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Abstract

The Standard Model(SM) is the successful theory to describe the current particle physics. The

prediction from SM is consistent with most of the experimental results. However, there are still

several unresolved problems, such as the hierarchy problem related to the Higgs mass, the grand

unification of forces, and the identity of dark matter. Recently, the Fermilab Muon g-2 Experiment

has reported that the muon magnetic moment deviates from the SM prediction by 4.2σ. This result

may be a sign of new physics.

Supersymmetry (SUSY) with the R-parity conservation is one of the most elegant extension of

SM that can solve the above problems. The theory suggests the existence of superpartners which

are particles whose spin differs from the SM particles by 1/2. For electroweak gauge bosons and

Higgs bosons, eight superpartners, called neutralinos and charginos, are introduced.

This thesis report an updated result of a search for neutralino using the decay mode that next-to-

lightest neutralino (χ̃0
2) decays into lightest neutralino (χ̃0

1) and two muons. Also, the target phase

space is the region where the mass difference between χ̃0
1 and χ̃0

2 is a few GeV. This thesis uses

data collected by the ATLAS detector in 2015-2018 corresponding to the integrated luminosity of

139 fb−1. In the past search in the ATLAS experiment, the bottleneck was the poor identification

efficiency for muons with low transverse momentum (low-pT ). To solve the problem, a new

muon identification algorithm dedicated to low-pT muons (Low pT calo tag muon ID) has been

developed for this analysis. Also, Deep Neural Networks, which is one of the machine learning

techniques, are introduced to improve the sensitivity for the neutralinos.

Finally, the discovery and the exclusion test are performed. No significant excess over expected

background is observed, and thus exclusion limits are set for neutralino as a function of χ̃0
2 mass

and ∆m(χ̃0
2, χ̃

0
1). For the scenario which the main component of χ̃0

1 is superpartners of Higgs

(Higgsino), χ̃0
2 is excluded up to 125 GeV on χ̃0

2 mass at the region that ∆m(χ̃0
2, χ̃

0
1) is 3 GeV. This

is the result of the world’s highest sensitivity.
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1. Introduction

What is the origin of matter? What interactions do work between them? These are one of the

ancientest age-old questions. In modern science, the Standard Model(SM)[5] of particle physics is

known as the theory closest to the answer. The Lagrangian of SM, shown in Fig.1.1, describes the

universe well and gives us well-consistent predictions with most of the results of the experiments.

Figure1.1 One of the best formulas to describe the world

However, there are still some unsolved problems, such as Higgs’ hierarchy problem and dark

matter, and so on. Therefore, it is obvious that SM is not perfect. The SUper SYmmetry Theory

(SUSY)[6] is one of the most promising theories that can solve these problems. In this theory, an

undiscovered particle called the SUSY particle is introduced to make a pair with each particle in

the SM. In other words, the discovery of such a particle is proof of the SUSY theory.

Recently, a deviation of 4.2 σ from the SM expectation has been reported in measurements of

the muon magnetic moment[7]. The deviation may be a sign of SUSY. If neutralino (χ̃0
1) is the

lightest SUSY particle and its mass is less than 500 GeV, this muon magnetic moment deviation

can be explained. Moreover, if the Dark matter is χ̃0
1, the mass difference between the first and

second lightest neutralinos, ∆m(χ̃0
1, χ̃

0
2) is suggested to be less than O(10GeV). On the other hand,

the results of direct SUSY searches using LEP[8] also suggest that the χ̃0
1 mass is above 92.4 GeV.

Consequently, the phase space is strictly limited by considering the multi experiments; m(χ̃0
1)
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should be between 92.4 GeV and 500 GeV and the ∆m(χ̃0
1, χ̃

0
2) should be less than O(10GeV).

Currently, the only experiment that can approach this region is the world’s highest energy

proton-proton collision experiment using the Large Hadron Collider (LHC), such as the ATLAS

experiment. In the previous analysis[9][10], the ATLAS experiment has explored the region be-

low O(0.1GeV) and above O(1GeV). However, the region where ∆m(χ̃0
1, χ̃

0
2) is 1 GeV to 5 GeV

has not been explored yet since the LEP result. The main difficulty in this region is the poor muon

identification efficiency at the low momentum region, because such muons cannot reach the muon

spectrometer used to identify them.

In this thesis, a new dedicated identification algorithm for low momentum muon using tracker

and calorimeter information has been developed for the ATLAS experiment. This algorithm dis-

criminates muon from other particles using the difference of behavior in the calorimeter. In this

identification algorithm, Deep Neural Network (DNN)[11], a class of machine learning algo-

rithms, is used to achieve the high performance. The new algorithm allows us to search the region

of ∆m(χ̃0
1, χ̃

0
2) from 1 to 5 GeV. In this search of neutralinos, it is important to discriminate SUSY

signal from background efficiently to achieve high sensitivity. However, it is not easy to establish

an optimized search method by one DNN algorithm since different kinematics are predicted for

different ∆m regions. Therefore, pNN, a kind of DNN, is employed. The pNN uses not only mea-

sured parameters such as four-momentum of muons but also physics parameter ∆m as the input.

It makes discrimination performance efficient for all over ∆m region. Finally, the results of this

neutralino search with the 13 TeV pp-collision data of 139 fb−1, and discuss a SUSY model.

Outline of the dissertation

In this thesis, a search for neutralino production with small ∆m is reported. The search uses 139

fb−1 of
√

s = 13 TeV proton-proton collision data collected in ATLAS experiment. The outline of

this thesis is summarized below.

• Chapter 2 describes theoretical background, especially about motivation for SUSY.

• Chapter 3 describes the LHC-ATLAS experiment.

• Chapter 4 describes data and MC samples used for the analysis.

• Chapter 5 describes definition of the objects in the analysis.

• Chapter 6 describes newly developed low-pT muon identification algorithm.

• Chapter 7 describes event selection to maximize the sensitivity for neutralino.

• Chapter 8 describes how to estimate the background.
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• Chapter 9 describes the systematic uncertainty for background and signal.

• Chapter 10 describes statistical treatment and statistical test for discovery and exclusion of

neutralino.

• Chapter 11 describes the result and impact on SUSY.
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2. Theoretical Background

This chapter describes the supersymmetry theory, which is the target of this thesis, especially

models with neutralino as a LSP, the motivation and current limitations of the theory are summa-

rized. Finally, the strategy to test the remaining possible phase space is discussed.

2.1 Standard Model

The Standard Model (SM) is a theory that can explain almost all the experimental results in

modern particle physics. Figure 2.1 shows particles in SM.
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Figure2.1 SM particles

In SM, 12 fermions, four gauge bosons, and one Higgs boson are introduced. The fermions

are the elementary particles that make up matter and are divided into quarks and leptons based

on the characteristics of their interactions. Strong, weak, and electromagnetic interaction act on

quarks, while weak and electromagnetic interaction act on leptons. Gauge bosons are introduced

as mediators for each interaction: gluon for the strong interaction, Z boson and W boson for

the weak interaction, and photon for the electromagnetic interaction. Finally, the Higgs boson, a

complex scalar field, is introduced to obtain mass to the particle. Using the field of these particles,
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the Lagrangian is described as follows.

L = − 1
4

FµνFµν

+ iψ̄ D̸ψ

+ yψ̄ψϕ

+ |Dϕ|2 + V(ϕ)

(2.1)

Here, Fµν represents the strength of the gauge field, and ψ, ϕ are the fermion field and the

Higgs field, respectively. The first term describes the momentum and self-coupling of the gauge

boson. The second term describes the momentum and interaction of the fermion. The third term

describes the Yukawa coupling between Higgs and fermions. The fourth term describes the Higgs

momentum and its interaction with gauge boson. The last term, V(ϕ), is a function of the Higgs

potential. According to the form of this function, Higgs has a vacuum expectation value (VEV).

This mechanism is called the Brout–Englert–Higgs mechanism[12, 13]. The term with VEV gives

mass to the fermion and gauge particles.

One of the most elegant properties of the lagrangian of the SM is that the theory is invariant

under the Poincaré transformation in real space, and invariant under the S U(3)c×S U(2)L×U(1)Y

transformation in internal space. The fact that the lagrangian has a certain symmetry is an impor-

tant guiding principle in constructing the theory. Therefore, many theories of the Beyond standard

Model (BSM) are often described as extensions of symmetry.

2.2 Supersymmetry

This section explains Supersymmetry theory (SUSY), which is one of the promising BSMs. The

Coleman-Mandula theorem denotes that a symmetry for S-matrix should be a direct product of

the Poincaré group and an internal group. However, the theorem is limited within transformations

defined by commutation relation. The Haag-Lopuszanski-Sohnius theorem extends the Poincaré

transformation by considering transformations involving an anti-commutation relation. This ex-

tended Poincaré transformation is called the SUSY transformation, and the extended elements are

defined as follows.

{Qα, Q̄α̇} = 2(σµ)αα̇Pµ (2.2)

{Qα,Qβ} = {Q̄α̇, Q̄β̇} = 0 (2.3)

[Pµ,Qα] = [Pµ, Q̄α̇] = 0 (2.4)
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Qα is the generator of the SUSY transformation, and α, α̇ is the spinor index, 1 or 2.Also, µ is

the index of the real space, and σµ is the Puli matrix.

SUSY can be considered as an extension of the real space, which is called super space and uses

(xµ, θα, θ̄α̇) as the coordinate system. The θα and θ̄α̇ are the extended coordinates of weyl spinor,

which are anti-commute with each other. Also, a field of a particle in super space is called super

field. Chiral and vector super fields are introduced as irreducible representations for the global

SUSY transformation. The chiral super field consists of filed with spin 0 and 1/2 and an auxiliary

filed. The vector super field consists of filed with spin 1/2 and 1 and the auxiliary filed. It is

noteworthy that fields with different spins are treated in a single expression. It implies that there

is a super partner particle (SUSY particle), whose spin is different by 1/2, for every particle. Also,

according to 2.4, the SUSY transformation and Pµ are exchangeable. It means that the mass of

the SM particle and its SUSY particle are equal. Fig.2.2 shows the particles introduced in the

Minimal Supersymmetric Standard Model (MSSM), which is the minimal model of SUSY. The

details of MSSM are described in section 2.2.5.
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Figure2.2 MSSM particles

Newly introduced SUSY particles for fermion are called sup, stop, smuon, and so on. "s-" is

added to the name of SM fermions. Also, newly introduced SUSY particles for the gauge particles

and higgs are called gluino, higgsino, and so on. "-ino" is added to the name of SM gauge particles

and higgs. In SUSY, the Yukawa coupling is described in the super potential, consisting of the

chiral superfields, and the chirality must be the same as all in the potential. Therefore, SM higgs

cannot give mass to all the fermions. Therefore, the 2 Higgs Doublet Model (2HDM) is naturally

introduced in SUSY, and Hu and Hd of the two-dimensional representation of S U(2)L give masses
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for up-type and down-type fermions, respectively.

2.2.1 SUSY soft breaking

As shown in Fig. 2.2, SUSY requires particles more than twice as many SM particles, but

half of them have not currently been found yet. Therefore, it is assumed that SUSY is broken in

our universe. However, it is known that the supersymmetrized Lagrangian of the SM cannot be

successfully explained by a broken SUSY. On the other hand, it is obvious that the Lagrangian of

the SM is incomplete ( for example, it does not include the gravitational interaction). Therefore,

we consider a scenario in which SUSY breaking occurs in the "hidden sector," which we don’t yet

know, and the effect appears in the "visible sector," which we know. In this case, the effects that

appear in the visible sector are shown below[6].

LMS S M = LMS S M
S US Y +LMS S M

so f t (2.5)

LMS S M
so f t = − 1

2
(M3g̃g̃ + M2W̃W̃ + M1B̃B̃ + c.c.)

− Q̃†mQ
2Q̃ − L̃†mL

2L̃ − ũmu
2ũ
† − d̃md

2d̃
†
− ẽme

2ẽ
†

− (ũauQ̃Hu − d̃adQ̃Hd − ẽaeQ̃Hd + c.c.)

− m2
Hu

H∗uHu + −m2
Hd

H∗dHd − (bHuHd + c.c.)

(2.6)

Here, LMS S M
S US Y represents the Lagrangian obtained by supersymmetrization of SM, and LMS S M

so f t

is the SUSY soft breaking term introduced explicitly. Soft breaking means the term of SUSY

breaking that does not affect the solution of the hierarchy problem described in section 2.3.2.

LMS S M
so f t is eq.(2.6). M3,M2,M1 are the mass parameters of gluino, wino, and bino, respectively,

and mQ,mL,mu,mu,md and me are mass matrices of squarks and sleptons. The au, ad, ae are the

matrix of couplings in (scalar)3. The last line in eq.(2.6) is a term related to the higgs potential.

2.2.2 Electroweakino

In this section, neutralino,which is the target of this paper, is describe and summarize various

scenarios about neutralino.

Mass eigenstates

SUSY partners for 2Higgs doublet and gauge boson for electroweak interaction are called Hig-

gsino, Wino, and Bino, respectively, and they are collectively called Electroweakino. The same

charged components of Bino, Wino, and Higgsino are mixed. when the gauge-eigenstate of the
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neutral component is written as ψ0 = (B̃, W̃0, H̃0
d , H̃

0
u), the mixsing matrix ( MÑ ) is written as

follows.

MÑ =


M1 0 −g′vd/

√
2 g′vu/

√
2

0 M2 gvd/
√

2 −gvu/
√

2
−g′vd/

√
2 gvd/

√
2 0 −µ

g′vu/
√

2 −gvu/
√

2 −µ 0

 (2.7)

Here, M1 and M2 are mass parameters for Bino and Wino derived from susy soft breaking (see

section 2.2.1), respectively. The µ is the mass parameter of Higgs, and vu and vd are the VEVs of

Hu and Hd, respectively. Also, g and g’ are the gauge coupling constants of S U(2)L and U(1)Y ,

respectively. The off-diagonal term of the mixing matrix can be written down since the terms are

originated from the gaugeino-higgsino-higgs coupling with VEV of higgs.

In the same way, when the gauge-eigenstate of the charged component is written as ψ± =

(W̃+, H̃+u , W̃
−, H̃−d ), the mixsing matrix ( MC̃) can be written as follows.

MC̃ =


0 0 M2 gvd

0 0 gvu µ
M2 gvu 0 0
gvd µ 0 0

 (2.8)

The results of calculating the each mass eigenstates from eq.2.7 and eq.2.8 are shown below.

mÑ1
= M1 −

m2
Z s2

W (M1 + µ sin 2β)

µ2 − M2
1

+ ... (2.9)

mÑ2
= M2 −

m2
W (M2 + µ sin 2β)

µ2 − M2
2

+ ... (2.10)

mÑ3
= |µ| −

m2
Z(I − sin 2β)(µ + M1c2

W + M2s2
W )

2(µ + M1)(µ + M2)
+ ... (2.11)

mÑ4
= |µ| −

m2
Z(I + sin 2β)(µ − M1c2

W − M2s2
W )

2(µ − M1)(µ − M2)
+ ... (2.12)

mC̃1
= M2 −

m2
W (M2 + µ sin 2β)

µ2 − M2
2

+ ... (2.13)

mC̃2
= |µ| −

Im2
W (µ + M2 sin 2β)

µ2 − M2
2

+ ... (2.14)
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To calculate the mass eigenstates, the equation of VEV of higgs(v), v2 = v2
u+vd = 2m2

Z/(g
2+g′2),

is used. Here, tan β is the ratio of the VEVs of 2HD and is defined by tan β = vu/vd. Also, sW ,cW

represent the weinberg angle.

Particles in the mass eigenstates of the neutral and charged components are called neutralino

and chargino, respectively. As for the neutralino, mÑ1
is called "Bino like" because the main

component of mÑ1
is Bino. Similarly, mÑ2

is called "Wino like", mÑ3
and mÑ4

are called "Higgsino

like". As for the chargeino, mC̃1
is called "Wino like" and mC̃2

is called "Higgsino like". Each

masses depend on the unknown parameter M1,M2, µ, tan β. Therefore, it is not sure which one is

the smallest. For convenience, the neutralino is written as χ̃0
1, χ̃

0
2, χ̃

0
3, χ̃

0
4, starting with the lightest

mass. The chargino is also described as χ̃±1 , χ̃
±
2 in order from lightest to lightest.

Neutralino LSP scenarios

The neutralino is a candidate for the lightest supersymmetric particle (LSP), and various sce-

narios are possible depending on which of the four neutralinos is the lightest. In this thesis, the

target is the Higgsino like LSP scenario, which means Higgsino is the main component of LSP. In

other words, the target scenario has |µ| << M1,M2. In this case, the mass spectrum of neutralino

and chargino is typically m(χ±1 ) = 1
2 (m(χ0

1) + m(χ0
2)).

2.2.3 Naturalness

Naturalness gives us an important guideline about the relation between mass parameters and Z

boson mass in MSSM (discussed in section 2.2.5) [14].

−
m2

Z

2
= |µ|2 + m2

Hu
(2.15)

mZ is the mass of the Z boson, and its value is 91 GeV. The mHu is the mass parameter of Higgs,

which gives the mass to the up-type fermions in 2HDM. The value is affected by the radiation

correction of the stop and the gluino loop. Since the left term of eq.2.15 is the electroweak scale,

it is natural that the right term is also the electroweak scale. On the other hand, since the mass of

stop and gluino is rejected up to a few TeV[?], mHu is expected to be large. However, considering

the value of tanβ and other factors, the stop and gluino masses can be larger than a few TeV with

a reasonable level of fine-tuning of 1% [15]. In this case, |µ| < 700GeV is required. Therefore,

the Higgsino like LSP scenario is very motivative for the naturalness.
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2.2.4 R-parity

The SUSY transformation introduced by eq.(2.2) and eq.(2.3) satisfies a kind of U(1) chiral

symmetry as follows.

Q→ Q′ = eiλγ5

(
Qα

Qα̇

)
(2.16)

As well as with this transformation, the following symmetry for the coordinate system of super

space is considered. (
θα
θ̄α̇

)
→ eiλγ5

(
θα
θ̄α̇

)
(2.17)

The symmetry of eq.(2.17) is called R-symmetry. The R-symmetry must obviously be broken

since it prohibits the Majorana mass (the gaugeino mass). However, when λ = π, it does not

prohibit the Majorana mass. Therefore, R-parity can be conserved. The eigenvalues of R-parity

are -1 for SUSY particles and +1 for SM particles. It can be formulated as follows.

R = (−1)2s(−1)3B+L (2.18)

SUSY generally predicts interactions that have not yet been observed experimentally, such as

interaction with violation of the Lepton and Baryon numbers (e.g. proton decay). It is preferable

to assume that the R-parity is conserved since the conservation prohibits such interactions. Addi-

tionally, assuming the conservation of R-parity, it is able to explain what Dark Matter is, which

will be discussed later in section2.3.3. Therefore, this paper targets the SUSY model in which

R-parity is conserved.

2.2.5 Minimal Supersymmetric Standard Model

This section discusses the Minimal Supersymmetric Standard Model (MSSM) and Phenom-

enological MSSM (pMSSM). MSSM refers to the minimal SUSY model, which satisfies the

following conditions.

• minimal gauge group (S U(3)c × S U(2)L × U(1)Y )

• minimal particle content

• R parity conservation

• soft SUSY breaking

This section discusses the Minimal Supersymmetric Standard Model (MSSM) and Phenome-

nological MSSM (pMSSM). MSSM refers to the minimal SUSY model, which satisfies the fol-
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lowing conditions. When the above conditions are satisfied, the number of parameters that must

be measured in experiments that don’t appear in SM is 105. MSSM has many parameters, but

the number can be reduced from 105 to 19 by adding some conditions based on the current ex-

perimental results. The MSSM model with the newly added conditions is called pMSSM. The

following list shows the newly added conditions.

• No new source of CP-violation

• No flavor changing nuetoral current

• First and second generation universality

The remaining parameters after requesting the above conditions are summarized in Table2.2.5.

Table2.1 Description of the pMSSM parameter

parameter description

tan β the ratio of the vacuum expectation values of the two Higgs doublets

MA the mass of the pseudoscalar Higgs boson

µ the higgsino mass parameter

M1 the bino mass parameter

M2 the wino mass parameter

M3 the gluino mass parameter

mq̃L

the first and second generation squark massesmũR

md̃R

ml̃L the first and second generation slepton masses
ml̃R

mQ̃L

the third generation squark massesmt̃R

mb̃R

mτ̃L
the third generation slepton masses

mτ̃R

At

the third generation trilinear couplingsAb

Aτ
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2.3 Motivation of SUSY

This section summarizes the four motivations of SUSY.

