) の評価	83

参考文献

- [1] ATLAS EXPERIMENT, http://atlas.ch
- [2] LHC: The Machine, https://www-conf.slac.stanford.edu/ssi/2012/Presentations/.
- [3] ATLAS EXPERIMENT-Public Results LuminosityPublicResultsRun2, https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ LuminosityPublicResultsRun2.
- [4] CMS detector design, http://cms.web.cern.ch/news/cms-detector-design.
- [5] The ALICE Experiment, http://aliceinfo.cern.ch/Public/en/Chapter2/ Chap2Experiment-en.html.
- [6] The LHCb Detector, http://lhcb-public.web.cern.ch/lhcb-public/en/ Detector/Detector-en.html.
- [7] 吹田航一, 神戸大学大学院修士学位論文, "ATLAS 実験前後方部レベル1 ミューオン トリガーシステムの動作検証", 2011
- [8] 藤崎 薫, 早稲田大学大学院修士学位論文, "LHC-ATLAS 実験における Vector Boson-Fusion H→bb 過程の断面積測定の実行性", 2013
- [9] Wikipedia, 階層性問題, https://en.wikipedia.org/wiki/Hierarchy_problem
- [10] Summary plots from the ATLAS Supersymmetry physics group, https://atlas. web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SUSY/.
- [11] ATLAS: The ATLAS Experiment at the CERN Large Hadron Collider, 2008
- [12] 長野邦浩, "ATLAS Trigger (HLT, Menu) @ Run2 and Run3",「先端加速器 LHC が切り拓くテラスケールの素粒子物理学」研究会, 2014.
- [13] 来見田吏恵, 神戸大学大学院修士学位論文, "ATLAS 実験 RUN2 に向けたレベル1
 ミューオントリガー回路の開発", 2014
- [14] ATLAS Insertable B-Layer Technical Design Report, Technical Report CERN-LHCC-2010-013. ATLAS-TDR-19, CERN, Geneva, Sep 2010.
- [15] 宇田純郎, 神戸大学大学院修士学位論文, "ATLAS 実験用ミューオントリガーチェン バーの性能評価", 2005
- [16] 鈴木友,総合研究大学院大学修士学位論文, "ATLAS Muon Trigger System の commissioning:タイミング調整とその検証", 2009
- [17] 岸本巴, 神戸大学大学院修士学位論文, "ATLAS 実験におけるミューオントリガー効率の評価", 2012
- [18] 稲丸由夫輝, 神戸大学大学院修士学位論文, "ATLAS 実験 Run2 に向けたレベル1 ミューオントリガーの改良", 2014
- [19] 救仁郷拓人, 京都大学修士学位論文, "LHC-ATLAS 実験 Run-2 に向けた Level-1

ミューオントリガーアルゴリズムとデータ収集システムの改良",2015

- [20] The ATLAS Collaboration, "Letter of Intent for the Phase-I Upgrade of the ATLAS Experiment", CERN-LHCC-2011-012, January 2012.
- [21] 矢ヶ部遼太, 神戸大学大学院修士学位論文, "ATLAS 実験 RUN2 に向けたハドロンカ ロリメータを用いるレベル1ミューオントリガーの性能評価", 2015
- [22] The ATLAS Collaboration, Supporting note of the paper: "Performance of the ATLAS muon trigger in pp collisions at $\sqrt{s} = 8$ TeV" (ATL-COM-DAQ-2013-147)
- [23] 山内克弥,名古屋大学大学院修士学位論文, "LHC-ATLAS 実験ミュー粒子検出器の精 密アライメントによるトリガー効率の改善",2013

謝辞

本論文の執筆にあたり、多くの方々に助けていただきました。まず初めに指導教官である 蔵重久弥教授には、他大学で別の分野のことを研究していたのにも関わらず、神戸大学粒子 物理学研究室に受け入れて下さり、このような国際的な研究に携わる機会を与えていただき 心から深く感謝します。研究に関するアドバイスや様々な知識についてご教授いただき、非 常に参考になりました。またその他ミーティングなど様々な場面で支えていただきました。 本当にありがとうございました。前田順平氏、山崎祐司教授、清水志真氏、Yuan Li 氏には、 多くのご指導を頂き、研究に対する理解が深まりました。特に前田氏には CERN 出張の際、 大変お世話になりました。また自分に至らない部分があり、ご迷惑をおかけさせてしまった こともあるので、本当に申し訳ない気持ちと感謝の気持ちがあります。また、青木雅人氏、 堀井泰之氏、隅田土詞氏をはじめとする ATLAS JAPAN Trigger グループの方々にはミー ティングやメールを通じて数々の助言を頂きました。大変有り難うございました。秘書の横 山有美様には出張などの手続きをはじめ、研究活動をサポートして頂き有り難うございま した。神戸大学 ATLAS グループの先輩である岸本巴氏、陳叶氏、長谷川誠氏には CERN 出張の際、大変お世話になりました。本当に有り難うございました。また ATLAS TGC グ ループの先輩である田代拓也氏、加藤千曲氏、救仁郷拓人氏、鈴木翔太氏、小野木宏太氏に は慣れない海外での生活について助言をして頂き、有り難うございました。ともに修士2年 間の研究生活を送ってきた、藤田黎氏、山内悟氏、橋本隆氏に感謝します。有意義な研究生 活を送ることができました。ありがとうございました。研究室の先輩である細川圭志氏、岡 直哉氏、矢ケ部遼太氏、山根史弥氏、後輩である谷岡凌君、斉藤大起君、池田智法君、帝釋稜 介君、長坂憲子さん、長谷川大晃君、B4 の学生の皆様には研究生活の中で、様々な刺激をも らいました。皆様のおかげで日々楽しく過ごすことができました。心より感謝致します。あ と数日しか会えなかった同期の加藤直也氏にも感謝致します。

最後に、研究生活のサポートを続けてくれた家族に対して感謝の意を述べて謝辞とさせて 頂きます。真に有り難うございました。

vii