南野(京大) 第3回 B02班若手ミニ研究会 2015年5月17日 @ 神戸大

自己紹介

- 南野彰宏
- 大学院:東大宇宙線研神岡グループ
 -暗黒物質探索(XMASS)、(ニュートリノ(SK、K2K))
- ・研究員、助教:京大高エネ
 - -ニュートリノ (T2K、SK、Hyper-K、AXEL)

はじめに

- 12年前にやった実験なので、ほとんど忘れてます。
- 2004年に書いた修論を読みながら、スライド を作りました。
- いろいろと説明等が間違ってるかもしれないので、変だと思ったら質問してください。

研究の目的と背景

- 目的
 - XMASS実験における中性子バックグラウンドの理解
- 背景
 - 2003年当時、神岡鉱山内(2700 m.w.e)での環境中 性子測定は、東大の大谷氏の1994年の測定を最後 になかった。

この発表での中性子の分類

- 運動エネルギーによる分類
 - <u>熱中性子</u>: E < 0.5 eV
 - <u>熱以外の中性子</u>: E > 0.5 eV
 - 高速中性子: E > 500 keV
- ・ 発生場所による分類
 環境中性子: 検出器(遮蔽体も含む)以外から発生
 環境以外の中性子: 検出器(遮蔽体も含む)内部 から発生

Xe同位体による熱中性子捕獲
 – 0vββ崩壊探索、太陽ニュートリノ(pp、⁷Be)のBG

同位体	存在比	捕獲後	断面積 [b]	半減期	崩壊モード	E(keV)
124Xe	0.10	^{125m}Xe	28	57.8sec	IT(Isomeric transition)	$140.8(\gamma)$
						$111.8(\gamma)$
^{124}Xe	0.10	^{125}Xe	165	$16.9 \ hour$	軌道電子捕獲	$243.4(\gamma)$
						$188.4(\gamma)$
^{126}Xe	0.09	^{127m}Xe	0.45	$69.2 \ sec$	IT	$124.7(\gamma)$
						$172.4(\gamma)$
^{126}Xe	0.09	^{127}Xe	3.5	36.4day	軌道電子捕獲	$375.0(\gamma)$
						$202.9(\gamma)$
^{128}Xe	1.91	^{129m}Xe	0.48	8.88 day	IT	$39.58(\gamma)$
						$196.6(\gamma)$
^{130}Xe	4.1	^{131m}Xe	0.45	11.8 day	IT	$163.9(\gamma)$
^{132}Xe	26.9	^{133m}Xe	0.05	2.19 day	IT	$233.2(\gamma)$
^{132}Xe	26.9	^{133}Xe	0.45	5.24 day	<i>β</i> ⁻ 崩壊	$346.0(\beta)$
						$81.0(\gamma)$
^{134}Xe	10.4	^{135m}Xe	0.003	15.3min	IT	$526.6(\gamma)$
^{134}Xe	10.4	^{135}Xe	0.265	9.14hour	<i>β</i> ⁻ 崩壊	$910.0(\beta)$
						$249.8.0(\gamma)$
$\overline{^{136}Xe}$	8.9	$\overline{^{137}Xe}$	0.26	3.8min	<i>β</i> [−] 崩壊	$4170.0(\beta)$
						$3720.0(\beta)$
						$455.5(\gamma)$

表 3.1: Xe の同位体による熱中性子の捕獲 [21]

半減期 < 36.4日

液体Xe中の熱中性子BG

Xe同位体による熱中性子捕獲

- 0vββ崩壊探索、太陽ニュートリノ(pp、⁷Be)のBG

図 4.17: 液体 Xe 中の熱中性子によるバックグラウンド (*) 分解能はp.e.数の統計誤差⁸

液体Xe中の高速中性子BG

- ・Xe原子核と弾性散乱
 - -暗黒物質探索のBG

<u>弾性散乱後のXe原子核の最大の運動エネルギー</u>

$$E_{Xe}|_{\theta=\pi} = E_n \times \frac{m_{Xe}}{m_n} \frac{4}{\left(\frac{m_{Xe}}{m_n} + 1\right)^2}$$
$$= 3.03 \times 10^{-2} E_n$$

 $E_n = 1 \text{ MeV} のとき、 E_{Xe|\theta=\pi} = 30 \text{ keV} = 6 \text{ keVee}$ (Quenching factor = 0.2を仮定)

中性子の運動エネルギー

液体Xe中の高速中性子BG

Xe原子核と弾性散乱
 - 暗黒物質探索のBG

液体Xe中の高速中性子BG

・ Xe原子核と弾性散乱

-暗黒物質探索のBG

図 4.18: 液体 Xe 中の高速中性子によるバックグラウンド

³He比例計数管

• ³Heは熱中性子捕獲に大きな断面積

 ${}^{3}He+n
ightarrow p+T$ 3 Heでは熱中性子の検出が優勢。

以下の解析では³He検出器で検出された 全事象を熱中性子起源と仮定。

³He比例計数管

• 測定原理

$$^{3}He + n \rightarrow p + T$$

Q値(764 keV)を、運動量保存則から以下のように分け合う。

$$E_p = 573 \, keV$$
$$E_T = 191 \, keV$$

pとTは、³Heガスをイオン化しながら運動エネルギーを失う。 その時に生成された電子を電場で陽極線までドリフトし、 陽極線付近の強電場で増幅し電流として読みだす。