2.3.1 Grand unification theory

The first is the unification of the gauge coupling constants. The SM has coupling constants

α3, α2, α1 corresponding to S U(3)c, S U(2)L,U(1)Y respectively. Since these values cannot be

predicted from the theory, it needs to measure them experimentally. The Grand Unification Theory

(GUT) is a theory that can combine these parameters into one.

The well-known GUT has the structure of S U(5). Since S U(5) contains S U(3)c, S U(2)L,U(1)Y

as subgroups, the three coupling constants can be computed with αG. Since the present universe

is cold and low energy, αG looks like to separated into α3, α2, α1 according to the renormalization

group equation (eq.(2.20))[6].

d
dt
α−1

i = −
bi

2π
(i = 1, 2, 3) (2.19)

(b1, b2, b3) =

(41/10,−19/6, 7) SM
(33/5, 1,−3) MSSM

(2.20)

bi is a value determined by the structure of groups, the number of particles, and their quantum

numbers. Therefore, differences appear between SM and MSSM. Fig.2.3 shows the energy scale

dependence of gauge coupling. The dotted line is extrapolated coupling constants according to

the renormalization group equation with SM. the coupling constants are not unified even at the

GUT scale (1015 GeV). On the other hand, in MSSM (blue and red lines in Fig.2.3), the gauge

coupling is unified at the GUT scale. This result strongly suggests that SUSY particles exist at the

TeV scale.

2.3.2 Hierarchy problem

The fundamental scale of elementary particles is the GUT scale (1015 GeV) or Planck scale

(1019 GeV), which can include quantum gravity. On the other hand, the masses of W boson

and Higgs are on the Electroweak scale (102 GeV). There is a large deviation between Higgs

mass and fundamental scale.The hierarchy problem is how to solve such unnatural differences

from the fundamental scale. According to ’t Hooft, "at any energy scale µ, a physical parameter

αµ is allowed to be very small only if the replacement αµ = 0 would increase the symmetry

of the system.". For example, chiral symmetry and gauge symmetry ensure the light mass for
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Figure2.3 The blue and red lines assume that the SUSY particle appears at 750 GeV and 2.5
TeV, respectively. Under both assumptions, the couplings are unified in the GUT scale.[6]

fermion for gauge particles, respectively. However, there is no such symmetry for Higgs, and

thus the hierarchy problem cannot be explained. In fact, when the bare mass of Higgs and the

experimentally observed Higgs mass are mh0 and mh, respectively, the difference between them is

written by the following equation.

m2
h − m2

h0
= ∆m2

h = −
3|λ|
8π2Λ

2 + ... (2.21)

Here, Λ is the cutoff scale, and λ is the coupling constant of interaction between higgs and par-

ticles. The first term in eq.(2.21) is the radiative correction effect of one loop (Fig.2.4), which

affects as the quadratic radiative corrections with respect to the cutoff scale Λ. Especially for top,

which has the strongest coupling with higgs, λ is O(1), and Λ is 1015 GeV (GUT scale). As a re-

sult, the effect of the quadratic radiative is as much as 1030 GeV. Since mh = 125 GeV is obtained

from the experiment result, a large discrepancy about m2
h/Λ

2 = 10−26 cannot be avoided. This

means that there is unnatural fine-tuning between the mh0 and radiation correction terms.

SUSY can solve this problem by indirectly introducing a symmetry that ensures the light higgs

mass. As mentioned above, in SUSY theory, higgs with spin 0 and higgsino with spin 1/2 are

included in the same representation. Therefore, if SUSY is not broken, the masses of higgs and

higgsino must be equal. Since higgsino mass is ensured light by chiral symmetry, it is indirectly

suggested that the higgs mass is also light. In fact, by taking into account the radiation correction

term from SUSY particles, eq.(2.21) can be rewritten as follows.
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8

2. Conclusion

2.1 Higgs loop

∆m2
H =

f

f

H H
+

H H

S

+ . . .

Figure2.4 The diagrams for one-loop quantum corrections to the Higgs squared mass param-
eter m2

H , due to a Dirac fermion f (left), and a scalar S (right).

∆m2
h = −

3|λ|
8π2Λ

2 +
3|λ|
8π2Λ

2 + O(logΛ) (2.22)

The new term is the contribution of one loop of SUSY, and the term of the quadratic radiative

is canceled completely. In other words, SUSY solves the Hierarchy problem. Another critical

point is that the quadratic radiative term does not depend on the mass of the particles in the loop.

Therefore, the quadratic divergence term is completely canceled even if SUSY is broken.

2.3.3 Dark matter

By observing the motions of galaxies in the Coma Cluster, it was claimed that the cluster con-

tains more than 100 times the mass of stars in optically observable galaxies[16]. Furthermore,

by measuring the rotational velocity of spiral galaxies, it was observed that the velocities of the

stars and hydrogen gas belonging to the galaxy don’t change with increasing distance from the

galactic center [17]. In general, one would expect the rotational velocity v to decrease in propor-

tion to 1/
√

r outside the central region of the galaxy, but as shown in Figure 2.5, the observation

of M33 galaxy shows a constant velocity distribution. This indicates the existence of optically

unobservable masses beyond a few kpc from the galactic center.

Dark matter (DM) is a particle which a candidate for the identity of the unobservable masses,

and it should be stable, neutral, cold, and abundant.

Neutrino satisfies most of the requirements for the DM, but neutrino is not Cold (not in rel-

ativistic motion) because of its low mass. Therefore, DM is not SM particle. The LSP with

R-parity conservation satisfies the requirements of DM. In the scenario with R-parity conserva-

tion, as shown in Fig.2.6, the SUSY particle must decay to another lighter SUSY particle, and

decaying to SM particle only is prohibited. Therefore, the LSP is stable and can be a dark matter.
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Figure2.5 The M33 galaxy rotational curve [18]. The x-axis is the distance from the center
of the galaxy to the orbiting object and y-axis is the rotational velocity. The filled circles are the
measured data points. The solid line is the best fit model considered on the halo contribution
(dashed line), stellar disk contribution (short dashed line) and gas contribution (long dashed
line).
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Figure2.6 R parity conservation

When SUSY is DM, the main contribution of the spin-independent crosssection between proton

and DM (σS I
p ) is scattering via Higgs particle, and the coupling is described as the following

equation[19].

chχ̃0
1χ̃

0
1
≃ −1

2
(1 + sin 2β)

(
tan2 θw

Mw

M1 − µ
+

Mw

M2 − µ

)
(2.23)

Here, µ > 0 is assumed. From eq.2.23, coupling is large when µ ≃ M1 or µ ≃ M2. Since
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∆m(χ̃0
1, χ̃

0
2) is large when µ is close to M1 or M2, large ∆m is excluded by the DM direct ditection

experiment, such as the Xenon1T experimen[20]. The results of the Xenon1T experiment, which

currently reports the strictest lower limit for σS I
p , suggest ∆m(χ̃0

1, χ̃
0
2) < O(10GeV).

2.3.4 Muon g-2

In 2021, Felmi lab reported a new measurement of muon anomalous magnetic moment

(Fig.2.7). Here, the muon magnetic moment is refferd to as gµ ,and define aµ as (gµ − 2)/2. the

predicted value of aµ in the SM is aS M
µ =116 591 810(43)×10−11. (Values in parentheses are

error). On the other hand, the Muon g-2 group of Felmilab (FNAL) reported aS M
µ =116 592

040(54)×10−11. Also, by combining the result with the Brookhaven National Laboratory (BNL)

result[21], the deviation with SM is 4.2σ. This result may be a sign of new physics.

17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5

4.2

a × 10
9

1165900

Standard Model Experiment
Average

BNL g-2

FNAL g-2

Figure2.7 From top to bottom: experimental values of aµ from BNL E821[21], FNAL
measurement[7], and the combined average. The inner tick marks indicate the statistical con-
tribution to the total uncertainties. The Muon g − 2 Theory Initiative recommended[22] value
for the standard model is also shown.

The loop of the Feynman diagram in Fig. 2.8 contributes to the muon magnetic moment. The

magnitude of the contribution is sensitive to the value of µ,M1,M2. The details are discussed in

Ref.[23, 24, 25]. Typically, χ̃0
1 and χ̃±1 must be light in order to generate a 4.2σ deviation , and the

result of scanning the pMSSM parameters [26][27] claim m(χ̃0
1) < 500 GeV as a typical value.
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Figure2.8 contribution of SUSY particle on muon magnetic moment.

2.4 Target scenario

In the region of ∆m(χ̃0
1, χ̃

0
2) < 10GeV, which is not excluded by the DM direct detection experi-

ment, a large region is excluded by some analysis with the Large Electron-Positron Collider (LEP)

and analysis in the LHC-ATLAS experiments. The LEP is a collider that finished the operation

in 2000. By combining the results of experiments on the LEP, the region in which m(χ̃±1 ) is less

than 92.4 GeV are excluded [8]. The LHC-ATLAS experiment is proton-proton collision experi-

ment. In the experiment, the disappearing track search[28] exclude the region where ∆m(χ̃0
1, χ̃

0
2)

(∆m(χ̃0
1, χ̃
±
0 )) is less than 0.4(0.8) GeV. Also, The region where ∆m(χ̃0

1, χ̃
0
2) is more than a few

GeV is exclude by the di-lepton search [9].
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Figure2.9 Exclusion limits at 95 % CL for higgsino pair production as a function of the
∆m(χ̃±1 , χ̃

0
1) and χ̃0

1 mass.
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The target of this thesis is to explore the region where ∆m(χ̃0
1, χ̃

0
2) is 1 GeV to 5 GeV, which has

not been explored since LEP, by using a channel in which χ̃0
2 decays into χ̃0

1 and two muons.
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3. LHC-ATLAS experiment

3.1 Large Hadron Collider

The Large Hadron Collider (LHC)[29], located near the Swiss-French border, is the world’s

largest hadron collider and is used to verify the Standard Model and study physics beyond the

Standard Model. The LHC had been designed to be center of mass energy of 14 TeV and a peak

luminosity of 1034cm−2s−1. The LHC operation in Run-2 has proceeded very well. It achieved

the center of mass energy of 13 TeV and a peak luminosity of 2.1434cm−2s−1, which is more than

double the design value.

The overview of the accelerator is shown in Fig.3.1. Four accelerators are provided to inject pro-

tons into LHC rings. First, Linear Accelerator 2 (Linac2) accelerates the protons to about 50 MeV

of kinetic energy. Second, They are accelerated to 1.4 GeV in the Proton Synchrotron Booster

(PSB). Third, They are accelerated to 25 GeV by the Proton Synchrotron (PS), and forth, proton

energy reaches 450 GeV at the Super Proton Synchrotron (SPS).Finally, protons are injected into

the LHC and accelerated to 6.5 TeV. In the LHC, 1232 superconducting dipole magnets are used

to bend the direction of the protons in order to orbit them. Some of these dipole magnets provide

magnetic fields of up to 8.33 T to control the high energy protons.

A proton beam is composed of a series of bunches, which contains about 1011 protons. The

design value for the number of bunches per Large Hadron Collider (LHC) ring is 2808, and the

interval between bunches is 25ns. Therefore, the detectors at the interaction point detect bunch

crossing (BX) at 40 MHz. Figure 3.2 shows a histogram of the number of proton-proton collisions

in a BX. In Run 2, an average of 34.2 proton-proton collisions occurred in one BX.
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Figure3.1 Accelerator system at CERN[1]. The LINAC2, BOOSTER, PS, and the SPS are
used as the injector to the LHC.
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Figure3.2 Number of interactions per proton bunch crossing [1] . The yellow, orange, pur-
ple and green graphs are the distributions for 2015, 2016, 2017 and 2018, respectively. The
distribution for the entire period of 2015–2018 are shown with blue graph, with 33.7 average
number of interaction per proton bunch.
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3.2 ATLAS Detector

The ATLAS (A Toroidal LHC ApparatuS) detector[2] is the largest, general-purpose particle

detector at the Large Hadron Collider (LHC). It is a cylinder with a diameter of 25 meters, a

longitudinal length of 44 meters, and a total weight of 7,000 tons. Fig.3.3 shows overview of

the ATLAS detector. It is constructed with various sub-detectors, starting from the one closest

to the interaction point, internal detector, calorimeter, and muon spectrometer. In addition to

the detectors, there is a superconducting solenoid magnet between the internal detector and the

calorimeter, and a toroid magnet outside the calorimeter. This section briefly describes each of

the instruments and the magnet system.

Figure3.3 Cut-away view of the ATLAS detector. The dimensions of the detector are 25 m in
height and 44 m in length. The overall weight of the detector is approximately 7000 tonnes.[30]

Coordinate system in ATLAS

This section describes the coordinate system used in the ATLAS detector. Figure 3.4 shows the

axes. The z-axis is the same as the beam pipe, which passes through the center of the ATLAS

detector. The x-axis is defined to be perpendicular to the z-axis and pointing to the center of

the LHC beam ring. Also, the y-axis is defined to be perpendicular to the z-axis and pointing

to the zenith. Furthermore, radial direction is defined as R =
√

x2 + y2. the azimuthal angle in

the x-y plane is defined as ϕ and the zenithal angle from the z-axis as θ. Also, pseudorapidity is
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often used in hadron collision type experiments such as the ATLAS experiment. It is defined as

η = − ln tan(θ/2). The region of |η| ≤ 1.05, which corresponds to the tube part of the cylinder, is

called the barrel, and the region with |η| > 1.05 is called the end cap.

longitudinal

tra
ns
ve
rs
e

beam axis

Figure3.4 The ATLAS coordinate system. The origin of the coordinates are the center of the
interaction point, x-axis is taken to point to the center of the LHC ring, y-axis to point upwards,
and z-axis along the beam pipe.Pseudo-rapidity η = − ln tan(θ/2) is often used instead of θ.

3.2.1 Magnet System

Magnetic fields are provided inside the ATLAS detector by three system (Fig.3.5): a solenoid

magnet surrounding the collision point, a toroidal magnet in the barrel, a toroidal magnet in each

end cap. The solenoid magnet provides a 2T magnetic field along the z-axis for the Inner Detector.

Toroidal magnets、which are composed of eight-fold symmetrical coils, provide the magnetic field

in the ϕ direction. In order to avoid multiple scattering, the inside of the magnet has an empty

core. The barrel part provides a magnetic field of 0.5 T in the ϕ direction, and the end cap part

also provides a magnetic field of 1 T in the ϕ direction.
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Figure3.5 Layout of the superconducting magnet system in the ATLAS detector[2]. The
solenoid magnet is placed at the innermost part of the detector. The barrel and the end-cap
toroidal magnets are placed at the outer part of the detector.

3.2.2 Inner Detectors

The Inner Detector (ID) is located in the innermost layer of the ATLAS detector and consists

of three types of detectors from the inside: the Pixel detector (PIX), the Semiconductor tracker

(SCT), and the Transition Radiation Tracker (TRT). Additionally, Insertable B-Layer (IBL)[31]

was introduced between Run1 and Run2, at the innermost layer of the Pixel detectors. The overall

image, except for IBL, is shown in Fig.3.6, and the hierarchical structure of the barrel section

is shown in Figure 3.7. The purpose of these detectors is to precisely measure the trajectory of

charged particles and determine the positions of interaction points with high accuracy from the

reconstructed trajectories. There is a magnetic field of 2 T along the z-axis in the inner detector

provided by the superconducting solenoid magnet. As a result, the charged particle is bent in the

ϕ direction, and the transverse momentum can be measured by analyzing their trajectory.
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Figure3.6 A cut-away view of the inner detectors. The inner detectors consists of the Pixel
detectors,the semiconductor trackers, and the transition radiation trackers.[32]

Figure3.7 the ATLAS Inner Detector in the barrel region.[32]
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Pixel detector : PIX

PIX is located in the innermost layer of the ATLAS detector. It has a vital role in measuring

precise position measurement of the interaction point. It covers the region of |η| ≤ 2.5. The

barrel section has detectors arranged in a coaxial cylindrical shape, and the end cap section has

disc-shaped detectors arranged so that they are perpendicular to the z-axis. The total number of

channels is 80.4 million with a pixel size of 50 µm × 400 µm and a position resolution of 10 µm

in the R − ϕ plane and 115 µm in the z-axis direction. For IBL, channel size is 50 µm × 250 µm.

Semiconductor tracker : SCT

SCT is located outside of the pixel detector. It covers a region of |η| ≤ 2.5, and like the pixel

detector, the barrel has a coaxial cylindrical arrangement of detectors, while the end cap has disk-

shaped detectors arranged perpendicular to the z-axis. A high positional resolution is required to

measure the decay points of B-mesons and τ leptons. The strip size is 80 µm × 12.8 cm, and

They can be measured in the z-axis direction by tilting the two layers by 40 mrad to each other.

The positional resolution is 17 µm in the R − ϕ plane and 580 µm in the z-axis direction. 　　

Transition Radiation Tracker : TRT

TRT is located outside the silicon detector and covers the region of |η| ≤ 2.0. It is a detector

with a multi-layer of 4 mm diameter drift straw tube with carbon fiber. The drift-straw tube

detector is stacked 73 layers at the barrel and 160 layers at the end cap. The position resolution

in the R − ϕ plane is 130 µm. However, the detector is placed parallel to the z-axis, so it cannot

measure in the z-axis direction. It is also possible to identify particles using the principle of

transition radiation. Polypropylene fibers are inserted between the drift-straw tube detectors as a

transition radiation material, and photons are emitted when charged particles pass the material.

This phenomenon is called transition radiation, and the energy spectrum of the emitted photon

can be used to distinguish whether the passed particle is an electron or a hadron.

3.2.3 Calorimeters

The calorimeter is located outside the inner trackers. It is used to identify photons, electrons,

and jets and to measure their energies and positions. The overall image is shown in Fig.3.8 The

calorimeters can be divided into electromagnetic calorimeter and hadron calorimeter, and their

structures are described below. 　　
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Figure3.8 The layout of the ATLAS calorimeter system[33]. The LAr electromagnetic
calorimeters are installed inside the hadronic calorimeters. The electromagnetic calorimeters
are subdivided into barrel and end-cap components. The hadronic calorimeters are subdivided
into tile, end-cap, and forward.

　　

Electromagnetic calorimeter

Electromagnetic calorimeter identifies electrons and photons and precisely measures their en-

ergies. The absorption layer is made of lead, and the detection layer is made of liquid argon

(LAr).The detector is divided into a |η| ≤ 1.5 barrel section and a 1.5 ≤ |η| ≤ 3.2 end cap section.

The accordion-like structure eliminates the insensitive region and reduces in-uniformities in the ϕ

direction. The designed energy resolution is

σE = 10%
√

E ⊕ 17%E ⊕ 0.7% (3.1)

for the measured energy of E [GeV].

Hadron calorimeter

Hadron calorimeter is used to reconstruct the jet and measure the jet’s energy and direction,

along with the electromagnetic calorimeter. In the barrel part( |η| ≤ 1.6 ), iron is used for the

absorption layer, and a tiled scintillator is used for the detection layer. The endcap section( 1.6 ≤
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| ≤ 3.2 ) contains a LAr Hadronic Endcap Calorimeter(HEC), which constrains liquid argon (LAr)

as the detection layer and copper as the absorption layer. In the high radiation intensity region of

3.2 ≤ |η| ≤ 4.9, a liquid argon forward calorimeter(FCal) are used for electrons, photons, and

hadrons. For the detector, tungsten is installed in addition to copper as the absorption layer. 　　

3.2.4 Muon spectrometers

The muon spectrometer (Fig.3.9), located at the outermost part of ATLAS, is a detector for

measuring the momentum of muons from their trajectory. A muon is a charged lepton with a long

lifetime of 2.2 µm In addition, because of their high penetrating power through matter, muons and

neutrinos are the only particles that can reach the muon spectrometer from the interaction point.

However, since neutrinos are not charged particles, most of them don’t leave a signal. Therefore,

the signal on the muon spectrometer is originated from muon. 　

