

ガスTPCの大型化に向けた モジュール型飛跡検出器の性能評価

神戸大 生井 凌太

MPGD & ACTIVE媒質TPC合同研究会

大阪大学 核物理研究センター

2024/12/23 - 24

方向に感度をもつ暗黒物質探索実験

- ➤ WIMP (Weakly Interacting Massive Particles)
 : 暗黒物質の候補粒子
- ▶ 太陽系の進行方向からのWIMPの到来量が多くなる →この方向依存性をWIMPと原子核の弾性散乱による 反跳角度分布から観測

▶ メリット

- 方向分布+エネルギーによる強固な観測の証拠
- neutrino fogを方向依存性を用いて解析で除去可

NEWAGE実験

CYGNUS-KM / NEWAGE (C/N-1.0)

▶更なる感度向上に向けて

- 大型化(従来の30倍)
- 検出器のモジュール化(最大9×2台)

>Module-1 (GEM + μ -PIC)

- 10x10 cm² fiducial volume
- 三次元での飛跡再構成が可能
- 検出器の性能評価(本研究の目的)

Module-1

▶現行NEWAGEからの変更点

• GND面の変更

- C/N-1.0搭載時周囲の電場を乱さないため
- μ-PIC基板に銅箔を貼ってGND面に

• 隣のモジュールに干渉しないDAQシステム(SMILE実験 高田さん設計)

▶ FE2009bal µ-readout V3.1ボード (SMILE-3実験、京都大)

- strip pitch: 800 μ m
- Anode, Cathode: 各128 ch
- ADC波形: 4 ch (32 chごとのsum)

飛跡のパラメータ解析方法

▶ 飛跡再構成の概略

▶ 飛跡のパラメータから反跳粒子の識別を行う

Module-1の性能評価

- ▶試験用チェンバーを使用
 - sensitive volume: $10 \times 10 \times 4 \text{ cm}^3$
- CF₄ガス 0.1気圧

- ▶ trackを再構成するために必要な以下のパラメータを評価
 - 1. ゲイン特性評価 (ADC値→energyへのcalibration)
 - ▶ ⁵⁵Feの5.9 keV特性X線を使用
 - **2.** 電子のドリフト速度評価(trackのZ方向長さのcalibration)
 - 宇宙線 µ を使用

ゲイン特性評価

検出器の動作安定性評価

<u>ゲインの時間依存性</u>

検出器の動作安定性

- ▶連続してゲイン>2000に必要な電圧を印加し続ける
- ▶約3週間の安定したDAQの動作を確認(現在も動作中、要求値1ヶ月)

ドリフト速度評価

- ➤ Z方向のtrackの長さを求めるためにはドリフト電子の速度を知る必要がある。
- ኦ cosmic μを使用したドリフト速度評価

- ▶ hitのあるclockのrangeがdriftにかかる時間
- ≽ drift volumeの高さ4 cm
- ▶ 求められたドリフト速度は5 cm/μs

再構成されたトラックのパラメータ

<u>TrackOenergy vs length</u>

<u>結果</u>

- ▶ Module-1で再構成したtrackパラメータがシミュレーションと2倍以上異なる
- ▶ MCシミュレーションを用いてこの応答が再現されるかを確認
- →検出効率が100%に収束するかを確認
 - ⁵⁵Fe calibrationによるエネルギーを使用した場合
 - protonのenergy depositがsimulationと一致するようにenergyを補正した場合

検出効率の評価

<u>定義</u>

▶ 検出効率 = 実際のHit数 / <u>理想的なHit数</u> simulation

- MC simulation (Geant4)
 - ²⁵²Cf自発核分裂の中性子スペクトル
 - +X方向から照射(proton事象を減らすため)

▶ データ

- ¹²C、¹⁹F原子核反跳のみを選別
- 測定ゲイン:~2500

<u>イベントセレクション</u>

- ① Preselection: ToTが一定値に満たないイベントをカット
- ② Fiducial cut: veto regionをtrackに含むイベントをカット
- ③ Length cut: 粒子ごとのenergy depositの違いを用いたカット

Fiducial cut

➢ <u>Fiducial cut</u>

gas volume

▶ proton対策

proton原子核を多く含む構造体の少ない X方向からの中性子照射

- ▶ 壁面素材に含まれるH原子核の反跳
- 壁面の放射性同位体ラドン崩壊によるα線
- ▶ これらのtrackは壁面から伸びる
 - → trackの位置情報を用いてveto

MPGD2024 2024/12/23-24

ToT cut

EToT/energy

▶ 反跳粒子の種類によってenergy deposit が異なる。

- protonは¹²C、¹⁹Fと比較してToT大
- protonと¹⁹Fの分離のいい> 200 keV以上
 についてefficiencyを求める
- cutline: Σ ToT/energy < 1.5

検出効率の評価

<u>イベントレート</u>

Events / keV / kg / days

反跳エネルギーごとの検出効率

MPGD2024 2024/12/23-24

Energy [keVee]

今後の課題

<u>energy, lengthパラメータのシミュレーションとの不一致改善</u>

結論

▶まとめ・結論

- C/N-1.0に実装するModule-1の性能評価を行った
 - ゲインの要求値は検出器が安定な電圧で達成可能
 - •3週間の安定動作を確認(現在も稼働中、目標1ヶ月)
 - 宇宙線 μ を用いたドリフト速度評価:ドリフト速度5 cm/μs
- 再構成したtrackのパラメータにシミュレーションとの不一致が見られた。
 - シミュレーションの通りにゲインを補正した場合の検出効率は概ね理想的

▶今後の展望

- trackのlength, energyパラメータが一致しない原因の調査
 - より高エネルギー領域でのcalibration方法の模索
 - エネルギーの計算からのノイズ除去
- protonの抑制
 - 検出領域にprotonが飛ばないよう検出機の見直し
- → エネルギーの低閾値化、正確な検出効率の評価へ

Back up

FE2009bal µ-readout V3.1

➤ SMILE実験(京都大)用に開発されたものを使用させていただいている
 ➤ アンプ+エンコーダ

- 1.128 ch hitデータと4 ch ADCデータをbufferに保存
- 2. Triggerがかかった場合、対応するデータをEthernet方式で出力

⁵⁵Fe calibrationによるefficiency

<u>イベントレート</u>

<u>反跳エネルギーごとの検出効率</u>

Proton源

fiducial cutで落としきれないproton源→Z方向からのイベント

Kapton窓

アルミマイラ (drift plane)

- ➤ X線によるenergy calibration用のカプトン窓、drift planeのアルミマイラに protonが含まれる
- ▶ 側面(X,Y方向)からの中性子照射でも反射によって入射
- → 構造変更, protonを含まない素材への換装などの対策が必要

CF₄中のドリフト速度

Figure 2.2.3: Drift Velocity of the electron in CF_4 gas calculated by MAG-BOLTZ simulation.

- ▶ トリガが発行されるとring Bufferに記録されたヒットパターンのデータを保存
 - self trigger (hit signalの波形がthresholdを超えた場合トリガ発行)
 - external trigger (外部からのsignalによるトリガ発行)