³He比例計数管

- 測定に用いた比例計数管
 - Reuter-Stokes社のモデル番号P4-1614-204
 - SEIKO EG&Gが代理店
 - スペック(メーカーで較正した値)
 - 熱中性子感度: 102.0 cps/n cm⁻² s⁻¹
 - 陽極電圧のプラトー領域: 1150V-1500V

³He検出器のデータ収集系

- Preamplifier: ORTEC 142PC
 - 使用した比例計数管に最適なものとして購入(まだ神岡に あるはず)
- Multi Channel Analyzer: SEIKO EG&G MCA7700
 - SKの備品(まだある?)
 - Shaping Amplifierの設定: 時定数 6µs

³He検出器の信号

 $E_p = 573 \, keV$ $E_T = 191 \, keV$

 $^{3}He + n \rightarrow p + T$

- 壁際効果
 - 壁際で³He(n,p)反応が起こると、pとTはすべての運動エネ ルギーを失う前に検出器外に飛び出す。
 - この効果のため、3He検出器の信号は764 keVのピークから低いエネルギーまで尾をひく。

³He検出器の較正

- 熱中性子感度: 102.0 cps/n cm⁻² s⁻¹ (メーカー較正値)
- スペクトルの形
 - 中性子線源252Cfからの中性子をポリエチレンブロックで減 速させ熱中性子化し、検出器に入射

³He検出器の熱以外の中性子測定

- 熱以外の中性子を減速させて測定
 中性子のエネルギースペクトラムを直接測定できない
- ³He検出器を減速材で包んだときの感度(*)

- ポリエチレン球で包んだときの応答関数 (NIM A321 (1992) 298)

図 4.9: 様々な厚さのポリエチレンで包んだときの³He 比例計数管 (P4-1614-204) の各エネルギー の中性子に対する感度 (ポリエチレンの厚さ:黒=9.71cm、赤=10.0cm、青=11.0cm、緑=12.25cm)

³He検出器の熱以外の中性子測定

- 神岡地下実験室での主な中性子発生源
 - 岩盤中の²³²Th/²³⁸U系列が核分裂
 - 岩盤中の²³²Th/²³⁸U系列の崩壊に伴う(α,n)反応
 - 宇宙線µによる原子核破砕
- 神岡地下実験室の中性子のエネルギースペクトル
 無限の減速材中に中性子源が一様に分布
 減速材中での吸収は少ない(岩盤中の水は少量)
 という条件が満たされるので、1/E則(*)に従うと仮定。
 (さらに中性子のエネルギーの上限を10MeVと仮定。)

$$N(E) = \frac{A}{E}$$
 (*) NIM A 357 (1995) 524

- 熱中性子の測定感度@神岡地下(この測定のBG)

$$S_{thermal} = 1.20 \ cps/n \ cm^{-2} \ s^{-1}$$

- 場所: Super-Kから約50mのクリーンルーム
- 熱中性子フラックスの測定
 - 装置: ³He検出器
 - 測定期間: 5.6日

- 場所: Super-Kから約50mのクリーンルーム
- 熱以外の中性子フラックスの測定
 - 装置:³He検出器 + 10cm厚のポリエチレン

- 測定期間: 10.0日

- 遮蔽体中での測定
 - ポリエチレン15cm、ホウ酸5cm、鉛15cm、無酸素銅5cm

執 < $4.80 \times 10^{-7} n \, cm^{-2} \, s^{-1}$ 熱以外 < $3.42 \times 10^{-6} n \ cm^{-2} \ s^{-1}$ $< 8.24 \times 10^{-7} \ n \ cm^{-2} \ s_{24}^{-1}$ 高速

まとめ

表 4.1: 中性子フラックス (単位 : n cm⁻² s⁻¹)、誤差は統計誤差

場所	熱中性子	熱以外の中性子
神岡鉱山内 (2700 m.w.e.)	$8.26(\pm 0.58) \times 10^{-6}$	$1.15(\pm 0.12) \times 10^{-5}$
神岡鉱山内遮蔽体中	$< 4.80 \times 10^{-7} (95\% \ C.L.)$	$< 3.42 \times 10^{-6} (95.45\% \ C.L.)$
大谷氏の測定		
地上 (本郷キャンパス)[48]	1.4×10^{-3}	1.2×10^{-2}
神岡鉱山内 (2700 m.w.e.)[48]	1.4×10^{-5}	2.8×10^{-5}
地上 [49]	1.4×10^{-3}	1.2×10^{-2}
Gran Sasso(3950 m.w.e)[49]	$2.05(\pm 0.06) \times 10^{-6}$	$3.84(\pm 0.58) \times 10^{-6}$

神岡地下実験室

- 熱中性子フラックスは地上の~1/100
- 熱以外のフラックスは地上の~1/1000
- 大谷氏の測定結果(1994年)とオーダーで一致

やり残し

- ³He検出器起源のBGの理解
- 神岡地下の他の場所でのフラックス測定
- 遮蔽体中での有限値でのフラックス測定
- 液体シンチ検出器を用いた測定
 - –検出器を作って、波形弁別による中性子とγの弁別能力の評価までを行ったが、液シンの熱膨張で検出器を壊してしまった。。。
- ・系統誤差の見積り

まとめ

- 2003年に神岡地下実験施設で中性子フラックスの測定を行った。
- 1994年 -> 2003年 -> ???