Figure3.9 The cut-away view of the muon spectrometer system[34], composed of four types
of detectors, the Monitored Drift Tubes (MDT), the Cathode Strip Chambers (CSC), the Resis-
tive Plate Chambers (RPC), and the Thin Gap Chambers (TGC).

Monitored Drift Tube : MDT

The MDT is a type of gas detector of a drift tube with a diameter of 30 mm and a wire diameter

of 50 µm. It is filled with a three bar mixture of argon and carbon dioxide. A voltage of about

3080 V is applied between the anode and cathode. When a charged particle passes through the
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anode, the gas is ionized, and electrons drift to the anode wire. The position of the passing particle

can be measured by the drift time. The position resolution of a single drift tube detector is about

80 µm and a resolution of 35 µm can be achieved. It is mainly used for precise measurements of

Z coordinate in the barrel and R coordinate in the end cap.

Cathode Strip Chamber : CSC

As well as the MDT, this detector is designed to measure muon trajectory precisely. It is in-

stalled in the high radiation intensity region of 2.0 ≤ |η| ≤ 2.7. The upper limit of the readout

frequency for MDT is 150 Hz/cm2, but for CSC, it is 1000 Hz/cm2. The anode wires and the cath-

ode strips are arranged orthogonally, allowing two-dimensional measurements. The wire spacing

is 2.5 mm, and the strip spacing is 5.3 mm or 5.6 mm. The position resolution becomes 60 µm

using induced charge on the strips.

Resistive Plate Chamber : RPC

The RPC is a gaseous parallel electrode-plate detector covering the barrel section of |η| ≤ 1.05.

It is mainly used for triggering. The RPC is a type of gas detector, and a mixture of C2H2F4,

iso − C4H10, and SF6 gas is sealed inside. A electric field of about 4.9 kV/mm is applied between

the plates, and when a charged particle passes between them, the gas molecules are ionized. The

electrons are attracted to the anode, causing an electron avalanche in the process. Strips are

installed behind the plate at intervals of 30 mm. The electron avalanche induces a charge on the

strips and readout it as a signal.

Thin Gap Chamber : TGC

The TGC is a type of MWPC (Multi Wire Proportional Chamber) covering 1.05 ≤ |η| ≤ 2.42.

It is mainly used as a trigger detector. The TGC is filled with a mixture of CO2 and n-pentane.

The anode wire is installed so that it is parallel to the top and bottom of the trapezoidal-shaped

TGC. The cathode surface is made of a glass epoxy plate. A copper strip divided TGC plane into

32 sections is installed on the backside of this cathode surface to intersect the anode wire.

3.3 Trigger and data acquisition systems

In the ATLAS experiment, a two-step triggering system consisting of a level 1 trigger and a

high-level trigger is used. Figure 3.10 shows the trigger process. In this section, the two steps are

briefly described.
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Level-1 trigger

The level-1 trigger is done in hardware within 2.5 µs. Therefore, only the detectors with fast

readout are used ( calorimeter, TGC, and RPC). The level-1 trigger selects events with 100kH

frequency against 40 MHz of the bunch crossing frequency. Energy thresholds are set for objects

such as Emiss
T , e/γ, µ and Jet. When a signal exceeds the trigger threshold, the information is sent

to the Central Trigger Processor(CTP) as the Region of Interest(RoI). Finally, a Level 1 Accept

(L1A) is issued for an event that satisfies the trigger criteria, and the RoI information for the event

is sent to the High Level Trigger. 　　

High level trigger

In the High-level triggering, the events with L1A are analyzed in more detail by software to

narrow down the number of saved events to 1 kHz. High-level triggers are analyzed based on the

RoI information received from Level 1 triggers and using highly accurate detectors such as MDT,

CSC, and ID. First, only the signal of detectors near the RoI is read out to enable calculations

quickly, and the first trigger decision is made. After the first step, the information from all de-

tectors is combined to identify the particles and reconstruct the trajectory. It is almost the same

performance as the offline analysis, and the final trigger decision is made. The decision to save

the event is made approximately 1 s after the bunch crossing of the event.
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Figure3.10 A schematic diagram of the ATLAS trigger and data acquisition system in Run2[3].
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4. Data and Monte-calro sample

In this section, the proton-proton collision data observed with the LHC-ATLAS experiment and

simulated with the Monte Carlo method [35] used in this thesis are discussed. The MC simulation

samples are used to understand the feature of the events that originated SM and SUSY.　

4.1 Run2 data

The LHC provided 156 fb−1 of pp collision data with
√

s = 13TeV during Run 2 in 215-2018.

The ATLAS detector acquired 139 fb−1 of these pp collisions as data that can be used for physics

analysis. As shown in Fig.3.2, about 33.7 collisions were observed per bunch crossing, and the

discovery of neutralino using this data is aimed in this thesis.

4.2 Monte Carlo Simulation

In order to understand the characteristics of the events with neutralino and event of back-

ground(originated SM), MC simulation samples are generated. This simulation is divided into

the following three processes.

• Hard scatter event generation

• pileup simulation

• detector simulation

Hard scatter event generation

　 First, how the pp collision generates particles is simulated. Protons have an internal struc-

ture, which is described as a Parton Distribution Function (PDF) (Figure 4.1). 　　
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Figure4.1 The NNPDF3.1 NNLO PDFs[4]

　　 The differential cross section at the parton level is described by the matrix elementMab→n.

Here,Mab→n is described by the sum of all Feynman diagrams of the transition process of particles

a and b to n (ab → n). The gluons and color-charged particles emitted from the pp collision

emit further gluons and quarks by the strong interaction. This continuous emission is referred

to as "parton showering". Finally, all the color-charged particles are changed into color-neutral

hadrons. This process is called hadronization. 　 In this study, the W+jet sample and tt̄ sample

were used to understand the background. In the W + jet sample, NNPDF 3.0NNLO[36] is used

as PDF and SHERPA2.2.1[37] is used to calculate the matrix element and parton showering. In the

tt̄ sample, NNPDF 2.3 LO[38] is used as the PDF and POWHEG − Box[39] and PYTHIA8.230[40]

are used to calculate the matrix element and parton showering, respectively.

Pileup simulation

As shown in Fig.3.2, multiple pp collisions occur in a single bunch crossing, and pile-up simu-

lation simulates these effects. Moreover, this process considers not only pp collisions in the same

bunch crossing but also neighboring bunch crossings.
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Detector simulation

The response of the detector when a particle passes through the detector is simulated us-

ing the ATLAS simulation framework[41]. The simulation uses GEANT4 (GEometry And

Tracking)[42], a widely used radiation simulation tool in high energy physics research.

4.3 Signal MC

In this Higgsino like LSP search, pp → χ̃0
2χ̃
±
1 and pp → χ̃0

2χ̃
0
1 samples are used. As a typical

mass spectrum for the Higgsino like LSP scenario is m(χ̃±1 ) = 1
2 [m(χ̃0

1)+m(χ̃0
2)). This sample was

simulated using MG5_aMC@NLO 2.6.1[43] to simulate the hard scatter event and MADSPIN[44]

to simulate the neutralinos and chargeino decay. The neutralinos and chargeino’s decays are

simulated using MADSPIN[44] . Also, PYTHIA8.212[40] is used to calculate the parton showering.
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5. Object reconstruction

This chapter describes the object reconstruction and identification methods used in this study

and the calibration method. The Low pT calo tag muon, an object using the newly developed

identification method, is discussed in the next chapter.

5.1 Track

The charged track is reconstructed as track using the signals from the pixel and silicon detectors.

When the charged track passes through the pixel and silicon detectors, it loses energy and fires

multiple channels. First, the signals of these channels are clustering using connected component

analysis[45]. Three-dimensional space points are created from these clusters, and track seeds are

reconstructed roughly using them. Next, based on the seeded tracks, the tracks are selected using

Kalman filter[46].

A track candidate may have the same overlapping cluster with another track. It means the

cluster is incorrectly assigned. In order to handle this overlapping correctly, the score of the

track is calculated. The score is computed by the value of the cluster, hole, χ2 of the track fit

corresponding to the track. This score is used to reject the track or redistribute the clusters.

Then, a high-resolution fit is performed based on the reassigned cluster information. Also, the

reconstructed tracks are extrapolated to the TRT to improve the pT resolution further. ( The

details can be found in Ref.[47].)

Track variables

The reconstructed track is described by the following five helix parameters;

P = (d0, z0, ϕ0, cotθ,Q/p) (5.1)

where, the d0 and z0 are the transverse impact parameter and the longitudinal impact parameter,

respectively. The latter represents the distance from an arb point on the z-axis (beam pipe). Also,

ϕ0 and θ are the azimuthal and polar angles, respectively. The Q is the charge of the particle, and

p is the momentum. The each parameters are depicted in Figure 5.1.
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Figure5.1 Overview of a trajectory by a single charged particle, the three-dimensional
view(left), xy-plane projected trajectory(center), Rz-plane projected trajectory(right).

5.1.1 Primary vertex

Based on the reconstructed tracks, the vertex is reconstructed using the vertex finding

algorithm[48]. Each vertex is reconstructed with at least two tracks. Among the reconstructed

vertexes, the vertex with the largest sum of pT is referred to as Primary Vertex(PV), where a hard

scattering occurred in pp collision

5.2 Jet

The quarks and gluons are converted into multiple hadron particles. In the ATLAS detector,

this phenomenon is observed as a set of multiple tracks and topological clusters[49]. Topological

cluster is an object reconstructed by merging energy deposits in each calorimeter cell. The object

reconstructed from tracks and topo cluster is called a jet. In this section, the jet reconstruction

method is summarized.

5.2.1 PFlow jet algorithm

The information from the topo cluster and tracks is used for the reconstruction and energy

measurement of the jet. Typical energy and momentum resolutions for topo cluster and track are

shown in eq.(5.2) and eq.(5.3), respectively.

σ(E)
E
=

50%
√

E
⊕ 3.4% ⊕ 1%

E
(5.2)

σ(
1
pT

)pT = 0.036%・pT ⊕ 1.3% (5.3)

Typically, in higher energy, the topo cluster has better energy resolution, while in the low energy,
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pT resolution of the track is better.

The PFlow jet algorithm[50] is used to subtract track energy from energy in the topo cluster to

avoid a double count. The algorithm can be divided into four steps: track-topo cluster matching,

split shower recovery, cell subtraction, and remnant removal. A schematic diagram is shown in

Figure 5.2.

Track-Topo cluster matching

The first step is matching between the charged track and the topo cluster. The following equa-

tion is used.

∆R =

√(
∆ϕ

σϕ

)2

+

(
∆η

ση

)2

(5.4)

Where ∆ϕ and ∆η are the distance between the track and the center of the topo cluster, and

σϕ and ση are the width of the cluster. The topo cluster with the smallest ∆R is the topo cluster

matched to the track.

Split shower recovery

A single particle-derived cluster may split into multiple clusters (the black and blue dotted

lines in the second line of Figure 5.2). This process merges these split clusters into one. Since

there is a correlation between track pT and the energy of the topo cluster, the nominal deposited

energy < Ere f
dep > for track pT is obtained. The reference deposited energy is given from the MC

simulation. the clusters merged to be consistent with the < Ere f
dep >.

Cell subtraction

In this process, the energy of the cluster is subtracted. The subtraction of cells starts with the

cell with the highest energy and then subtracts the energies of the cells closest to the cell. This

process is repeated until the sum of subtracted energy reaches < Ere f
dep >.

Remnant removal

If a cell remains after the cell subtraction, the cell should originate neutral hadron or shower

fluctuation. If the remaining energy is larger than 1.5σ compared to the Edep/ptrack
T distribution

obtained from MC simulation, the cell remains as neutral-origin, and if it is smaller than 1.5σ, the
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cells are removed.

5.2.2 Jet reconstruction

After the energy subtraction, For jet reconstruction, the anti-kT algorithm[51] is used, and The

positive energy topo-clusters surviving the energy subtraction step and the selected tracks are used

as inputs. In the algorithm, a distance is defined by the following equation.

di j = min(p−2
Ti , p−2

T j)
∆R2

i j

r2 (5.5)

∆Ri j =

√
(ηi − η j)2 + (ϕi − ϕ j)2 (5.6)

Here, r is the parameter that determines the size of the jet, and r=0.4 is used in this thesis. To

merge the objects, di j is calculate for all objects, and if the smallest di j is smaller than p2
T , object

i and j are merged into one. This process continues until p2
T < anydi j. After the process, The

merged objects is called jet.

5.2.3 Jet calibration

The jet energy scale calibration[52] restores the jet energy to that of jets reconstructed at the

particle level. The full chain of corrections is illustrated in Figure 5.3. In every stage, the four-

momentum, scaling the jet pT ,energy, and mass are recalculated according to each correction.

Pile-up corrections

In this process, the excess energy due to additional proton–proton interactions within the same

or nearby bunch crossings is removed. These corrections consist of two components: a correction

based on the jet area and transverse momentum density of the event, and a residual correction

derived from MC simulation and parameterized as a function of the mean number of interactions

per bunch crossing (µ) and the number of reconstructed primary vertices in the event (N_PV).

Absolute JES calibration corrects

This process correct the jet so that it agrees in energy and direction with truth jets from dij-et

MC events.
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Figure5.2 Idealised examples of how the algorithm is designed to deal with several different
cases. The red cells are those which have energy from the π+, the green cells energy from the
photons from the π0 decay, the dotted lines represent the original topo cluster boundaries with
those outlined in blue having been matched by the algorithm to the π+, while those in black are
yet to be selected. The different layers in the electromagnetic calorimeter (Presampler, EMB1,
EMB2, EMB3) are indicated. In this sketch only the first two layers of the Tile calorimeter are
shown (TileBar0 and TileBar1).
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Global sequential calibration

This process (derived from dijet MC events) improves the jet pT resolution and associated

uncertainties by removing the dependence of the reconstructed jet response on observables con-

structed using information from the tracking, calorimeter, and muon chamber detector systems.

Residual in situ calibration

This process is applied to data only to correct for remaining differences between data and MC

simulation. It is derived using well-measured reference objects, including photons, Z bosons,

and calibrated jets, and for the first time benefits from a low-pT measurement using the Emiss
T

projection fraction method for better pile-up robustness.
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Figure5.3 Over view of the jet calibration[52]

5.2.4 Flavor tagging

Among the jets, the jet of b-hadron can be distinguished from other jets because the b-hadron

has a longer lifetime of cτ ≃ 500µm. As a result, the impact parameters of tracks of the jet, such

as do and z0, become larger, and the secondary vertex, which is farther away from the primary

vertex, is reconstructed. Also, the decay of the b-hadron can be identified by finding the chain that

contains the third vertex since the decay chain of the b-hadron→ c-hadron→ light-hadron create

three vertexes. [53] Several b-tagging algorithms have been proposed to take advantage of the

above features. As Impact parameter base algorithms, IP3D and RNNIP tagger are used. Also,

SV1 as a secondary vertex finding algorithm is used. Furthermore, JetFitter is used as a decay
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chain multi-vertex algorithm.

The variables obtained from these algorithms are finally used as input for Deep Neural Network

(DNN), which is a kind of machine learning, and the output of this DNN is a score from 0 to 1,

representing the jet is the b-jet like or not. This algorithm is referred to as DL1r. This study used

a working point of 85% b-jet tagging efficiency[54].

5.3 Muon

This section discusses the reconstruction, identification, and isolation of muon candidates. (The

detail can be found in Ref.[55]). First, muon candidates can be reconstructed with high efficiency.

Next, the identification algorithm suppresses muons from hadron decay-in-flight. In addition,

muons originated semi-leptonic decay of heavy hadrons are suppressed by requiring isolation.

The details of each step are shown below.

5.3.1 Reconstruction

The muon is reconstructed by four type of methods. Figure 5.4 shows the schematic drawing

of the methods.

Combined muons

When a track reconstructed by the inner detector matches a track reconstructed by muon spec-

trometer, one combined muon is reconstructed by global fitting.

Segment-tagged muons

Segment-tagged muon is an object reconstructed with an inner detector track and a track seg-

ment of muon spectrometer. A track segment muon is an object that is reconstructed using the

information of a part of layers of the MDT or CSC, which is a looser criterion than one for the

muon spectrometer used for the combined muon.

Calorimeter-tagged muons

An inner detector track is identified as a calorimeter-tagged muon if its energy deposit in the

calorimeter is compatible with the one of minimum ionizing particle. It is used to recover effi-

ciencies at the |η| < 0.1 region, where the coverage by the muon spectrometers is limited. Also,
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inner detector track with pT > 15 GeV is used for the calorimeter-tagged muons reconstruction.

Standalone muons

The muon spectrometer tracks which are extrapolated to the interaction point are reconstructed

as standalone muons. The standalone muons are used to recover acceptance in the 2.5 < |eta| <

2.7 region, where the inner detectors don’t cover.

　

Muon identification and performance in the ATLAS experiment Sébastien Rettie

1. Introduction

Muon reconstruction and identification performance is extremely important in ATLAS both
for precision measurements and new physics searches. This note describes the performance of the
ATLAS detector [1] at the LHC [2] with respect to muon identification and reconstruction, and
outlines the muon reconstruction and isolation efficiencies. The dependence on pileup of various
efficiencies is assessed, and the corrections applied to simulation are described. Most of the results
presented are based on the work described in [3].

2. Muon Reconstruction & Identification

A full description of the ATLAS detector can be found in [1]. When a muon candidate is
reconstructed, a set of five parameters is obtained from the track fit: M = (d0,z0,f ,q ,q/p). A
muon traversing the ATLAS detector initially passes through the Inner Detector (ID) and bends in
the f direction due to a 2 T solenoid magnetic field. The ID track has very precise hits close to
the Interaction Point (IP), which helps to constrain the impact parameters d0 and z0, as well as the
angles f and q . After passing through the electromagnetic and hadronic calorimeters, the muon
enters the Muon Spectrometer (MS) and bends along the q direction due to a toroidal magnetic
field. The MS track has better q/p resolution due to its longer lever arm. There are four muon
reconstruction algorithms available within the ATLAS detector:

• Combined (CB) muons are obtained by performing a global refit of the ID and MS tracks

• Segment-tagged (ST) muons consist of a fitted ID track and a MS segment

• Calorimeter-tagged (CT) muons consist of a fitted ID track and an energy deposit in the
calorimeters

• Extrapolated (ME) muons consist of only a MS track

Figure 1 summarizes the four reconstruction algorithms described above.

Figure 1: Reconstruction algorithms available in the ATLAS detector.

1

Figure5.4 Schematic drawing of the muon reconstruction methods[56].

5.3.2 Identification

The identification algorithm suppresses muons originated the light hadron decay. Frequently,

the decayed muon and th parent charged hadron is reconstructed as a combined muon track. In

such a case, muons are characterized by the presence of a distinctive "kink" topology in the re-

constructed track. Therefore, the fit quality of the tracks results can be used as the discriminate

variable. By using fit quality, five muon identification working points have been defined: Loose,

Medium, Tight, LowPt, and HighPt.

Here, LowPt is a WP targeting low pT region(3 to 10 GeV). For low pT muon, the deposited

energy at the calorimeter should be taken into account when comparing the momentums since the

muon momentum and the deposited energy at the calorimeter are equivalent. Also, fake tracks
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and tracks originated in-flight hadron decays can be suppressed by evaluating the smoothness

of inner detector tracks. The performance of LowPt WP is shown in Fig5.5. In the search for

Electrowikino with compressed mass spectra, low pT muon is dominant. Therefore, LowPt WP

is used.
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Figure5.5 Muon reconstruction efficiencies for the LowPt WP measured using J/ψ → µµ

events as a function of the muon η and for different pT ranges, up to 10 GeV[55].

5.3.3 Isolation

This analysis requires track base isolation given by eq.5.7.

pvarcone30
T /pµT < 0.06 (5.7)

Here, pµT is the transverse momentum of the muon and pvarcone30
T is the sum of pT of all tracks

within ∆R defined by the following equation.

∆R = min(10GeV/pµT , 0.3) (5.8)

This working point is called TightTrackOnly and has an efficiency of 80% for prompt muons

with pT of 3 to 5 GeV[55].
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5.3.4 Calibration

To correct the difference in the LowPt identification efficiency between data and MC, each

efficiency is calculated using the tag and probe method with J/ψ− > µµ events. The data/MC

ratios are shown in the lower part of Fig5.5. a few % of miss-modeling is observed, and this

miss-modeling is corrected by applying a pT-dependent scale factor to the MC events.

