DAMA実験における中性子 バックグラウンドの季節変動2

名古屋大学 久野光慧 / 森下美沙希 2015/5/17

muonとneutrinoはDAMAの示すシグナルとなるような十分なneutronをつくるか

DAMAに注目した点

neutronとdark matterの区別

neutron 破砕

- detecterの周りのシールドとしてPbがよく使われる
- muon、neutrinoがPbに衝突 することでneutronをつくる
- neutrinoのエネルギー E_v > 7 MeVで²⁰⁸Pbからneutron がでる
- ⁸B太陽neutrinoのエネル ギーは7 MeVより大きい値 をもつ

$${}_{5}^{8}\mathrm{B} \rightarrow 2{}_{2}^{4}\mathrm{He} + e^{+} + \nu_{e}$$

neutron event rate

neutronの比率をR

 $R \sim \Phi \sigma n V$

⁸B太陽neutrinoのfluxと²⁰⁸Pbをターゲットとしたcross sectionより $\Phi_v \sim 10^6 \text{ cm}^{-2} \text{ s}^{-1}$ $\sigma_v \sim 10^{-41} \text{ cm}^2$

$$R_{\nu} \sim 10^{-35} nV$$
 neutrons/sec

muon(cont $\begin{array}{c} \Phi_{\mu} \sim 10^{-8}\,{\rm cm}^{-2}\,{\rm s}^{-1} \\ \sigma_{\mu} \sim 10^{-26}\,{\rm cm}^{2} \end{array} \\ R_{\mu} \sim 10^{-34} nV ~{\rm neutrons/sec} \end{array}$

これより、neutron比の関係は

$$\frac{R_{\nu}}{R_{\mu}} \sim 0.1$$

Φ:flux σ:cross section n:ターゲットの数密度 V:体積 4

DAMAとの対応

- Pbについて、数密度n~10²⁹ m⁻³、ターゲットの体積V~1000 m³とする
 - $R_{v} \sim 100$ neutrons/days
 - $R_v + R_\mu \sim 1000$ neutrons/days
 - $\sim 1 \text{ m}^3$ of lead is present in the DAMA/LIBRA shield ?????
- これはDAMAの検出比と似ている
 - 250 kg NaI(Tl), recoil energy 2-6 keV
 - 3.5 × 10⁶ events/keV, Exposure 1.33 ton × yr
 - ~2.6 x 10³ event/keV/kg/yr ~1700 event/keV/day ~7000 event/day ?????
 - (0.0112 ± 0.0012) cpd/kg/keV ~ 2.5 cpd/keV ~ 10 cpd ?????
- muonによるneutronの(n,p)反応のみを考えたときのmean free pathはλ = 2.6 m
 このときの有効体積はV_{eff} ~ 450 m³ 程度と見積もられる
- ・ これはDAMAのシグナルを説明するために必要な体積Vに近い
- neutron生成の全ての過程を考えている訳ではない
 - V~1000 m³をより小さく補正できるかもしれない

⇒muon+neutrino modelでDAMAのシグナルを説明できるかも

DAMA に 注目した 点

- シールドの構造
- ・しきい値

Cu/Pb/Cd-foils/polyethylene/paraffin/...

- neutronを遮断するためにPolyethyleneがよくきく
- DAMAのシールドの構造をみると、neutronを多くつくるPbの外側に Polyethyleneのシールドがある
- DAMAの構造ではPbからでるneutronを遮断できない可能性がある

しきい値

- muonが引き起こすneutronの スペクトルは低いエネルギー で現れることが知られている
- muonとneutrinoが引き起こす neutronは10-100 keVの運動 エネルギーをもつ
- neutronがNaを散乱した時の recoil energyは2-6 keV
- DAMAはdark matterによる recoil energyを2-6 keVで見て いる

⇒neutronとdark matterのシグナルを区別できない

区別の方法

- 2-4 keVのphaseのずれ
- 場所依存

phaseのずれで区別

	A (cpd/kg/keV)	$T = \frac{2\pi}{\omega}$ (yr)	t_0 (days)	C.L.
DAMA/LIBRA	-phase1			
2–4 keV	(0.0178 ± 0.0022)	(0.996 ± 0.002)	134 ± 7	8.1σ
2–5 keV	(0.0127 ± 0.0016)	(0.996 ± 0.002)	137 ± 8	7.9σ
2–6 keV	(0.0097 ± 0.0013)	(0.998 ± 0.002)	144 ± 8	7.5σ
DAMA/NaI &	DAMA/LIBRA–phase1			
2–4 keV	(0.0190 ± 0.0020)	(0.996 ± 0.002)	134 ± 6	9.5σ
2–5 keV	(0.0140 ± 0.0015)	(0.996 ± 0.002)	140 ± 6	9.3σ
2–6 keV	(0.0112 ± 0.0012)	(0.998 ± 0.002)	144 ± 7	9.3σ

- ここまではrecoil energyが2-6 keVの場合を考えてきた
- 2-4 keVのエネルギーを使ったDAMAの見せたbest-fit phaseは~10daysだけ前にずれる
- このずれをmuon+neutrino modelで説明できるれば信憑性があがる

⇒neutronとdark matterの区別できるかも

場所で区別

[†] Equivalent vertical depth with a flat overburden determined by the measured total muon flux.

場所で区別

• 実験場所の違いでneutrino+muon modelのphaseがずれる

⇒neutronとdark matterを区別できるかも

Summary

 muonとneutrinoはdetectorの周りのPbで neutronをつくる

muon+neutrino modelはDAMAのシグナルとよくあう

このmodelのDAMAのシグナルの区別の方法
として、phaseのずれと場所依存を考える