5.4 Electron

This section briefly discusses the reconstruction, identification, and isolation of electrons[57].

First, the electron candidates are selected by reconstruction. However, many of them are from

backgrounds (from jets and photons), and then an identification algorithm needs to reject them.

In addition, electrons from the semi-leptonic decay of hadron can be distinguished by requiring

isolation from other objects. The details of each step are discussed below.

5.4.1 Reconstruction

Trajectory of an electron can be observed by the inner detectors. Also, an electron causes an

electromagnetic shower in the electromagnetic calorimeter. Therefore, an electron is reconstructed

by position matching between track and topo-cluster. After that, the direction and pT of the

matched track is corrected by using taking which takes into account the effect of bremsstrahlung.

5.4.2 Identification

The Identification step rejects background such as photons, hadrons in light flavored jets, and

non-prompt electrons from semi-leptonic decay of heavy hadrons. The Identification algorithm

is based on likelihood and uses 14 variables, including the shape and depth of the topo-cluster,

the quality and impact parameters of the track, and the TRT information. Probability density

functions (PDF) derived from J/psi → ee and Z → ee MC samples are used in the likelihood.

The working point of likelihood threshold is defined as a function of MET and eta since. The

ATLAS experiment defines four working points as VeryLoose, Loose, Medium, and Tight. Fig5.6

shows the efficiency at the Loose, Medium, and Tight working points measured using Z → ee

events.
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Figure5.6 Electron identification efficiency as a function of ET (left) and η (right) for Loose,
Medium and Tight working points[57].

5.4.3 Isolation

Isolation applied the same track base criteria as muon (see section 5.3.3 for details).

5.5 Missing Transverse Energy

Since the LHC has zero initial transverse momentum, the conservation of transverse momentum

is useful to find signture from neutrino and neutralino. neutrino and neutralino can be mesured

directry but the vector sum of these particle’s pT s can be estimated from this conservation. The

missing transverse momentum (Emiss
T ) is defined the below[58].

Emiss
T = −(ΣE jet

T + ΣEµ
T + ΣEe

T + ΣEγ
T + ΣE so f tterm

T ) (5.9)

where E jet
T , Eµ

T , Ee
T , Eγ

T , E so f tterm
T are the transverse momentum of jet, electron, photon and muon.

The soft term (E so f tterm
T ) is calculated from tracks in the inner detector. By considering soft term,

the pileup contamination of Emiss
T can be minimized and thus the resolution become robust to the

number of primary vertex.

In addition, Track Emiss
T is defined based on the momenta of tracks, a measure which is largely

independent of the pile-up, but insensitive to neutral particles and has an acceptance limited by

the tracking volume of the inner detector.
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5.6 Overlap removal

The jet, electron, and muon are reconstructed independently. Therefore, a single particle may

be reconstructed as multiple objects. Overlap removal is a process to resolve these ambiguities.

The steps are summarized below.

• Muon-Electron overlap

If the track is shared, remove the electron.

This will reject electron from the bremsstrahlung.

• Lepton-Non b-tagged jet overlap

For electron, if ∆R jet,electron < 0.2, jets are removed.

For muon, if Jets with fewer than three tracks and ∆R jet,muon < 0.4, jets are removed.

• Jet-Lepton overlap

If ∆R jet,lepton < 0.4, leptons are removed.

This will reject the lepton from the b- and c-hadron decay.
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6. Low pT Muon Identification

This chapter describes a newly developed algorithm dedicated to low-momentum muon iden-

tification.The standard muon identification method in the ATLAS experiment is inefficient for

muons with pT below 3 GeV. The red box in Figure 6.1 shows the efficiency which combined

reconstruction, identification, isolation, and vertex association efficiency. The reason is that low

pT muons stop inside calorimeter and cannot reach the muon spectrometer.

Several other methods have been proposed for muon identification, and the schematic diagram

is shown in Figure 6.2. The standard muon identification method uses Combined Muon, which is

a track reconstructed by both the inner detector and the muon spectrometer. On the other hand,

the Standalone Muon uses the tracks reconstructed by only the muon spectrometer. Also, the

Segment-tagger Muon is a combined track of the tracks reconstructed by inner detector and a

part of muon spectrometer. In addition, another algorithm named Calo-Tagged Muon doesn’t use

muon spectrometer bu uses inner detector and calorimeter. The black box in Figure 6.1 shows

the efficiency when all the algorithms are used except for the Combined Muon. Improvement of

the efficiency below 3 GeV can be seen, but still low efficiency below 2 GeV. This is because the

Calo-Tagged Muon is developed to cover the muon spectrometer hole, and is basically applied to

the High pT muon. Thus, it cannot recover the efficiency of the low pT muon.

In this study, We’ve developed a new algorithm to identify low-momentum muons using only

inner detector and calorimeter to improve the efficiency. In addition, deep neural network, a kind

of machine learning, is used to maximize performance.
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Figure6.1 Efficiencies, which combined reconstruction, identification, isolation, and vertex
association efficiency. The red box represents the efficiency for muon and its uncertainty. The
black box is the efficiency using several not standard identification algorithms for lepton.

Muon identification and performance in the ATLAS experiment Sébastien Rettie

1. Introduction

Muon reconstruction and identification performance is extremely important in ATLAS both
for precision measurements and new physics searches. This note describes the performance of the
ATLAS detector [1] at the LHC [2] with respect to muon identification and reconstruction, and
outlines the muon reconstruction and isolation efficiencies. The dependence on pileup of various
efficiencies is assessed, and the corrections applied to simulation are described. Most of the results
presented are based on the work described in [3].

2. Muon Reconstruction & Identification

A full description of the ATLAS detector can be found in [1]. When a muon candidate is
reconstructed, a set of five parameters is obtained from the track fit: M = (d0,z0,f ,q ,q/p). A
muon traversing the ATLAS detector initially passes through the Inner Detector (ID) and bends in
the f direction due to a 2 T solenoid magnetic field. The ID track has very precise hits close to
the Interaction Point (IP), which helps to constrain the impact parameters d0 and z0, as well as the
angles f and q . After passing through the electromagnetic and hadronic calorimeters, the muon
enters the Muon Spectrometer (MS) and bends along the q direction due to a toroidal magnetic
field. The MS track has better q/p resolution due to its longer lever arm. There are four muon
reconstruction algorithms available within the ATLAS detector:

• Combined (CB) muons are obtained by performing a global refit of the ID and MS tracks

• Segment-tagged (ST) muons consist of a fitted ID track and a MS segment

• Calorimeter-tagged (CT) muons consist of a fitted ID track and an energy deposit in the
calorimeters

• Extrapolated (ME) muons consist of only a MS track

Figure 1 summarizes the four reconstruction algorithms described above.

Figure 1: Reconstruction algorithms available in the ATLAS detector.

1

Figure6.2 Identification algorithms available in the ATLAS experiment[55][59]

6.1 Low pT calo tag muon Algorithm

This section describes the details of newly developed method named as Low pT Calo Tag muon

algorithm (hereafter referred to as LCaT muon algorithm). This algorithm is used to distinguish

muons from other particles in low pT region. Other particles refer to hadrons and fake tracks,

where the fake track is a misidentified track which is accidentally reconstructed from hit points of

multiple particles.

The basic idea of LCaT muon algorithm is to use the difference of deposit energy in the

calorimeter between muons and hadrons. Muons leave small energies like minimum ionization

particles (MIP) in the calorimeter. On the other hand, hadronic particles such as pions produce
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second particles in a cascade due to strong interactions, and therefore give energy clusters with

larger than MIP (Figure 6.3). These energy clusters are reconstructed as topological clusters

[49](hereafter referred to as calo cluster). The deposited energy in each layer can be larger than

MIP for hadrons, while it is almost same as MIP for muons (Figure 6.4).

Inner Detector
electromagnetic
calorimeter

hadron
calorimeter

muon
spectrometer

muon

charged hadron
( π±, K± )

energy cluster

Figure6.3 Diagram of the particle behavior in the detectors. The white line represents a
trajectory of a particle. The muon rarely emit particles in the calorimeter and deposits about
the energy of MIP in each layer. On the other hand, hadron particles deposits large energy due
to emission of many particles.
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Figure6.4 Deposit energy distributions of muon and pion in the first layer of the Tile barrel.
Muon has a peak around 0.5 GeV (MIP), while the deposit energy of pion is mostly distributed
above MIP.



60 Chapter 6 Low pT Muon Identification

Muon calo cluster efficiency

First, we discuss the calo cluster efficiency. The calo cluster efficiency is the efficiency for that

muon energy cluster are reconstructed as calo cluster. Figure 6.5 shows the pT dependence and η

dependence of the efficiency. The efficiency decreases in the region where pT is less than 1 GeV.

For |η|, the efficiency is almost zero in the region outside of the Tile cal including extended barrel

(see 3.2.3). The noise to be considered in the calorimetry is the electronics-derived noise and the

pileup-derived noise [49]. Pileup-derived noise increases as closer to the beam pipe and increases

one order larger than in the small eta region. Thus, pileup-derived noise is so high in FCal (|η|>1.6)

that efficiency decreases so much. For this reason, the LCaT muon algorithm targets muons with

pT higher than 0.5 GeV and |η| smaller than 1.6.
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Figure6.5 pT and η dependence of the muon calo cluster efficiency in single muon MC. (a)
pT dependence: the efficiency is decreasing since the energy of muon is not enough to produce
the calo cluster (b) η dependence: the efficiency is high enough in small |η| region. In the high
|η| region, loose efficiency can be found since tight criteria to produce the calo cluster.

Track and calo cluster position matching

Since multiple calo clusters are reconstructed in an event, position matching is necessary to nar-

row down the calo clusters generated by a certain track. In order to request the position matching

between track and calo cluster, ∆η and ∆ϕ, which are defined as equation 6.1 and 6.2, respectively,

are used

∆η = ηtrack_at_IP − ηcalo_cluster (6.1)
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∆ϕ = |ϕtrack_at_IP − ϕcalo_cluster | (6.2)

Fig 6.6 shows distribution of cos∆ϕ and ∆η. The matching requests that cos∆ϕ should be

larger than 0.6 and |∆η| should be smaller than 0.15. In addition, to examine position matching in

ϕ direction, it is necessary to extrapolate the track in the inner detector to the calorimeter surface

by taking the solenoid magnetic field into account. The extrapolation equation considering the

track charge and pT is also used below.

sin∆ϕ = (−1)charge × A/pT (6.3)

,where A is a constant value that depends on the strength of the magnetic field and the radius of

the detector. Fig 6.6(c) shows distribution of sin∆ϕ vs 1/pT in single muon MC. From this result,

A is set to 0.5.
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Figure6.6 Distribution of variables used position matching in single muon MC. (a) ∆η (b)
cos∆ϕ (c) sin∆ϕ vs pT : entries are separated into two clusters. The upper cluster consists of
negative charge muon. The lower cluster consists of positive charge muon.

Position matching criteria are summarized in Table 6.1. Only the calo clusters that satisfy the

position matching are used in the LCaT muon algorithm.

Table6.1 Summary of position matching criteria.

variable range

sin∆ϕ − (−1)charge × 0.5/pT
positive charge [-0.15,0.25]

negative charge [-0.25,0.15]

cos∆ϕ > 0.6

|∆η| < 0.15
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Deep Neural Network

To discriminate muons from other particles as efficiently as possible, we use a Deep Neural

Network (DNN), which is a machine learning algorithm that learns how to discriminate signals

and backgrounds from a large amount of signal and background data. The design of the DNN

is shown in Figure 6.7 and the detailed role of each layer is described in ??.Hereafter, refer to

this DNN as the LCaT DNN. The track η, pT , and the deposit energy in each layer of the calo

cluster are used as inputs for LCaT DNN. In this study, LCaT DNN is trained using muons as the

signal and other particles as the background in J/ψ MC. Speaking precisely, the muon from the

J/ψ decay is used as the signal, and tracks that is far enough away from the muon is used as the

background.
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)

Bach Norm
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Dense ( 1 , sigm
oid )

Inputs( track &
 calo cluster )

LCaT
DN
N
Score

LCaT DNN

*Dense ( Number of unit , activation function )

Figure6.7 Design of LCaT DNN. Inputs are track pT and eta and deposit energy in each
calorimeter layer. Seven dense layers and six bach normalization layers are used.The last layer
is a dense layer with a sigmoid activation function.The output is from 0 to 1.

LCaT DNN learns how to discriminate between muons and other particles based on the distri-

bution and correlation of these variables. The output is a continuous value from 0 to 1, which is

refer to as the LCaT DNN score. The score close to 1 means it is more likely to be muon.

In this study, we use a training method called supervised learning, which teaches which data is

signal and which data is background while learning how to discriminate them. However, there is a

problem with the information of the calo cluster. By using the truth information of the simulation,

it is possible to identify whether the track is from muon or background with high accuracy. On

the other hand, it is difficult to identify which particle generates a certain calo cluster. As shown

in Fig.6.8, multiple candidates remain for one muon even if the position matching is required.

However, only one of them is generated by the muon, and the others are calo clusters generated

by hadronic particles. Therefore, if all matched clusters are used as ’signal’ in learning, the calo

cluster generated by the hadronic particles may be taught as the muon-generated calo cluster. As
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a result, incorrect information is taught. It results in unstable learning and low discrimination

performance.
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Figure6.8 The number of calo clusters, which satisfied the position matching, in Jψ MC.
Most muons produce one calo cluster. However, muon tracks in Jψ MC satisfy position match-
ing with many calo clusters since there are hadron-generated calo clusters near the muon track.

A training method named "Supervised training with Self Selected Input data (SSSI)" has been

developed to solve this problem. Figure 6.9 shows design of the network used in SSSI.

LCaT DNNinput 01
(track & calo cluster01)

LCaT DNNinput 02
(track & calo cluster02)

LCaT DNNinput 03
(track & calo cluster03)

LCaT DNNinput 10
(track & calo cluster10)

……

M
ax Pooling layer

Maximum LCaT DNN Score

Figure6.9 Design of DNN for SSSI. LCaT DNNs are connected via MaxPooling. The same
track information and different calo cluster information are input to each LCaT DNNs.

The outputs of LCaT DNNs (Figure 6.7) are connected in parallel as inputs to MaxPooling.

MaxPooling is a layer that selects the cluster with highest score from all inputs. Training is

performed using only the information selected by MaxPooling. This design is very similar to

CNN, one of deep learning used for image recognition. For example, CNN can identify whether

a cat is in a photo with high accuracy. In the training of CNN, the supervisor does not need to
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tell it where the cat is, but only whether the cat is present or not. Thus, CNN has the ability to

search for cats and learn their characteristics by itself. Similarly, SSSI can learn the features of

muon-generated calo clusters only from the information on whether there is a muon-generated

calo cluster among inputs.

0 0.2 0.4 0.6 0.8 1
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muon (training)

non muon originated track (training)

Figure6.10 Distribution of LCaT DNN score. The blue dots and histogram are the distribu-
tions of test and training of LCaT DNN scores for the muon, respectively. Similarly, The red
dots and histogram are for the non-muon track. There is no difference between test data and
training data. Therefore, The LCaT DNN has high generalization performance.

Before the training of the LCaT DNN, the training data and test data were randomly selected,

and only the training data was used for training. Figure 6.10 shows the LCaT DNN score distribu-

tion. As a result,the same results were obtained for both training and test data. Thus, we conclude

that DNN with high generalization performance could be realized without overtraining.

Also, as a caveat, the DNN used for analysis is the LCaT DNN, which is disconnected from

MaxPooling after training.

6.2 Working Point

This section describes how to determine muon or not from the LCaT DNN score. Since the

LCaT DNN score is a continuous value from 0 to 1, it is necessary to set a threshold value to the

score. First, we describe how to set the threshold value and summarize the performance at the

threshold.
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6.2.1 Definition of WP

The LCaT DNN was trained using data with flat pT distribution to avoid muon identification

only by the value of pT . However, once the target physics is determined, the pT distribution can be

used to determine whether the track is the muon or not. In detail, since this study aims to identify

muons from Electroweakino decay, the threshold of the LCaT DNN score can be loosened in

regions where there are many muons originated from Electroweakino decay and few background

particles. By contrast, the threshold should be tightened in pT regions where the number of the

muon is small and the background is large. Also, a similar adjustment should be made for eta. In

other words, the threshold of LCaT DNN score is determined as a function of pT and eta.

However, it is not obvious how to set the threshold effectively for Electroweakino search, and

what function should be used can’t be determined in a simple way. To solve this problem, another

DNN, referred to as WP DNN, is introduced to evaluate the LCaT DNN score for given pT and

η. This WP DNN uses pT , η, and LCaT DNN scores as input, and the output is referred to as WP

DNN score. The WP DNN score takes a continuous value from 0 to 1.
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Figure6.11 Distribution of inputs for WP DNN. The blue line is a distribution of muon in
Higgsino MC. The red line is a distribution of non-muon originated track in W+jet MC. (a)
track pT (b) track η (c) LCaT DNN score

Determining the WP DNN score threshold is equivalent to determining the boundary in the 3D

space of the pT , η, and LCaT DNN scores (i.e., determining the threshold for the LCaT DNN

score as a function of pT and eta.) For training, Higgsino MC is used as signal data and W+jet

MC is used as background. The distribution of input is shown in Figure 6.11. For pT distribution,

the fraction of muons from Electroweakino decay increases around pT 2 GeV.
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6.2.2 Performance

Figure 6.12 shows the distribution of the output after training.
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Figure6.12 WP DNN score distributions. The blue dots and histogram are the distributions
of test and training of LCaT DNN scores for the muon in Higgsino MC, respectively. Similarly,
The red dots and line are for the non-muon track in W+jet MC. There is no difference between
test data and training data. Therefore, The WP DNN has high generalization performance.

A good separation between signal and background can be seen, and there is no overlearning.

Figure 6.13 shows pT and η dependence of the LCaT DNN score threshold when the WP DNN

score threshold is set to 0.6. Light green and purple are entries distinguished as signal and back-

ground, respectively.

It can be seen that the threshold value is loosened in the region where the ratio of muon came

from higgsino decay is high (around 2 GeV). For eta, the threshold becomes tighter around |eta|

= 1. This region is the boundary between the tile barrel and the tile extended barrel, and it is

expected that the threshold is tight because it is difficult to distinguish muon and others due to

the complex structure of the calorimeter.As shown in Figure 6.13, complex threshold boundary

settings can be made by simply setting the threshold of the WP DNN score. In addition, it is easy

to make the threshold boundary tighter or looser by simply shifting the threshold of the WP DNN

score. It is an important point in the optimization of the threshold in Higgsino search.

Finally, The pT dependence of efficiency in higgsino MC and W+jet MC is shown in Figure
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Figure6.13 Distribution of inputs for WP DNN. Light green is entries that are distinguished as
a muon. Purple is entries which identified as a non-muon track. The size of the box represents
the number of entries. (a) track pT (b) track η (c) LCaT DNN score

6.14. The improvement of the identification efficiency can be found when compared to the per-

formance of the conventional algorithm (Fig. 6.1). Especially, the efficiency improved about 2 to

6 times in the pT region from 1.5 to 2.5 GeV.

In this study, the WP with a threshold at 0.6 for WP DNN score is defined as Higgsino WP .
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Figure6.14 LCaT muon ID efficiency in Higgsino MC and W+jet MC.The red dot is the
identification efficiency for muon in Higgsino MC.The red dot is the identification efficiency
for non muon track in W+jet MC. The high efficiency for muon is kept in the low pT region,
while the efficiency for non-muon tracks is kept below 2%.



69

7. Event Selection

The blind analysis is adopted for the SUSY search. First, the Signal Region (SR) is defined to

evaluate number of signal events. The SR is determined to maximize signal to background ratio.

Next, The contamination of backgrounds in the SR is estimated without using observed events in

the SR (i.e. the SR is blinded from the analysis). Then, the SR is opened to examine how many

signal events are. The event selection to the SR is critical for finding that the number of the signals

is significantly large with respect to the background error.

In this chapter, we summarize the signal features and discuss the details of the event selection

to the SR.

7.1 Analysis strategy

χ̃±
1

χ̃0
2

W ∗

Z∗
p

p

χ̃0
1

q

q

χ̃0
1

`

`

j

(a) (b)

Figure7.1 Feynman diagram of target physics. The j represents the ISR jet. (a) production of
χ̃±1 and χ̃0

2. off-shell W boson can also decay into leptonic. (b) χ̃0
2 and χ̃0

1

The main production process of χ̃0
2 is shown in Figure 7.1. The target event is that χ̃0

2 decays

into χ̃0
1 with an off-shell Z boson which decays into two muons. The decay process of χ̃±1 is

not specified. It means that χ̃±1 may produce an off-shell W boson which decays hadrons or

leptons. Furthermore, χ̃0
1 is expected to pass through the detector without decaying due to R-parity

conservation. Usually, particles that carry away energy are indirectly observed as Emiss
T (defined in

section 5.5), but when two χ̃0
1 are emitted back to back, Emiss

T becomes 0. As a result, χ̃0
1s can’t be

observed. To solve this problem, Initial State Radiation jet with high pT (ISR jet) is required and

SUSY system is boosted. Hence, two χ̃0
1 are emitted in the opposite direction of the ISR jet ,and
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can be observed as Emiss
T . Moreover, high Emiss

T can be used as a trigger signature.

In addition, features of the off-shell Z boson are also useful. The maximum mass of the off-

shell Z boson is the same with the mass difference between χ̃0
2 and χ̃0

1 (∆m(χ̃0
2, χ̃

0
1)). Since the

target ∆m(χ̃0
2, χ̃

0
1) of this analysis is between 1 and 5 GeV, a light off-shell Z boson is generated.

Therefore, the muons from the off-shell Z boson must be low pT dominant. Also, since SUSY

system is boosted by the ISR jet, the off-shell Z boson is close to Emiss
T . Therefore, the two leptons

from the off-shell Z boson are boosted. As a result, the direction of the momentum of muons must

be close.

The above features are summarized in the following list, and a schematic diagram of a typical

event is shown in Figure7.2. The decay-derived particles in χ̃±1 are omitted.

• Objects

– High pT ISR jet．
– High Emiss

T ．
– 2 low pT muons．

• small angle between Emiss
T and off-shell Z boson

• small invariant mass of off-shell Z boson

• small angle between 2 muons

𝐸!"#$$

𝜒̃!"
𝜒̃!"

ISR jet

muon
muon

Figure7.2 Event diagram from the cross section of the ATLAS detector. The beam pipe is
installed from the front of the paper to the back. muons and Emiss

T is SUSY originated objects.
ISR jet boosts the SUSY system.

The bottleneck in the previous study [9] was small efficiency of the muon identification in the
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low pT region. Since small ∆m(χ̃0
2, χ̃

0
1) makes muon pT smaller, the decrease in muon identifica-

tion efficiency could be more serious.

To solve this problem, the newly developed LCaT muon ID is applied to one out of two muons.

On the other hand, another muon is required to be the signal muon (section 5.3) to suppress the

background.

7.2 Trigger Selection

This section describes the triggers used in this analysis. The Emiss
T trigger is used since two χ̃0

1

with high pT pass through detectors. Emiss
T > 200 GeV selection is required in SR.

Figure 7.3 shows the performance of the Emiss
T trigger in Run2. [60].
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Figure7.3 Emiss
T trigger efficiency in Run2 [60]. The efficiency changes with the period, but

above 200 GeV, the efficiency is kept above 95% stably.

It can be seen that the trigger efficiency fluctuates with each period. It is because the Emiss
T

trigger threshold is adjusted for each period to control the increases of the trigger rate due to the

increase in the pileup. However, for Emiss
T above 200 GeV, The stable trigger efficiency is obtained

for all periods.

7.3 Signal Region

In this section, we will discuss the details of SR. First, the variables used in selection are dis-

cussed, and then, the analysis flow to SR is explained.
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7.3.1 Discrimination variables

In this section, the variables used in the selection are explained. Since the main component of

the background is W+jet ( the detail is discussed in section 8.1 ), the distribution of W+jet MC is

used as background for comparison with the signal and background.

The distributions of Emiss
T and Track Emiss

T (see section 5.5) in Higgsino MC, W+jet MC and

tt̄ MC are shown in Figure7.4. In signal event, higher Emiss
T and higher Track Emiss

T are observed

since the two χ̃0
1s carry away the energy.
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Figure7.4 distributions of (a) Emiss

T and (b) Track Emiss
T . In signal, high Emiss

T is observed since
χ̃0

1 carries away the energy.

leading jet pT

The leading jet is the jet with the highest pT in a event, and its pT distribution is shown in Figure

7.5. In order to enforce that the center of mass system of SUSY particles is boosting, leading jet

pT > 100 GeV is required.

The number of b-jet

The distribution of the number of b-jets is shown in Figure 7.6. In this analysis, the number of

b-jets is required to be 0 since there is no b-jet in the signal event. The top quark pair production

event ( tt̄ event ) can be a background because it can generate a large Emiss
T , but tt̄ event can be

suppressed by requiring the number of b-jet=0 since tt̄ event always has two b-jets.



7.3 Signal Region 73

100 200 300 400 500 600 700 800 900 1000
[GeV]

T
Jet p

4−10

3−10

2−10

1−10

1

10

A
.U

.

 mass = 100 GeV ) 1

0
χ∼Higgsino MC ( 

) = 1.0 GeV 1

0
χ∼, 2

0
χ∼M (∆

) = 2.0 GeV 1

0
χ∼, 2

0
χ∼M (∆

) = 3.0 GeV 1

0
χ∼, 2

0
χ∼M (∆

) = 5.0 GeV  1

0
χ∼, 2

0
χ∼M (∆

W+jet MC

 MCtt

Figure7.5 distribution of leading jet pT . High pT of the leading jet is necessary to enforce ISR topology.
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Figure7.6 distribution of the number of b-jets. Since there is no b-jet in the signal, the number
is 0 in most of the events.

∆ϕ(pmiss
T ,Z∗)

For ∆ϕ(pmiss
T ,Z∗) < 0.1 is required. The definition of ∆ϕ(pmiss

T ,Z∗) is eq (7.1). where Z∗ refer

to off-shell Z boson.

∆ϕ(pmiss
T ,Z∗) = ϕ(pmiss

T ) − ϕ(Z∗) (7.1)

where pmiss
T is the 3-dim. momentum of Emiss

T and ϕ(Z∗) is the Z∗ momentum direction in ϕ.
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In signal, ∆ϕ(pmiss
T ,Z∗) is small since both Emiss

T and ϕ(Z∗) are originated from SUSY particles

boosted by the ISR jet.

0 0.5 1 1.5 2 2.5 3
(MET,Z)φ∆

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4A
.U

 mass = 100 GeV ) 1

0
χ∼Higgsino MC ( 

) = 1.0 GeV 1

0
χ∼, 2

0
χ∼M (∆

) = 2.0 GeV 1

0
χ∼, 2

0
χ∼M (∆

) = 3.0 GeV 1

0
χ∼, 2

0
χ∼M (∆

) = 5.0 GeV  1

0
χ∼, 2

0
χ∼M (∆

W+jet MC

 MCtt

Figure7.7 distribution of ∆ϕ(pmiss
T ,Z∗). Since the SUSY system is boosting, pmiss

T and Z∗ are close.

off-shell Z boson mass

off-shell Z boson mass < 5 GeV is required since ∆m(χ̃0
2, χ̃

0
1) of the target scenarios are less than

5 GeV. Figure 7.8 shows the distribution of the off-shell Z boson mass. The value is concentrated

at small values since the maximum value of the off-shell Z boson mass is ∆m(χ̃0
2, χ̃

0
1) due to

energy conservation. Therefore, the distribution of the off-shell Z boson mass varies greatly in

each ∆m(χ̃0
2, χ̃

0
1) scenario.

∆Rmuon,t rk

∆Rmuon,trk < 1.5. is required.The definition of ∆Rmuon,trk is eq (7.2). Figure 7.9 shows the

distribution of ∆Rmuon,trk. The value of ∆Rmuon,trk concentrates at small values, and the smaller

∆m(χ̃0
2, χ̃

0
1) senario has the smaller the value of ∆Rmuon,trk. This is because off-shell Z boson with

the lighter mass can be strongly boosted, and the distribution of the off-shell Z boson mass depends

on ∆m(χ̃0
2, χ̃

0
1). ∆Rmuon,trk should be less than 1.5 in the region where ∆m(χ̃0

2, χ̃
0
1) is smaller than 5

GeV.

∆Rmuon,trk =

√
(ηmuon − ηtrk)2 + (ϕmuon − ϕtrk)2 (7.2)
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Figure7.8 Since the maximum value of the off-shell z boson mass is limited by the value of
∆m(χ̃0

2, χ̃
0
1), the distribution differs depending on the scenario.
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Figure7.9 distribution of ∆Rmuon,trk. The angle (∆Rmuon,trk) between muons is smaller since
off-shell z boson are boosted.

|∆z0muon,t rk| and |∆d0muon,t rk|

For z0, |∆z0muon,trk | < 0.26 is required. For d0, |∆d0muon,trk | < 0.10 is required. The definitions

are given in eq. (7.3) and eq. (7.4), respectively. The distributions of |∆z0muon,trk | and |∆d0muon,trk |

are shown in Figure 7.10.
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|∆z0muon,trk | = |z0muon − z0trk | (7.3)

|∆d0muon,trk | = |d0muon − d0trk | (7.4)

where z0 and d0 are the values concerning the vertex (defined in section 5.1). The z0 and d0

values of muon and track should be close since muon and track come from the same off-shell Z

boson decay.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
z0∆

0

0.05

0.1

0.15

0.2

0.25

A
.U

 mass = 100 GeV ) 1

0
χ∼Higgsino MC ( 

) = 1.0 GeV 1

0
χ∼, 2

0
χ∼M (∆

) = 2.0 GeV 1

0
χ∼, 2

0
χ∼M (∆

) = 3.0 GeV 1

0
χ∼, 2

0
χ∼M (∆

) = 5.0 GeV  1

0
χ∼, 2

0
χ∼M (∆

W+jet MC

 MCtt

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6
d0∆

0

0.05

0.1

0.15

0.2

0.25

A
.U

 mass = 100 GeV ) 1

0
χ∼Higgsino MC ( 

) = 1.0 GeV 1

0
χ∼, 2

0
χ∼M (∆

) = 2.0 GeV 1

0
χ∼, 2

0
χ∼M (∆

) = 3.0 GeV 1

0
χ∼, 2

0
χ∼M (∆

) = 5.0 GeV  1

0
χ∼, 2

0
χ∼M (∆

W+jet MC

 MCtt

(b)
Figure7.10 distributions of (a) ∆z0muon,trk and (b) ∆d0muon,trk. Muon and track are originated
from the same off-shell z boson. Thus, These vertexes should be close.

7.3.2 parameterized Neural Network

The score of the DNN that trained to efficiently discriminate between signal and background is

introduced.

However, there are some variables (e.g. off-shell Z boson mass and ∆Rmuon,trk) that the distri-

bution greatly depends on the ∆m(χ̃0
2, χ̃

0
1). Therefore, it is difficult to create a DNN with high

performance for all scenarios. A possible solution is to prepare one DNN by using MC events

for each scenario. But, this requires preparing a large number of MC samples for signal events.

However, it is not practical because it uses a large amount of computer resources and CPU time

to produce the signal MC sample.

To solve this problem, we use a parameterized neural network referred to as pNN[61]. Fig-

ure 7.11 shows schematic diagram of pNN. pNN is one of DNN that use not only the measured
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variables (x1, x2) but also physics parameter (θ). Hereafter, ∆m(χ̃0
2, χ̃

0
1) is chosen as the physics

parameter pNN-θ. pNN can smoothly interpolate between the ∆m(χ̃0
2, χ̃

0
1) used for training, al-

lowing us to explore various scenarios with high efficiency using the limited number of samples.
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x1
x2

fa(x1,x2)

= a

x1
x2

f(x1,x2, )

x1
x2

fb(x1,x2)

= b

Fig. 1 Left, individual networks with input features (x1, x2), each
trained with examples with a single value of some parameter θ = θa, θb.
The individual networks are purely functions of the input features. Per-
formance for intermediate values of θ is not optimal nor does it nec-
essarily vary smoothly between the networks. Right, a single network
trained with input features (x1, x2) as well as an input parameter θ ; such
a network is trained with examples at several values of the parameter θ

tion of θ̄ introduces additional considerations in the training
procedure. While traditionally the training only requires the
conditional distribution of x̄ given θ̄ (which is predicted by
the theory and detector simulation), now the training data
has some implicit prior distribution over θ̄ as well (which is
arbitrary). When the network is used in practice it will be
to predict y conditional on both x̄ and θ̄ , so the distribution
of θ̄ used for training is only relevant in how it affects the
quality of the resulting parameterized network – it does not
imply that the resulting inference is Bayesian. In the studies
presented below, we simply use equal sized samples for a few
discrete values of θ̄ . Another issue is that some or all of the
components of θ̄ may not be meaningful for a particular target
class. For instance, the mass of a new particle is not meaning-
ful for the background training examples. In what follows,
we randomly assign values to those components of θ̄ accord-
ing to the same distribution used for the signal class. In the
examples studied below, the networks have enough general-
ization capacity and the training sets are large enough that
the resulting parameterized classifier performs well without
any tuning of the training procedure. However, the robust-
ness of the resulting parameterized classifier to the implicit
distribution of θ̄ in the training sample will in general depend
on the generalization capacity of the classifier, the number of
training examples, the physics encoded in the distributions
p(x̄ |θ̄ , y), and how much those distributions change with θ̄ .

3 Toy example

As a demonstration for a simple toy problem, we construct a
parameterized network which has a single input feature x and
a single parameter θ . The network, with one hidden layer of
three nodes and sigmoid activation functions, is trained using
labeled examples where examples with label 0 are drawn
from a uniform background and examples with label 1 are

Fig. 2 Top training samples in which the signal is drawn from a Gaus-
sian and the background is uniform. Bottom, neural network response
as a function of the value of the input feature x , for various choices of
the input parameter θ ; note that the single parameterized network has
seen no training examples for θ = −1.5,−0.5, 0.5, 1.5

drawn from a Gaussian with mean θ and width σ = 0.25.
Training samples are generated with θ = −2,−1, 0, 1, 2;
see Fig. 2a.

As shown in Fig. 2, this network generalizes the solu-
tion and provides reasonable output even for values of the
parameter where it was given no examples. Note that the
response function has the same shape for these values (θ =
−1.5,−0.5, 0.5, 1.5) as for values where training data was
provided, indicating that the network has successfully param-
eterized the solution. The signal-background classification
accuracy is as good for values where training data exist as it
is for values where training data does not.

4 1D physical example

A natural physical case is the application to the search for new
particle of unknown mass. As an example, we consider the
search for a new particle X which decays to t t̄ . We treat the

123

Figure7.11 schematic diagram of pNN. A DNN is needed for each scenario with conventional
DNNs, which use only measure variables (left). By adding the physics parameter to the input,
all scenarios can be learned simultaneously, and the efficiency is increased.(right)[61]

The input variables are summarized in Table7.1.As signal samples, Higgsino MC with

∆m(χ̃0
2, χ̃

0
1) = (1, 1.5, 2, 3, 5) GeV are used to pNN training and test. In addition, W+jet MC and

SS data are used as background sample. Here, SS data means a data sample with a same sign

(SS) muon pair instead of an opposite sign (OS) pair for a Z* candidate. SS data has similar

distribution to those of background events in OS data (the detail is discussed in 8.1 later). The

pNN-θ for the background samples is given randomly so that the distribution is the same as the

distribution of the Higgsino MC.In addition, only events that pass baseline selection (described

section 7.3.3) are used.

Figure 7.12 shows the distribution of pNN scores for each scenario. We can see that there is no

overtraining and good separation between signal and background.

7.3.3 Analysis Flow

Figure 7.13 shows the flow of the analysis. The detail of each section is described below.
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Table7.1 Summary of inputs of the pNN.

input variable description

∆m(χ̃0
2, χ̃

0
1) pNN-θ, mass difference between χ̃0

2 and χ̃0
1

muon η

signal muon kinematicsmuon ϕ

muon pT

track η

signal track kinematicstrack ϕ

track pT

Emiss
T Emiss

T kinematics
ϕ of pmiss

T

leading jet pT
leading jet kinematics

ϕ of leading jet momentum

∆ϕ(pmiss
T ,Z∗)

ϕ angle between objects
∆ϕ(leading jet,Z∗)

off-shell z boson mass

off-shell z boson variables∆Rmuon,trk

scalar sum of muon pT and track pT

Baseline Selection

First, baseline selection is applied to signal region and validation regions for background esti-

mation (discussed in section 8.2 later). In order to select events highly boosted by ISR jet, at leaset

one high pT jet is required and the highest pT jet is supposed as the ISR jet. The event is required

a high pT jet to enforce ISR topology, and the highestpT jet is the ISR jet. Also, to enforce the

High Emiss
T topology, Emiss

T > 200 GeV is required.

In addition, high Emiss
T ( > 200 GeV ) is required because of production of LSPs. This Emiss

T

requirement is important to ensure the stable trigger efficiency, too. For the signal muon, pT

< 10 GeV is required since low pT is dominant. Furthermore, no b-jet is required to suppress

backgrounds from top-quark production. Table 7.2 summarizes the baseline selection.



7.3 Signal Region 79

0 0.2 0.4 0.6 0.8 1
pNN score

0

0.2

0.4

0.6

0.8

1

A
.U

.

 = 1.0 GeV θ

0 0.2 0.4 0.6 0.8 1
pNN score

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
.U

.

 = 1.5 GeV θ

0 0.2 0.4 0.6 0.8 1
pNN score

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
.U

.

 = 2.0 GeV θ

0 0.2 0.4 0.6 0.8 1
pNN score

0

0.1

0.2

0.3

0.4

0.5

0.6

A
.U

.

 = 3.0 GeV θ

0 0.2 0.4 0.6 0.8 1
pNN score

0

0.05

0.1

0.15

0.2

0.25

A
.U

.

 = 5.0 GeV θ

Higgsino (test)

Background (test)

Higgsino (training)

Background (training)

Figure7.12 pNN score distribution in each pNN-θ.The blue dots and the red dots are the
distribution of the test sample of Higgsino MC and the background, respectively. Also, The
blue histogram and the red histogram are the distribution of the training sample of Higgsino
MC and the background, respectively. There are no large differences between the test and the
training samples.

Table7.2 Summary of baseline selection

Variable selection criteria

Emiss
T ≥ 100 GeV

Track Emiss
T ≥ 50 GeV

Leading jet pT ≥ 100 GeV

Number of muons with standard muon ID = 1

pT of muon with standard muon ID ≤ 10 GeV

Number of b-tagged jets = 0
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Leading jet       𝐸!"#$$ 1 signal muon        tracks

make Z* candidates

Δφ(𝐸!"#$$, Z* boson) < 1   &   𝐸!"#$$ > 200 GeV   & pNN score > 0.4

select one Z* candidate 

Baseline selection

Signal Region

LCaT muon ID 

Z* : off-shell Z boson 

Signal Region selection

Figure7.13 Diagram of analysis flow

select one Z∗ candidate

In ’make Z∗ boson candidates’ section in figure 7.13, Z∗ candidates are reconstructed with all

signal muon and track combinations. Then, only one candidate, which is the most signal like Z∗

candidate, is selected in ’select one Z∗ candidate’ section. Table 7.3 shows selection which Z∗

candidate should satisfy. If multiple candidates remain, the candidate with the highest pNN score

is selected.

Table7.3 Summary of off-shell Z boson selection

Variable selection criteria

Charge opposit sign

∆Rmuon,trk [0.1, 1.4]

mlep,trk ≤ 5 GeV

∆z0muon,trk ≤ 0.26

∆d0muon,trk ≤ 0.10

J/ψ veto mmuon,trk < 3GeV or mmuon,trk > 3.2GeV
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Signal Region selection

Table7.4 shows signal region selection. The selection is applied to the event in which Z∗ candi-

date is chosen.

Table7.4 Summary of signal region selection

Variable selection criteria

Emiss
T ≥ 200 GeV

∆ϕ(Z*, pmiss
T ) ≤ 1 rad

pNN score ≥ 0.4

LCaT muon ID for track Higgsino WP

Check for the presence or absence of a signal using an event that satisfies all of the above

selections.

Final discrimination variable

In order to examine the presence of signal, the shape of the distribution of a variable called

as final discrimination variable are used. Its distribution should have maximum discrimination

power signal from the backgrounds. Therefore, the pNN score is chosen as the final discrimination

variable since the pNN is trained to efficiently discriminate between signal and background. In

order to evaluate the SUSY scenario using the shape information of the pNN score, we divide the

SR by the pNN score. The detail is discussed in 10.2. Table 7.5 shows the list of SR.

Table7.5 List of SR

SR name pNN score range

SR-pNNScore-A [0.4, 0.5]

SR-pNNScore-B [0.5, 0.6]

SR-pNNScore-C [0.6, 0.7]

SR-pNNScore-D [0.7, 0.8]

SR-pNNScore-E [0.8, 0.9]

SR-pNNScore-F [0.9, 1.0]
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8. Background estimation

In this section, the background estimation method and expected amount of background are

described. First, sources of background events are explained, second, a new method for estimation

of the background contamination is discussed. It is dedicated for this analysis.

8.1 Background component

The main component of the background is a combination of muon and hadron/fake track. Un-

correlated two tracks accidentally imitate muon pairs from off-shell Z boson. The number of

background events with two true muons is assumed to be small enough as discussed in section

8.4. In addition, these background events tend to have neutrinos which make the high Emiss
T .

Thus, an event that has one muon and neutrinos can be the background. For these reasons, the

W + jet event in which W boson decays leptonically ( Figure 8.1 ) is the main background. In

this case, the hadron track is a particle originated from the same vertex, but is not drawn in the

Feynman diagram of Figure 8.1.

7

1. Background estimation

W+

q

q

g

νµ

µ+

Figure8.1 Feynman diagram of W+jet

For the invariant mass of a lepton and a track,mlep,trk, > 2 GeV region, it is expected that distri-
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butions in the same sign (SS) data are almost the same with the opposite sign (OS)[9] since muon

and hadron/fake track combination is an accidental one. The distribution is similar to part of the

background in OS data. Therefore, SS data is useful for training of pNN (section 7.3.2). However,

background estimation using SS data is problematic since the OS data has more background than

the SS data in mlep,trk < 2GeV due to low-mass resonances.

In this study, we have developed a background estimation method that takes advantage that the

di-muon background is sufficiently small and the main background track component is hadron and

fake track.

8.2 Definition of Validation region

Before explaining the background estimation method, we define the Validation Region to eval-

uate the method of background estimation. As shown in Figure 8.2, four Validation Regions are

defined to surround the SR which is defined in Table 7.4. The three Validation Regions are the

Low Emiss
T or/and Large ∆ϕ(Z∗, pmiss

T ) regions compared to SR. Low Emiss
T and Large ∆ϕ region,

Low Emiss
T and Small ∆ϕ region, high Emiss

T and Large ∆ϕ regions are referred to as VR_LowLarge,

VR_LowSmall, and VR_HighLarge, respectively. Also, in the High Emiss
T and small ∆ϕ region,

the region with Low pNN score is used as a Validation Region because of the small signal con-

tamination. The region is referred to as VR_LowpNN.

8.3 LCaT muon weight method

This section describes how to estimate the distribution of the final discrimination variable(pNN

score). The general background estimation is done using MC simulations. However, a large

difference between data and MC simulation was observed in the region where the track pT is

small. In particular, a large difference was observed in the number of fake tracks, which is difficult

to simulate. To avoid this problem, we develop a new method to estimate all backgrounds from

the pp collision data. Figure 8.4 shows a schematic diagram of the method.

First, for simplicity, the shape of the pNN score distribution is ignored. Figure 8.3 shows the

overview of the background estimation method. It is referred to as LCaT muon weight method. In

the method, events with Anti-LCaT muon ID are used to estimate the amount of background. Anti-

LCaT muon ID means track does not satisfy the LCaT muon ID. The LCaT muon ID efficiency for

events that satisfy all selections except the LCaT muon ID is referred to as εLCaT , and the LCaT

muon ID efficiency for the background is referred to as εbkg
LCaT . Thus, εLCaT = ε

bkg
LCaT if signal
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Figure8.2 Definition of Validation Region. Each VR is delimited by Emiss
T and ∆ϕ. In the

region of high Emiss
T and small ∆ϕ, the region with a small pNN score is defined as VR.

Δφ(!!"#$$, Z* boson) < 1   &   !!"#$$ > 200 GeV   & pNN score > 0.4

Signal Region

LCaT muon ID Anti-LCaT muon ID 
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Figure8.3 Overview of the LCaT muon weight method. In the SR, events are cut by request-
ing the LCaT muon ID. The distribution of the pNN scores is determined by the distribution
and correlation of the pNN input variables in the remaining events. In the background estima-
tion, the original input data is normalized to have the same distribution as when LCaT muon ID
is applied. By emulating the distribution of input data, it is possible to estimate the distribution
of the pNN score.
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does not exist. 1− εbkg
LCaT of background are Anti-LCaT muon ID, therefore, multipled events with

Anti-LCaT muon ID by εbkg
LCaT /(1 − ε

bkg
LCaT ) should be the same with the amount of background in

SR. Hereafter, εbkg
LCaT /(1 − ε

bkg
LCaT ) is referred to as the LCaT muon weight (ωLCaT ).

apply LCaT muon ID ( event cut ) apply LCaT muon Weight ( event normalization)
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cut event remaining eventoriginal event

pNN score pNN score

Signal Region Background estimation

Figure8.4 Schematic diagram of the LCaT muon weight method. In the SR, events are cut
by requesting the LCaT muon ID. The distribution of the pNN scores is determined by the dis-
tribution and correlation of the pNN input variables in the remaining events. In the background
estimation, the original input data is normalized to have the same distribution as when LCaT
muon ID is applied. By emulating the distribution of input data, it is possible to estimate the
distribution of the pNN score.

Next, shape information of pNN score distribution is discussed. In principle, the shape of

the pNN score distribution is determined by the input variables and their correlations. In SR,

the distributions of input data changes by requesting the LCaT muon ID(Figure 8.4 left. The

red is a distribution before the LCaT muon ID. It changes to blue distributions by requesting

the LCaT muon ID. The blue distribution determines the pNN score distribution.). Therefore,

estimating the shape of the pNN score distribution is equivalent estimating the shape of the input

data distribution. Thus, in LCaT muon weight method, LCaT muon weight is defined to model the

LCaT Muon ID response and apply the weight event by event. In other words, the LCaT muon

weight is defined as a function of variables related to the LCaT muon ID efficiency.
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component of the LCaT muon ID efficiency

To emulate the LCaT muon ID efficiency, we summarize its components in eq.(8.1).

εLCaT =ε
other
LCaT (track η, track pT ) × Rother

LCaT (∆Rmuon,trk, Emiss
T )

+ εmuon
LCaT (track η, track pT ) × Rmuon

LCaT (∆Rmuon,trk, Emiss
T )

(8.1)

The efficiency of the LCaT muon ID (εLCaT ) depends on track eta, track pT , ∆Rmuon,trk, and

Emiss
T . where Rmuon

LCaT means the ratio of di-muon background, but Rmuon
LCaT is assumed to be small

enough (discussed in section 8.4). Also, Rother
LCaT is ratio of tracks except muon in all background

track. εmuon
LCaT and εother

LCaT is LCaT muon ID efficiency for muon track and background tracks except

muon,respectively. From eq.(8.1), the LCaT muon weight (ωLCaT ) is needed to be also defined as

a function of track eta, track pT , ∆Rmuon,trk, and Emiss
T .

How to make the LCaT muon weight

This paragraph describes how to make the LCaT muon weight. To calculate the LCaT muon

weight, it is necessary to predict εbkg
LCaT . Therefore, LCaT muon estimator (εemuBkg

LCaT ) ,which is

defined as to output the εbkg
LCaT , is needed. To examine the efficiency of LCaT muon ID for the

background only in SR, it is necessary to use a region that has the same background component

as SR without the signal.

For the SR, muon identified by standard muon ID and track with LCaT muon ID, which refer to

as Same Flavor(SF), are required. Against SF, Different Flavor (DF) is used to predict the LCaT

muon ID efficiency. DF means electron identified standard electron ID (see section 5.4) and track

with LCaT muon ID are required. the LCaT muon ID efficiency for the background only can

be observed since DF does not contain the signal. In addition, the component of the track in

the background is hadron or fake track. Therefor, the background component is almost the same

between DF and SF.

For these reasons, It is assumed that the LCaT muon ID efficiency in SF(εS F
LCaT ) and DF(εDF

LCaT )

are the same to create the LCaT muon weight.

8.4 εS F
LCaT = ε

DF
LCaT hypothesis test

In this section, the hypothesis that εS F
LCaT = εDF

LCaT in SR is confirmed using VR. Figure 8.5

shows the dependence of the LCaT muon ID efficiency on Emiss
T , track η, track pT , and ∆Rmuon,trk

in SF and DF. The blue and the red lines show the efficiency in SF and DF, respectively. If there



8.5 Definition of the LCaT muon weight and LCaT muon estimator 87

is large number of di-muon background, some difference between SF and DF must be found.

As a result, there is a good agreement between SF and DF in all regions. We conclude that the

LCaT ID efficiency is consistent between SF and DF in SR based on the results, and the di-muon

background is sufficiently small. Also, the difference between SF and DF is discussed in section

9.4.

100 110 120 130 140 150 160 170 180 190

MET[GeV]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ef
fic

ie
nc

y

Muon

Electron
VR_LowLarge

100 200 300 400 500 600 700 800 900 1000

MET[GeV]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ef
fic

ie
nc

y

Muon

Electron
VR_HighLarge

100 110 120 130 140 150 160 170 180 190

MET[GeV]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ef
fic

ie
nc

y

Muon

Electron
VR_LowSmall

100 200 300 400 500 600 700 800 900 1000

MET[GeV]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ef
fic

ie
nc

y

Muon

Electron
SR

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

|eta|

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ef
fic

ie
nc

y

Muon

Electron
VR_LowLarge

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

|eta|

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ef
fic

ie
nc

y

Muon

Electron
VR_HighLarge

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

|eta|

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ef
fic

ie
nc

y
Muon

Electron
VR_LowSmall

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

|eta|

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ef
fic

ie
nc

y

Muon

Electron
SR

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

track pT[GeV]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ef
fic

ie
nc

y

Muon

Electron
VR_LowLarge

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

track pT[GeV]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ef
fic

ie
nc

y

Muon

Electron
VR_HighLarge

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

track pT[GeV]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ef
fic

ie
nc

y

Muon

Electron
VR_LowSmall

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

track pT[GeV]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ef
fic

ie
nc

y

Muon

Electron
SR

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

dR(lep,trk)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ef
fic

ie
nc

y

Muon

Electron
VR_LowLarge

0 0.2 0.4 0.6 0.8 1 1.2 1.4

dR(lep,trk)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ef
fic

ie
nc

y
Muon

Electron
VR_HighLarge

0 0.2 0.4 0.6 0.8 1 1.2 1.4

dR(lep,trk)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ef
fic

ie
nc

y

Muon

Electron
VR_LowSmall

0 0.2 0.4 0.6 0.8 1 1.2 1.4

dR(lep,trk)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ef
fic

ie
nc

y

Muon

Electron
SR

(d)
Figure8.5 Emiss

T , track η, track pT , and ∆R(lep, trk) dependence of εS F
LCaT and εDF

LCaT .It can be
confirmed that εS F

LCaT and εDF
LCaT are consistent for each variable and each VR. Also, the VR

dependence of εLCaT is small. (a) Emiss
T (b) track η (c) track pT (d) ∆R(lep, trk)

8.5 Definition of the LCaT muon weight and LCaT muon estimator

structure of the LCaT muon weight and LCaT muon estimator

LCaT muon weight is created using the DF region to avoid signal contamination. To accurately

estimate the distribution of pNN, it is necessary to emulate the dependence of LCaT muon ID

efficiency on each variable, including the correlation between these variables. Figure 8.6 shows
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the efficiency of LCaT muon ID efficiency in the Emiss
T -track η plane and track pT -∆R plane. Other

planes are shown in Appendix ??.
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Figure8.6 the efficiency of LCaT muon ID efficiency in the (a) Emiss

T -track η plane and (b)
track pT -∆R plane.a strong correlation between each variable is not found.

From the results of each plane, no other strong correlation between variables is found in LCaT

muon efficiency. Therefore, the dependency of LCaT muon ID efficiency on each variable can be

written independently. Therefore, the LCaT muon weight is defined as eq.(8.3) using LCaT muon

estimator ( eq.(8.2) ).

ϵ
estiBkg
LCaT = ε

DF
LCaT × ωpT (track pT ) × ω∆R(∆Rmuon,trk) × ωη(track η) × ωEmiss

T (Emiss
T ) (8.2)

ωLCaT =
ϵ

emuBkg
LCaT

1 − ϵemuBkg
LCaT

(8.3)

ωvariable represents the specific variable dependence in LCaT muon ID efficiency, and it is nor-

malized so that εDF
LCaT is one. It means ωvariable is written as eq.(8.4).

ωvariable(variable) =
εvariable(variable)

εDF
LCaT

(8.4)

detail of created LCaT muon estimator

The detail of the LCaT muon estimator created using the DF region is described in this section.

Since tight selection is applied to SR, the number of events is very small. On the other hand, it
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can be confirmed that the region dependence of the LCaT muon ID efficiency is small from Figure

8.5. Therefore, the events of VR needed to be included to avoid the effect of statistical fluctuation

in creating the LCaT muon estimator. Figure 8.7 shows created ωpT ,∆R,ωη(track η),ωEmiss
T . Each

weight component of the LCaT muon estimator is smoothing by connecting the values of each bin

with a straight line. Also, the εDF
LCaT is 1.48%, and the statistical error is less than 0.02%.

(a) (b)

(c) (d)

Figure8.7 black lines are (a)ωpT ,∆R, (b)ω∆R,(c) ωη,(d)ωEmiss
T defined in eq.(8.3). All VRs and

SRs in DF are used to create the weight to avoid statistical fluctuation.

8.6 Comparison between data and background estimation in VRs

In this section, validation of the LCaT muon weight method is discussed. Figure 8.8 shows the

background estimation using the LCaT muon weight method and the data using the LCaT muon

ID. SR and the regions with large signal contamination to data are blinded. Concretely, the region

with pNN score > 0.7 of VR_LowSmall and the region with pNN score < 0.2 of VR_LowpNN are

blinded. Good agreement between the background estimation and data was confirmed in the pNN
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score distribution for most VRs. The difference is within about 20 %. From these results, we

conclude that the LCaT muon weight method can correctly estimate the number and distribution

of pNN scores in SR. A detailed discussion of systematic errors is given in the section 9.4.
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(a) pNN-θ = 1 GeV
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(b) pNN-θ = 2 GeV
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(c) pNN-θ = 3 GeV
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(d) pNN-θ = 4 GeV
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(e) pNN-θ = 5 GeV
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Figure8.8 The result of background estimation. The dark red histogram is the distribution of
the background estimated by the LCaT muon weight method, and the black dots are the results
of the data obtained by applying the LCaT muon ID. Good agreement between background
estimation and data is observed, and the difference is within about 20%.
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9. Systematic Uncertainties

In this chapter, systematic uncertainties are summarized. In this study, the signal event is eval-

uated using MC simulation, and the theoretical uncertainty and experimental uncertainty are con-

sidered in the event. The former is discussed in section 9.1 and the latter in section 9.2. In addition,

efficiency for the newly developed LCaT muon is discussed in section 9.3.2.

Since the background is estimated by a data-driven method, uncertainty about differences be-

tween MC simulation and data don’t need to be considered. However, since the difference be-

tween the LCaT muon ID and the LCaT muon estimator generate the systematic difference, the

uncertainty is discussed in section 9.4.

9.1 Theoretical uncertainties

9.1.1 Parton distribution function

The theoretical uncertainty is the factor of the Parton distribution function. In this thesis,

MMHT2014[62] and CT14PDF[63] are compared with the NNPDF[36], which is used as the

nominal value in this search, and the difference is used as uncertainty. The magnitude is 15%.

9.1.2 ISR modeling

Uncertainty on the ISR modeling is estimated using the Z(→ µµ)+jets events generated using

the same MG5_aMC@NLO configuration as the Higgsino samples. The muon four momenta are

added to the Emiss
T to emulate the signal events, and uncertainties are derived from observed differ-

ences between data and simulation. As a result, 20% is applied as the ISR modeling uncertainty.

9.2 Experimental uncertainties

9.2.1 Luminosity

Luminosity was measured with the LUCID-2 detector[64], and an uncertainty of 1.7% is applied

to the integrated luminosity.
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9.2.2 Muons

Uncertainty about muon identification and momentum resolution is estimated by analysis using

Z → µ and J/ψ → µµevent. The systematic uncertainties are a few % for leptons with pT > 10

GeV, and up to 10 % for lower pT . (The detail can be found in Ref.[55]).

9.2.3 Jets

Jet uncertainty can be divided into Jet Energy Scale (JES) uncertainty on calibration and Jet

Energy Resolution(JER) on energy resolution. The estimation results are briefly summarized

below. For details of the evaluation method, see Ref.[52].

JES uncertainty

Figure 9.1 shows the pT and η dependence of JES uncertainty. the uncertainty is large at low-

pT , about 5%, and becomes smaller as pT increases. However, above 200 GeV, the uncertainty is

largely due to poor statistics. For the η direction, the uncertainty is almost flat, and the average is

2%.
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Figure9.1 Combined uncertainty in the JES of fully calibrated jets as a function of jet pT at
η = 0 (left), and η at pT = 60 GeV (right)[52].

JER uncertainty

Fig.9.2 shows the total uncertainty on the relative JER as a function of jet pT . The uncertainty

takes maximum value at low-pT , which is 1.5%.
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9.2.4 missing ET

The systematic uncertainty associated with modeling Emiss
T in the simulation is estimated by

propagating the uncertainty at the energy and momentum scales of each object used in the calcu-

lation. Uncertainties in the resolution and scale of the soft term are modeled separately(the details

is discussed in Ref[58]).

9.3 LCaT muon ID systematic uncertainty

This section describes the difference in the LCaT muon ID efficiency between data and MC. The

tag and probe method using J/ψ decay is used for the evaluation. Also, we use the pp collision

data obtained by the single muon trigger and the J/ψ MC sample. First, we describe the details of

the tag and probe method and then summarize the results.

9.3.1 Tag and probe method

The acquired data is collected using triggers, in other words, event selection has already been

applied by the trigger. It is obvious that the identification efficiency for the muon is high in offline

analysis for events with the single muon trigger. The efficiency is overestimated for such muons.

The tag and probe method prevents from such bias.

Figure 9.3 shows the analysis flow of the tag and probe method. First, a tag muon which is

matched with the trigger is found. Next, The tag muon and one of other tracks with LCaT muon

ID are combined, and the invariant mass is calculated. Resonance with a peak at 3.1 GeV can be

seen in the invariant mass distribution. This resonance is originated from the J/ψ decayed into di-

muon, therefore the track is considered as a muon. However, it is impossible to conclude because
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backgrounds remain around the peak. So, the probability of the muon from J/ψ decay is calculated

by fitting the distribution. The invariant mass distribution is fitted using the gauss function as the

J/ψ decay component and using the quadratic function as the background component. The number

of J/ψ decay events is estimated by the integration of the gauss function. The same calculation is

performed for the track with Anti-LCaT muon ID. Finally, the efficiency of the LCaT muon ID is

calculated from the number of J/ψ decay events with LCaT muon ID and Anti-LCaT muon ID.
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Figure9.3 Analysis flow of the tag and probe method. (1) find the tag muon matching the
reconstructed muon in the trigger. (2) calculate the invariant mass using the tag muon and the
track with LCaT muon ID/Anti-LCaT muon ID. (3)(4) estimate the number of J/ψ by fitting the
invariant mass distribution. (5) calculate the efficiency from the number of J/ψ before and after
applying the LCaT muon ID.

9.3.2 Evaluation of the LCaT muon efficiency

In each pT and η region, this tag and probe method is performed to data and MC to compare

the LCaT muon ID efficiency. Figure 9.4 and Figure 9.5 show the η dependence of the efficiency

calculated by the tag and probe method. The track pT is divided by 0.5 GeV steps except in 1 ~2

GeV region. For invariant mass fitting results, see appendix ??. The difference between the data

and J/ψ MC is about 10 ~20%. The systematic uncertainty of the LCaT muon ID efficiency is

obtained by the direct sum of the statistical uncertainty of the efficiency calculated using data and

the difference between data and J/ψ MC. In the range where the track pT is between 1 and 2 GeV,

the small signal to background ratio results in relatively large statistical uncertainties.
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Figure9.4 The result of efficiency measurement using tag and probe method. (1.0 GeV <
pT < 3.5 GeV). The red and blue lines in the upper figure show the LCaT muon ID efficiency
in J/ψ MC and data, respectively. The bottom figure shows the ratio of the efficiencies. The
differences in the ratio from 1 are applied as systematic uncertainties.
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Figure9.5 The result of efficiency measurement using tag and probe method. (3.5 GeV <
pT < 5.0 GeV). The red and blue lines in the upper figure show the LCaT muon ID efficiency
in J/ψ MC and data, respectively. The bottom figure shows the ratio of the efficiencies. The
differences in the ratio from 1 are applied as systematic uncertainties.

9.4 Uncertainty of the difference between LCaT muon ID and LCaT muon estimator

In this section, uncertainties in the pNN score distribution caused by differences between LCat

muon ID and LCaT are discussed. Hereafter, these uncertainties are referred as uncertainty of

the difference between LCaT muon ID and LCaT muon weight. These uncertainties come from

two components. Normalization of number of events, called as LCaT muon weight normalization

uncertainty, and the distribution shape of the pNN score, as LCaT muon weight shape uncertainty.

Here, LCaT muon weight shape uncertainty is classified into the statistical uncertainty part and

systematic uncertainty part. The structure of the uncertainty of the difference LCaT muon ID and
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LCaT muon weight is shown in figure 9.6. The detail of the LCaT muon weight normalization

uncertainty is discussed in section 9.4.1, and the detail of the LCaT muon weight shape uncertainty

is discussed in Section 9.4.2.

uncertainty of the difference between LCaT muon ID and LCaT muon weight

LCaT muon weight shape uncertaintyLCaT muon weight normalization uncertainty
• statistical part
• systematic part

Figure9.6 structure of the uncertainty of the difference between LCaT muon ID and LCaT
muon weight. the uncertainty of the difference between LCaT muon ID and LCaT muon weight
can be separate into the LCaT muon weight normalization uncertainty and the LCaT muon
weight shape uncertainty. Also, he LCaT muon weight shape uncertainty can be separate into
statistical part and systematic part.

9.4.1 LCaT muon weight normalization uncertainty

In this section, the LCaT muon weight normalization uncertainty is estimated by using the

VRs defined in Figure 8.2. In addition, a new VR ,that is close to SR, is defined in figure

9.7 (VR_CloseSR). On the other hand, VR_LowpNN is not used for the estimation of the LCaT

muon weight normalization uncertainty since the expected total number of the background in

VR_LowpNN is strongly affected by the LCaT muon weight shape uncertainty.

Figure 9.8 shows the total number of events using the LCaT muon ID and the expected total

number of events using the LCaT muon weight in each region. In all VRs, the difference between

the LCaT muon ID and the LCaT muon weight is within 10%. Therefore, we apply 10% as the

LCaT muon weight normalization uncertainty.

Definition of CR for normalization factor

As described in Chapter 10 later, in final step, the number of backgrounds are estimated by

fitting. In this case, the LCaT muon weight normalization factor is given in order to rescale

number of background events. A control region (CR_LCaTmuonWeight_Norm) is defined to cal-



9.4 Uncertainty of the difference between LCaT muon ID and LCaT muon estimator 99

VR_LowLarge VR_HighLarge

VR_LowSmall SR

𝑬𝑻𝒎𝒊𝒔𝒔 [𝐆𝐞𝐕]

∆𝝓
(𝒑

𝑻𝒎
𝒊𝒔
𝒔 ,
𝒁∗
)

1.0

200

1.1

180

140

2.0

VR_CloseSR

Figure9.7 Definition of VR_ClosSR. To avoid the signal contamination, low Emiss
T cut and

large ∆ϕ cut than SR are applied.
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Figure9.8 Comparison between the estimated total background,which using the LCaT muon
weight, and the total background, which using the LCaT muon ID, in each VR. The error is
within 10% for all VRs. Therefore, 10% is applied as the LCaT muon weight normalization
uncertainty.

culate the factor. As shown in Figure 9.9, the efficiency of LCaT muon ID does not depend

on ϕ(Emiss
T ,Z∗). It implies that the same factor can be used in SR. Therefore, we can define

CR_LCaTmuonWeight_Norm and VR_LCaTmuonWeight_Norm by separating region in ϕ as shown

in Figure 9.10. Also, VR_LCaTmuonWeight_Norm is used as a region for validation of the fitting.
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efficiency is independent of ∆ϕ. Thus, it is possible to estimate the LCaT muon weight normal-
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Figure9.10 Definition of CR_LCaTmuonWeight_Norm and VR_LCaTmuonWeight_Norm.

9.4.2 LCaT muon weight shape uncertainty

In this section, the LCaT muon weight shape uncertainty is estimated. The shape of the pNN

score depends on the weight function for each variable in eq. (8.3). Figure 9.11 shows the

overview of the estimation method of the uncertainty. The procedure is described below.
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(1) Calculate the pNN score distribution using the LCaT muon weight(ωLCaT,nomi) defined in sec-

tion 8.5.

(2) Fluctuate the value of each weight function in the LCaT muon weight by using error (ε) and

according to eq. 9.1.

(3) Calculate the pNN score using the fluctuated LCaT muon weight (ωLCaT, f lac).

(4) To check only the fluctuation in the shape of the pNN score distribution, normalize pNN score

distribution by the expected number of events when using ωLCaT,nomi.

(5) Evaluate the difference in each bin between the distribution when ωLCaT,nomi is used (nominal

distribution) and the distribution when ωLCaT, f lac is used (toy distribution).

(6) Perform (1) to (5) 1000 times while changing ε, and fit the distribution of the ratio between

nominal and toy by Gauss function in each bin.

(7) The standard deviation of each Gauss function is used as the LCaT muon weight shape uncer-

tainty.

ωvariable
f ract (variable) = ωvariable

norm (variable) + εvariable(variable) (9.1)

The uncertainties estimated in this method depend on the choice of error (ε), which is added to

the LCaT muon weight. The following equations give the ε.

εvariable(variable) ∼ N(0, σvariable(variable))

σvariable(variable) =
√

(σvariable
stat (variable))2 + (σvariable

syst (variable)2

(9.2)

N(µ, σ) means gauss distribution with mean µ and standard deviation σ, and ε is the value

sampled from N(µ, σ). The σvariable
stat is the statistical uncertainty limited by the amount of data

used to create the LCaT muon weight. The σvariable
syst is the systematic error between LCaT muon

ID and LCaT muon weight. In other words, since the LCaT muon weights are created using all

regions of DF, the σvariable
syst is the difference between LCaT muon ID efficiencies in all regions

of DF and SR of SF. To estimate the difference approximately, the difference between the LCaT

muon ID weight created by using all VRs of SF and the LCaT muon weight defined in section 8

(using all regions of DF) is applied as σvariable
syst . The details of σvariable

stat and σvariable
syst are described

in the below paragraph.
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Figure9.11 overview of the estimation method of LCaT muon weight shape uncertainty. The
fluctuation of pNN score distribution due to fluctuating the LCaT muon weight is examined by
the toy experiment. Fit the distribution of ratio between toy and nominal by the Gauss function
and apply its standard deviation as uncertainty.

Statistical part of the LCaT muon weight shape uncertainty

To estimate σvariable
stat , the statistical error in each weight function of the LCaT muon weight

is used. However, errors may be correlated to each other since each weight function is created

from the same data. Therefore, it is examined whether there is a correlation in the distribution

of data. The eq.(9.3) and eq.(9.4) are the Correlation Matrix with vector of (pT ,∆R, Emiss
T , η).

Correlation Matrix(Be f ore LCaTmuonID) and Correlation Matrix(A f ter LCaTmuonID) are

the Correlation Matrix before and after applying the LCaT muon ID, respectively.
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Correlation Matrix(Be f ore LCaTmuonID) =


1 −0.073 0.001 0.001

−0.073 1 0.039 −0.004
0.001 0.039 1 0.001
0.001 −0.004 0.001 1

 (9.3)

Correlation Matrix(A f ter LCaTmuonID) =


1 −0.032 −0.002 −0.017

−0.032 1 0.042 −0.0028
−0.002 0.042 1 0.0058
−0.017 −0.0028 0.0058 1

 (9.4)

Non diagonal terms of the matrix are much smaller than 1 and correlations are found to be

small enough. It means there is no correlation in data distribution. Therefore, It is concluded that

error(ε) can be given to each weight fluctuation independently.

difference between SF and DF as systematic part of the LCaT muon weight shape uncer-

tainty

Next, σvariable
syst is estimated. As mentioned above, The difference between the LCaT muon

weight created using all the VRs of SF and the LCaT muon weight created using all regions

of DF is used as σvariable
syst . Figure 9.12 shows the ratio between the two LCaT muon weights.

Large differences can be found in the region where pT is above 4 GeV, but basically, the ratio

is within ±20%. We apply the difference of the ratio from 1 as σvariable
syst .

result of toy experiment

The σvariable
stat and σvariable

syst defined above were used to run the toy experiment 1000 times. Figure

9.13 shows the uncertainties for each pNN score in SR. approximately 1 to 20 % total uncertainties

are applied as the LCaT muon weight shape uncertainty.

9.4.3 evaluation of the uncertainty

In this section, the estimated the uncertainty of the difference between LCaT muon ID and

LCaT muon weight is evaluated. Figure 9.14 and Figure 9.15 show the background estimation,

its uncertainty and data using LCaT muon ID. Most of the data points are consistent with the

estimation within the range of uncertainty. Therefore, we conclude that the estimation of the

uncertainty is correct.
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(a) Emiss
T (b) η

(c) pT (d) ∆R

Figure9.12 The Ratio between the weights in which LCaT muon estimator created using all
the VRs in SF and the LCaT muon weight created using all regions in DF. The difference of
the ratio from 1 is applied as σvariable

syst .



9.4 Uncertainty of the difference between LCaT muon ID and LCaT muon estimator 105

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 = 1 GeV)θpNN score (

3−
10

2−10

1−10

LC
aT

 m
uo

n 
w

ei
gh

t s
ha

pe
 u

nc
er

ta
in

ty

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 = 2 GeV)θpNN score (

3−
10

2−10

1−10

LC
aT

 m
uo

n 
w

ei
gh

t s
ha

pe
 u

nc
er

ta
in

ty

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 = 3 GeV)θpNN score (

3−
10

2−10

1−10

LC
aT

 m
uo

n 
w

ei
gh

t s
ha

pe
 u

nc
er

ta
in

ty

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 = 4 GeV)θpNN score (

3−
10

2−10

1−10

LC
aT

 m
uo

n 
w

ei
gh

t s
ha

pe
 u

nc
er

ta
in

ty

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 = 5 GeV)θpNN score (

3−
10

2−10

1−10

LC
aT

 m
uo

n 
w

ei
gh

t s
ha

pe
 u

nc
er

ta
in

ty

total

R(DF/SF diff)∆
Pt(DF/SF diff)

Eta(DF/SF diff)

MET(DF/SF diff)

R(stat)∆
Pt(stat)

Eta(stat)

MET(stat)

Figure9.13 The uncertainties from each component for each pNN score in SR. The solid and
dotted lines represent the effect of the systematic part estimated from the difference between
SF and DF, and the statistical part associated with the bin used for creation of the LCaT muon
estimator, respectively.
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(a) pNN-θ = 1 GeV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3−10

2−10

1−10

1

10

210

310

410

510

en
tr

ie
s

VR_LowLarge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pNN Score
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
at

a/
B

kg
 e

st
im

at
io

n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3−10

2−10

1−10

1

10

210

310

410

en
tr

ie
s

VR_HighLarge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pNN Score
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
at

a/
B

kg
 e

st
im

at
io

n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3−10

2−10

1−10

1

10

210

310

410

en
tr

ie
s

VR_LowSmall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pNN Score
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
at

a/
B

kg
 e

st
im

at
io

n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3−10

2−10

1−10

1

10

210

310

410

en
tr

ie
s

SRVR-LowpNN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pNN Score
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
at

a/
B

kg
 e

st
im

at
io

n

(b) pNN-θ = 2 GeV
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(c) pNN-θ = 3 GeV
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(d) pNN-θ = 4 GeV
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(e) pNN-θ = 5 GeV
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Figure9.14 The result of background estimation. The dark red histogram is the distribution of
the background estimated by the LCaT muon weight method, and the black dots are the results
of the data obtained by applying the LCaT muon ID. Good agreement between background
estimation and data is observed, and the most of difference is within systematic uncertainties.
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(a) pNN-θ = 1 GeV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3−10

2−10

1−10

1

10

210

310

410

en
tr

ie
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pNN Score
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
at

a/
B

kg
 e

st
im

at
io

n

(b) pNN-θ = 2 GeV
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(c) pNN-θ = 3 GeV
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(d) pNN-θ = 4 GeV
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Figure9.15 The result of background estimation in VR_CloseSR. The dark red histogram
is the distribution of the background estimated by the LCaT muon weight method, and the
black dots are the results of the data obtained by applying the LCaT muon ID. Good agreement
between background estimation and data is observed, and the most of difference is within
systematic uncertainties.
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10. Statistical treatment

There are several interpretations for the obtained measurement results. For example, when the

observed result is more than the background estimation, it can be interpreted either because there

is a signal or because there is an error in the background estimation. In order to determine the

interpretation, we have to determine the unknowns parameters. One of the unknown parameters is

signal strength. Also, the LCaT muon weight normalization factor, which determines the number

of backgrounds, can change its value within its uncertainty. Section 10.1 describes how to find the

values of these unknown parameters that best explain the obtained observed results. The strength

of the signal is denoted as µ, and the other unknown parameters are denoted as the nuisance pa-

rameter (θ). Also, The initial value of the θ and its uncertainty are denoted as θ̃ and σ, respectively.

In addition, Section 10.2 describes how to evaluate the obtained results.

10.1 Profile Likelihood

To determine the nuisance parameter(θ), we define likelihood(L(x, θ)) and find θ such that

L(x, θ) is maximized. The definition of L(x, θ) is as follows.

L(x, θ) =
N∏

region

(Eregion(θ))xregion

xregion
e−Eregion(θ) · p(θ|θ̃) (10.1)

Where x is the number of observed events, and Eregion(θ) is the number of estimated back-

grounds. p(θ|θ̃) is a term that penalizes θ when its value is differ significantly from the initial

predicted value(θ̃). The detail is described in 10.1.1. The first part of eq.(10.1) is a Poisson dis-

tribution function, which expresses the probability of observing xregion when the expected value

of background is Eregion(θ). Therefore, maximizing the L(x, θ) means that the θ with the highest

probability of observing xregion is given while keeping the low penalty from p(θ|θ̃). Such θ is

denoted as θ̂ and is defined by the following equation.

θ̂ = arg max
θ

L(x, θ) (10.2)

When considering signal, Eregion(µ, θ) defined in eq.(10.3) is used instead of Eregion(θ).

Eregion(µ, θ) = µsregion(θ) + bregion(θ) (10.3)

µ is the signal strength and is introduced as a free parameter. In other words, no penalty is

applied to µ. The likelihood with µ is also defined as eq.(10.4)
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L(x, µ, θ) =
N∏

region

(Eregion(µ, θ))xregion

xregion
e−Eregion(µ,θ) · p(θ|θ̃) (10.4)

µ and θ that maximize L are also denoted as µ̂ and θ̂. The following equation defines these.

(µ̂, θ̂) = arg max
θ

L(x, θ, µ) (10.5)

The profile likelihood method[65] is used to evaluate the significance and calculate the upper

limit for the signal strength(µ). Initially, this method maximizes L(x, θ, µ) with certain value of

the signal strength. θ that maximize L with specific µ is denoted as ˆ̂θ. Also, we define the profile

likelihood ratio in eq.(10.12).

λ(µ) =
L(x, µ, ˆ̂θ)
L(x, µ̂, θ̂)

(10.6)

The λ(µ) takes values from 0 to 1, and λ(µ) = 1 means a good agreement between the data and

the hypothesized µ.

10.1.1 Treatment of systematic uncertainties

In this section, we define p(θ|θ̃) as the penalty for θ. The measurement of θ given before fitting

with likelihood is denoted as θ̃, and its uncertainty is denoted as σ. Also, the conditional prob-

ability density function as a function of θtruth under the θ̃ is denoted as ρ(θtruth|θ̃). We consider

ρ(θtruth|θ̃) as the posterior distribution in Bayse’ theorem, and the Bayse’ theorem is expressed by

eq. (10.7).

ρ(θtruth|θ̃) = p(θ̃|θtruth) × π(θtruth) (10.7)

where p(θ̃|θtruth) is called the likelihood function and π(θtruth) is called the prior distribution. We

assume that π(θtruth) has a flat distribution. It means that we don’t make any assumptions about

the values that θtruth should take. Therefore, eq.(10.7) can be expressed as ρ(θtruth|θ̃) = p(θ̃|θtruth).

p(θ̃|θtruth) expresses the conditional probability density function as a function of θ̃ under the θtruth.

Gauss function and Gamma function is used as the probability density function. Thus, ρ(θtruth|θ̃)
can be expressed as eq.(10.8) or eq.(10.9). For systematic uncertainties, the Gauss function is

assumed. On the other hand, It is known that the Gamma function is more proper for statistical

uncertainties [66].

ρ(θtruth|θ̃) = p(θ̃|θtruth) =
1
√

2π
exp (− (θtruth − θ̃)2

2σ2 ) (10.8)
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ρ(θtruth|N) = p(N |θtruth) =
θN

truth

N!
exp θtruth (10.9)

From the above, when θ̃ is measured, the probability that θtruth is θ can be calculated by the

following equation.

p(θ|θ̃) =
∏

i

p(θi|θ̃) (10.10)

eq.(10.10) works as a penalty term in the likelihood(eq.(10.1)).

10.2 Hypothesis testing

This section describes how to evaluate the obtained observed data. For convenience, the profile

likelihood ratio is converted by the following equation.

tµ = −2 ln λ(µ) (10.11)

The tµ is called test statistics and used for the statistical test. tµ = 0 means a good agreement

between the data and the hypothesized µ, and the larger tµ means a worse agreement. As a test of

the hypothesized µ, we define the p-value as follows.

pµ =
∫ ∞

tµobs

f (tµ|µ)dtµ (10.12)

where f (tµ|µ) is the probability density function of tµ, Also, by definition, pµobs = 0.5 means that

the data and hypothesis µ are in good agreement. f (tµ|µ) is obtained by the asymptotic formula

based on the Asimov dataset[65]. Schematic diagrams of f (tµ|µ) and pµobs are shown in Figure

10.1.

In this thesis, we will perform the following test.

Discovery test

In the discovery test, the p-value (p0) with f (tµ|µ = 0) is used to claim discovery when signifi-

cant excess is observed against background estimation. When there is significant excess, p0 takes

a small value. p0 < 0.0027 and p0 < 6 × 10−7 correspond to 3σ and 5σ, respectively.

Upper limit test

In the upper limit test, the exclusion of the signal hypothesis is claimed when the results of data

and background estimation are consistent. To claim the exclusion, we define the confidence level

in eq.(10.15).
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Figure 1: (a) Illustration of the relation between the p-value obtained from an observed value of
the test statistic tµ. (b) The standard normal distribution ϕ(x) = (1/

√
2π) exp(−x2/2) showing the

relation between the significance Z and the p-value.

For a model where µ ≥ 0, if one finds data such that µ̂ < 0, then the best level of
agreement between the data and any physical value of µ occurs for µ = 0. We therefore
define

λ̃(µ) =















L(µ,ˆ̂θ(µ))

L(µ̂,θ̂)
µ̂ ≥ 0,

L(µ,ˆ̂θ(µ))

L(0,ˆ̂θ(0))
µ̂ < 0 .

(10)

Here ˆ̂
θ(0) and ˆ̂

θ(µ) refer to the conditional ML estimators of θ given a strength parameter
of 0 or µ, respectively.

The variable λ̃(µ) can be used instead of λ(µ) in Eq. (8) to obtain the corresponding test
statistic, which we denote t̃µ. That is,

t̃µ = −2 ln λ̃(µ) =















−2 ln L(µ,ˆ̂θ(µ))

L(0,ˆ̂θ(0))
µ̂ < 0 ,

−2 ln L(µ,ˆ̂θ(µ))

L(µ̂,θ̂)
µ̂ ≥ 0 .

(11)

As was done with the statistic tµ, one can quantify the level of disagreement between the
data and the hypothesized value of µ with the p-value, just as in Eq. (9). For this one needs
the distribution of t̃µ, an approximation of which is given in Sec. 3.4.

Also similar to the case of tµ, values of µ both above and below µ̂ may be excluded by a
given data set, i.e., one may obtain either a one-sided or two-sided confidence interval for µ.
For the case of no nuisance parameters, the test variable t̃µ is equivalent to what is used in
constructing confidence intervals according to the procedure of Feldman and Cousins [8].

2.3 Test statistic q0 for discovery of a positive signal

An important special case of the statistic t̃µ described above is used to test µ = 0 in a class
of model where we assume µ ≥ 0. Rejecting the µ = 0 hypothesis effectively leads to the
discovery of a new signal. For this important case we use the special notation q0 = t̃0. Using
the definition (11) with µ = 0 one finds

6

Figure10.1 An example of the tµ distribution and pµobs

CLb =

∫ ∞

tµobs

f (tµ|µ)dtµ = pµ (10.13)

CLb =

∫ ∞

tµobs

f (tµ|µ = 0)dtµ = p0 (10.14)

CLs =
CLs+b

CLb
=

pµ
p0

(10.15)

When a CLs value is less than 0.05, its signal hypothesis is excluded at the 95% confidence

level.

In this test, we select one SR out of the SRs listed in Table7.5 and fit it simultaneously with

CR. S 95
exp and S 95

obs are denoted as the expected and observed excluded number of signal events in

selected SR. In other words, the number of signal events in the hypothesized signal for which the

p-value is 0.05. Also, ε is denoted as the efficiency of signal event entering the SR, and the visible

cross section is defined as the cross section that includes the efficiency by the following equation.

< εσ >95
obs=

S 95
obs∫
Ldt

(10.16)

where
∫

Ldt is integrated luminosity. This visible cross section is a restriction that does not

strongly depend on the scenario of the Beyond Standard Model(BSM).

Exclusion test

In this test, we assume a SUSY scenario and use the shape information of the pNN score. In

other words, all SRs and CRs are fit simultaneously to evaluate the limit. Unlike the Upper limit
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test, it strongly depends on the model of BSM, but it can calculate a more tight limit. As same

with the Upper limit test, we exclude the scenarios at the 95% confidence level.
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11. Result

This chapter describes the result of unblinding Signal Regions and its interpretation. The def-

inition of each SR are listed in Table 7.5. Here, we have tested various hypothesis (see 10.2)

using these results. The results of each test is described in sections from 11.1 to 11.3, and the

interpretations for pMSSM is discussed in section 11.4.

11.1 Background only fit

In this section, the results of the background only fit are discussed. In this fit, the value of the

nuisance parameter is determined using Control Region（CR) only. The number of background

events is estimated by extrapolated the fitted shape to the SR. Then it is compared to the observed

number of events.

Fig.11.1 shows the number of observed events with estimated backgrounds. The dark red his-

togram in the upper figure is the estimated background, and the black dots with error bars are

observed data. The lower figure shows the significance of the difference between observed data

and estimated background, which is calculated using the formula in Ref.[67]. All pNN-θ results

show good agreement between background and data. It means that background estimation is done

well. The largest excess is 1.98σ at SR-pNNScore-F(0.9< pNNscore < 1.0) with pNN-θ=3 GeV,

and the largest deficit is 1.71σ at SR-pNNScore-C(0.6< pNNscore < 0.7) with pNN-θ=1 GeV .

Large excesses are re-evaluated in the Discovery test (section 11.2).

11.2 Discovery test and Upper limit test

This section describes the Discovery test and Upper limit test. In the Discovery test, the the

p-value in the null hypothesis is evaluated by simultaneously fitting with CR and one SR. If small

p-value is obtained, the null hypothesis is rejected and the existence of a new particle is suggested.

Conventionally, we may declare "discovery" with p0 < 6× 10−7. In case of no discovery, the 95%

CL upper limit of the visible cross section (eq. 10.16) can be estimated in the Upper limit test.

Table11.1-11.5 shows the results of Discovery test and Upper limit test. The p-values are shown

in the last column of the tables. The smallest p-value is 0.024 at SR-pNNScore-F with pNN-θ=3

GeV. The p-value corresponds to 1.97σ, which dose not reach to claim existence of a new particle.

In addition, an upper limit to the visible cross section is given. The 95 % CL upper limit of cross
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section at SR-pNNScore-F with pNN-θ=3 GeV is 0.136fb.
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(d) pNN-θ = 4 GeV
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(e) pNN-θ = 5 GeV
Figure11.1 The result of background estimation in each SRs and each pNN-θ as a function
of the pNN score. The dark red histogram is the distribution of the background estimated by
the LCaT muon weight method, and the black dots are observed events in the pp collision data.
The lower plot shows significance between data and estimated background. Good agreement
is observed, and the largest excess is 1.98σ at SR-pNNScore-F(0.9< pNNscore < 1.0) with
pNN-θ = 3 GeV



11.2 Discovery test and Upper limit test 115

Table11.1 The results of upper limit and discovery test with pNN θ = 1 GeV. Left to right:
The observed number of events(Nobs), the expected number of events(Nexp), 95% CL upper
limits on the visible cross section

(
⟨ϵσ⟩95

obs

)
and on the number of signal events

(
S 95

obs

)
, the 95%

CL upper limit on the number of signal events
(
S 95

exp

)
, given the expected number (and ±1σ

deviations from the expectation) of background events. The last column calculated for SR with
Nobs > Nexp. It indicates the discovery p-value (p(s = 0)) and significance.

Signal Region (pNN-θ = 1 GeV) Nobs Nexp ⟨ϵσ⟩95
obs [fb] S 95

obs S 95
exp p0

SR-pNNScore-F 2 3.007 ± 0.759 0.029 4.0 5.0+2.7
−1.7 -

SR-pNNScore-E 3 3.072 ± 0.438 0.035 4.8 4.9+2.7
−1.6 -

SR-pNNScore-D 1 1.584 ± 0.208 0.024 3.3 3.9+2.4
−1.4 -

SR-pNNScore-C 0 1.442 ± 0.195 0.017 2.4 3.8+2.3
−1.4 -

SR-pNNScore-B 1 1.386 ± 0.184 0.024 3.3 3.7+2.3
−1.3 -

SR-pNNScore-A 1 1.130 ± 0.161 0.024 3.4 3.5+2.2
−1.3 -

Table11.2 The results of upper limit and discovery test with pNN θ = 2 GeV.

Signal Region (pNN-θ = 2 GeV) Nobs Nexp ⟨ϵσ⟩95
obs [fb] S 95

obs S 95
exp p0

SR-pNNScore-F 16 12.093 ± 1.084 0.087 12 8+4
−2.6 0.15 (1.02σ)

SR-pNNScore-E 8 9.002 ± 0.671 0.047 6 7+4
−2.3 -

SR-pNNScore-D 3 4.938 ± 0.418 0.030 4.2 5.8+3.0
−1.9 -

SR-pNNScore-C 4 3.103 ± 0.306 0.042 5.8 4.9+2.7
−1.7 0.31 (0.48σ)

SR-pNNScore-B 3 2.219 ± 0.227 0.037 5.2 4.3+2.5
−1.5 0.31 (0.49σ)

SR-pNNScore-A 2 1.894 ± 0.213 0.030 4.2 4.1+2.4
−1.4 0.47 (0.07σ)

Table11.3 The results of upper limit and discovery test with pNN θ = 3 GeV.

Signal Region (pNN-θ = 3 GeV) Nobs Nexp ⟨ϵσ⟩95
obs [fb] S 95

obs S 95
exp p0

SR-pNNScore-F 26 16.814 ± 1.237 0.136 19 10+5
−3.0 0.02 (1.97σ)

SR-pNNScore-E 17 17.025 ± 1.144 0.069 10 10+5
−3.0 -

SR-pNNScore-D 10 10.683 ± 0.797 0.053 7 8+4
−2.5 -

SR-pNNScore-C 7 7.536 ± 0.571 0.046 6.3 6.8+3.4
−2.2 -

SR-pNNScore-B 7 5.325 ± 0.445 0.055 7.6 6.0+3.1
−1.9 0.25 (0.68σ)

SR-pNNScore-A 4 4.380 ± 0.376 0.037 5.1 5.5+3.0
−1.8 -
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Table11.4 The results of upper limit and discovery test with pNN θ = 4 GeV.

Signal Region (pNN-θ = 4 GeV) Nobs Nexp ⟨ϵσ⟩95
obs [fb] S 95

obs S 95
exp p0

SR-pNNScore-F 22 17.311 ± 1.233 0.101 14 10+5
−3.0 0.15 (1.03σ)

SR-pNNScore-E 20 25.142 ± 1.499 0.06 8 12+5
−3.5 -

SR-pNNScore-D 24 17.777 ± 1.202 0.113 16 10+5
−3.0 0.09 (1.34σ)

SR-pNNScore-C 14 11.303 ± 0.824 0.076 11 8+4
−2.5 0.22 (0.75σ)

SR-pNNScore-B 9 8.405 ± 0.630 0.055 7.7 7.1+3.6
−2.3 0.42 (0.20σ)

SR-pNNScore-A 3 6.370 ± 0.504 0.028 3.9 6.4+3.3
−2.1 -

Table11.5 The results of upper limit and discovery test with pNN θ = 5 GeV.

Signal Region (pNN-θ = 5 GeV) Nobs Nexp ⟨ϵσ⟩95
obs [fb] S 95

obs S 95
exp p0

SR-pNNScore-F 19 17.474 ± 1.220 0.080 11 10+5
−3.0 0.37 (0.35σ)

SR-pNNScore-E 32 30.515 ± 1.831 0.10 14 13+6
−4 0.40 (0.25σ)

SR-pNNScore-D 23 22.925 ± 1.390 0.08 11 11+5
−3.3 0.50 (0.01σ)

SR-pNNScore-C 13 14.901 ± 0.958 0.055 8 9+4
−2.8 -

SR-pNNScore-B 10 10.461 ± 0.738 0.053 7 8+4
−2.5 -

SR-pNNScore-A 12 9.800 ± 0.712 0.069 10 8+4
−2.4 0.25 (0.66σ)

11.3 Exclusion test for Higgsino like LSP scenario

This section describes the result of the exclusion test. Figure 11.2 shows the expected exclusion

contour in the mass of χ̃0
2 and ∆m(χ̃0

1, χ̃
0
2) plane in Higgsino like LSP scenario. Pink, orange,

green, blue, and purple are the results when pNN-θ is 1 GeV, 2 GeV, 3 GeV, 4 GeV, and 5 GeV,

respectively. It can be seen that the smaller pNN-θ has high sensitivity for smaller ∆m(χ̃0
1, χ̃

0
2), and

the larger pNN-θ has high sensitivity for larger ∆m(χ̃0
1, χ̃

0
2). The contour that excludes the highest

χ̃0
2 mass is one with pNN-θ = 3 GeV, where χ̃0

2 mass below 137 GeV is excluded for ∆m = 3 GeV.

Figure 11.3 shows the observed and expected exclusion limit in each pNN-θ. (Note : some

of the contours are broken due to lack of signal MC samples.) All pNN-θ results ,except for

the pNN-θ =3 GeV, are within ±1σ from the expected values. The pNN-θ =3 GeV result has

a smaller excluded region due to the 1.9σ excess in SR-pNNScore-F, but the region between

observed limit and -1 σ with pNN-θ =3 GeV is excluded by other pNN-θ results. Therefore, the
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Figure11.2 exclusion contours in each pNN-θ (Higgsino like LSP scenario). Pink, orange,
green, blue, and purple are the results when pNN-θ is 1 GeV, 2 GeV, 3 GeV, 4 GeV, and 5 GeV,
respectively.

excess in textttSR-pNNScore-F is unlikely caused by production of Higgsino like LSP.

Figure 11.4 shows the observed and expected contour that connects the highest sensitivity re-

sults in each ∆m from results with pNN-θ = 2,3,4,5 GeV.with the band of１ σ

As the result, the observed exclusion limit reaches to down to ∆m = 1.4 GeV and up to m(χ̃0
2)

= 125 GeV against expected exclusion limit down to ∆m = 1.2 GeV and up to m(χ̃0
2) = 137 GeV.

Both observed and expected are most sensitive for ∆m is around 3 GeV. The reason is the balance

of the following three factors.

The first is the number of backgrounds. As discussed in section 7.3.1, the mass distribution of

the off-shell Z boson is strongly dependent on ∆m. It implies that events with an off-shell Z boson,

with smaller mass than ∆m, are the background. Therefore, if ∆m is smaller, the mass range for

off-shell Z boson is severely limited, and the number of backgrounds is reduced. As a result, a

higher sensitivity can be obtained in smaller ∆m.

The second is the efficiency of the standard muon ID. In our analysis called as ’1 standard

muon + 1 LCaT muon search’, one muon from Z* is identified as the signal muon and another

is identifed by LCaT muon ID. In other words, the lower pT muon does not satisfy the standard
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(c) pNN-θ = 3 GeV
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(d) pNN-θ = 4 GeV
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Figure11.3 exclusion contours in each pNN-θ for the Higgsino like LSP scenario. The red
line is observed limit, and the blue dashed line shows the nominal value of the expected ex-
clusion contour. The yellow band represents the uncertainty of ± 1 σ. (Note : some of the
contours are broken due to lack of signal MC samples.)
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Figure11.4 exclusion contours in highest sensitivity for the Higgsino like LSP scenario. The
red line is observed limit, and the blue dashed line shows the nominal value of the expected
exclusion contour. The yellow band represents the uncertainty of ± 1 σ. The Higgsino scenario
is excluded up to 125 GeV in χ̃0

2 and down to 1.4 GeV in ∆m.

muon ID, but only the higher pT muon does. The efficiency for the lower pT muon for the standard

muon ID becomes higher in the larger ∆m region. It means that events may not be classified as

1 standard muon and 1 LCaT muon. This is why the sensitivity decrease for larger ∆m. On the

other hand, in the smaller ∆m region, the higher pT muon cannot be identified as a standard muon

because its pT is low. As a result, the sensitivity decreases also for smaller ∆m region.

The third is the efficiency of the LCaT muon ID. As seen in Figure 6.14, the efficiency of LCaT

muon ID has a peak around 3 GeV. Therefore, when ∆m is small, the lower pT muon with pT less

than 2 GeV becomes dominant, and the sensitivity decreases. Similarly, when ∆m is large, the

lower pT muon with pT higher than 2 GeV increases, and sensitivity decreases.

Due to the balance of the above three factors, the highest sensitivity is given at 3 GeV.

11.4 Impact on pMSSM

This section describes the scenario of pMSSM when neutralino is present in the expected ex-

clusion contour discussed in section 11.3. For the evaluation of dark matter, MiscOMEGAs[68] is
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used, and FeynHiggs[69] is used for the evaluation of the mass of SM higgs boson. In addition,

muon magnetic anomaly is evaluated using GM2Calc[70].

11.4.1 Higgsino like LSP scenario

To evaluate the Higgsino like LSP scenario, we have scanned parameters of the model for

ranges are summarized in table 11.6. The relic density of the dark matter (ΩDMh2) is known to

be 0.12, and the mass of the SM higgs boson is 124.97 ± 0.24 GeV[71]. The entries, which

Ωχ̃0
1
h2 is less than 0.12 and the mass of the SM Higgs is in agreement with the measurement in

LHC experiments within the error, are shown as black dots in Figure 11.5. The muon magnetic

anomaly observed in the Fermilab Muon g-2 Experiment is aµ(Exp) - aµ(SM) = (251± 59)×10−11

(aµ≡ (gµ−2)/2) [7]. The entries that can explain the muon magnetic anomaly within the error are

shown as blue dots in Figure 11.5. In addition, the entries that satisfy the above three conditions

and are excluded by the 1 standard muon + 1 LCaT muon search are shown as red dots.

Table11.6 Range of the pMSSM parameter for Higgsino like LSP scenario

parameter range

tan β [1, 200]

MA [0, 5000]

µ [100, 500]

M1 [100, 5000]

M2 [100, 5000]

M3 [1000, 10000]

mq̃L [1000, 5000]

mũR [1000, 5000]

md̃R [1000, 5000]

ml̃L [0, 1000]

parameter range

ml̃R [ 0, 1000]

mQ̃L [0, 2000]

mt̃R [0, 2000]

mb̃R [0, 2000]

mτ̃L [0, 2000]

mτ̃R [0, 2000]

At [-8000, 8000]

Ab [-2000, 2000]

Aτ [-2000, 2000]

Under the same conditions as in Figure 11.5, the distribution in µ - χ̃0
1 mass plane is shown in

(a) of Figure 11.6. Also, the distributions in µ - Ωχ̃0
1
h2 planes are shown in (b) of figure 11.6.

In the small ∆m region, the χ̃0
1 mass is strongly dependent on µ. As shown in (a) of figure 11.6,

exclusion of the Higgsino like LSP in the region from 90 GeV to 125 GeV in χ̃0
1 mass is equivalent

to exclude the Higgsino like LSP in the region from 90 to 125 GeV in µ. Additionally, Dark matter

is also evaluated ((b) of figure 11.6). Ωχ̃0
1
h2 is also strongly depend on µ.
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Figure11.5 The result of the parameter scan in the Higgsino like LSP scenario. The black
dots are entries that satisfy the conditions of dark matter and SM higgs mass. The blue dots
are the entries that can additionally explain the muon magnetic anomaly out of the black dots.
The red dots are the entries out of the blue dots and excluded contour by 1 standard muon + 1
LCaT muon search. The gray area indicates the area that has already been excluded, and the
orange line shows the exclusion contour of the SL search.

The excluded region by the 1 standard muon + 1 LCaT muon search corresponds to the region

where two % of DM is χ̃0
1 and the remaining 98% consists of other particles. Therefore, It is

suggested that the scenario in which DM is consisted by Higgsino like LSP and another particle

such as SUSY axion [72] should contain χ̃0
1 at least 2%.
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Ωh2(right). The color coding is same as figure11.5.



123

12. Conclusion

A search for neutralinos using 139 fb−1 of pp collision data at
√

s = 13TeV collected in the

LHC-ATLAS experiment is presented in this thesis. Production of neutralinos where a χ̃0
2 decays

into a χ̃0
1 and two muons are searched. Especially, we have focused a unexplored scenario where

∆m(χ̃0
2, χ̃

0
1) is between 1 and 5 GeV.

The search neutralinos with small ∆m regions was a very challenging analysis for the following

three reasons. First, low-pT muons is dominant and the muon identification efficiency is low in

the low-pT region. Second, it is not easy to develop an analysis method that is optimized for all

the ∆m regions from 1 to 5 GeV since the kinematics of the signal varies greatly depending on

∆m. Third, the difference between MC simulation and data is large in the low-pT region. It makes

it difficult to use MC simulation for background estimation.

In order to solve these difficulties, a new DNN-based low-pT muon dedicated algorithm using

the calorimeter information has been developed to improve the poor identification efficiency for

the low-pT muons. Its efficiency is 2 to 10 times of conventional methods. Additionally, high sen-

sitivity for a wide ∆m region can be accomplished by using pNN with ∆m as input. Furthermore,

an all data-driven background estimation method that applies the LCaT muon weight to anti-LCaT

muon ID events is developed for background estimation. It enables background estimation with

small systematic errors.

As a result, no significant excess over the estimated background has observed. Therefore, the

exclusion limits to the Higgsino-like LSP scenario at the 95% confidence level have been calcu-

lated. The limit reaches a maximum of 125 GeV in χ̃0
2 and 1.4 GeV in ∆m(χ̃0

2, χ̃
0
1). This is the

result of the world’s highest sensitivity. This result limits the parameters of the pMSSM with Hig-

gsino like LSP scenario. Higgs mass parameter (µ) is rejected up to 125 GeV, and it is suggested

that more than 2% of Higgsino like LSP is contained in the dark matter.
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