

ガスTPCの大型化に向けた モジュール型飛跡検出器の性能評価

神戸大 生井 凌太

MPGD & ACTIVE媒質TPC合同研究会大阪大学 核物理研究センター2024/12/23 - 24

方向に感度をもつ暗黒物質探索実験

- WIMP (Weakly Interacting Massive Particles)
 - :暗黒物質の候補粒子
- ▶ 太陽系の進行方向からのWIMPの到来量が多くなる
- →この方向依存性をWIMPと原子核の弾性散乱による 反跳角度分布から観測
- > メリット
 - 方向分布 + エネルギーによる強固な観測の証拠
 - neutrino fogを方向依存性を用いて解析で除去可

WIMPによる原子核反跳事象

原子核反跳の角度分布(シミュレーション)

NEWAGE実験

- ガスTPC (Time Projection Chamber)
- ➤ CF₄ 0.1気圧
- ➤ GEMによる前置増幅
- μ-PIC(Micro Pixel Chamber)による三次元読み出し

- ▶ 位置分解能(二次元)+時間分解能(一次元)
- ▶ 電極付近に高電場を形成し、電子の雪崩増幅を行う

CYGNUS-KM / NEWAGE (C/N-1.0)

- ▶更なる感度向上に向けて
 - 大型化(従来の30倍)
 - 検出器の<u>モジュール化</u>(最大9×2台)
- \triangleright Module-1 (GEM + μ -PIC)
 - 10x10 cm² fiducial volume
 - 三次元での飛跡再構成が可能
 - 検出器の性能評価(本研究の目的)

Module-1

- ▶現行NEWAGEからの変更点
 - GND面の変更

- C/N-1.0搭載時周囲の電場を乱さないため
- μ-PIC基板に銅箔を貼ってGND面に

• 隣のモジュールに干渉しないDAQシステム(SMILE実験 高田さん設計)

- <u>FE2009bal μ-readout V3.1</u>ボード (SMILE-3実験、京都大)
 - strip pitch: 800 μ m
 - Anode, Cathode: 各128 ch
 - ADC波形: 4 ch (32 chごとのsum)

飛跡のパラメータ解析方法

▶ 飛跡再構成の概略

▶長さ・角度

・hitの立ち上がりの位置情報から飛跡の長さ 角度を計算

▶エネルギー

カソードのADC波形でthresholdを超えた clockのADC値の和

▶ 飛跡のパラメータから反跳粒子の識別を行う

赤線:hit

黒線:ADC波形

Energy: 498.7 keV

Length: 3.1 cm

→ protonと推測される

Module-1の性能評価

- ▶試験用チェンバーを使用
 - sensitive volume: $10 \times 10 \times 4 \text{ cm}^3$
 - CF₄ガス 0.1気圧

- ▶ trackを再構成するために必要な以下のパラメータを評価
 - 1. ゲイン特性評価(ADC値→energyへのcalibration)
 - 55Feの5.9 keV特性X線を使用
 - 2. 電子のドリフト速度評価(trackのZ方向長さのcalibration)
 - 宇宙線 μ を使用

ゲイン特性評価

測定諸元

- $\triangleright CF_4$ (0.1 atm)
- ▶⁵⁵Fe の5.9 keV X線

分解能

 $\sigma/E = 22.9\%$ @ gain~6000

μ-PIC電極の電位差とゲインの関係

測定諸元

- $\triangleright CF_4$ (0.1 atm)
- ▶⁵⁵Fe の5.9 keV X線

- ▶ゲイン要求値: > 2000
 - 安定な印加電圧で達成可能

∆GEM [V]

検出器の動作安定性評価

ゲインの時間依存性

検出器の動作安定性

- ▶連続してゲイン>2000に必要な電圧を印加し続ける
- ▶約3週間の安定したDAQの動作を確認(現在も動作中、要求値1ヶ月)

ドリフト速度評価

- > Z方向のtrackの長さを求めるためにはドリフト電子の速度を知る必要がある。
- cosmic μを使用したドリフト速度評価

セットアップ概略図

- ➤ hitのあるclockのrangeがdriftにかかる時間
- ➤ drift volumeの高さ4 cm
- 求められたドリフト速度は5 cm/μs

再構成されたトラックのパラメータ

結果

- Module-1で再構成したtrackパラメータがシミュレーションと2倍以上異なる
- ➤ MCシミュレーションを用いてこの応答が再現されるかを確認
- →検出効率が100%に収束するかを確認
 - 55Fe calibrationによるエネルギーを使用した場合
 - protonのenergy depositがsimulationと一致するようにenergyを補正した場合

検出効率の評価

<u>定義</u>

- 検出効率 = 実際のHit数 / 理想的なHit数simulation
- MC simulation (Geant4)
 - 252Cf自発核分裂の中性子スペクトル
 - +X方向から照射(proton事象を減らすため)
- > データ
 - 12C、19F原子核反跳のみを選別
 - ・ 測定ゲイン: ~2500

<u>イベントセレクション</u>

① Preselection: ToTが一定値に満たないイベントをカット

② Fiducial cut: veto regionをtrackに含むイベントをカット

③ Length cut: 粒子ごとのenergy depositの違いを用いたカット

12

Fiducial cut

> Fiducial cut

gas volume

➤ <u>proton対策</u>

proton原子核を多く含む構造体の少ない X方向からの中性子照射

- ▶ 壁面素材に含まれるH原子核の反跳
- 壁面の放射性同位体ラドン崩壊によるα線
- ➤ これらのtrackは壁面から伸びる
 - → trackの位置情報を用いてveto

energy calibration用の Kapton window

ToT cut

> ToT cut

各trackは全て同じenergy

➤ 反跳粒子の種類によってenergy deposit → ToTとtotal energyを利用してcutが異なる。

- protonは¹²C、¹9Fと比較してToT大
- protonと¹⁹Fの分離のいい> 200 keV以上 についてefficiencyを求める
- cutline: Σ ToT/energy < 1.5

14

検出効率の評価

<u>イベントレート</u>

> simulation

- ¹⁹F, ¹²C原子核反跳イベントのみ
- Fiducial cut適用

▶ 検出効率

- 非常に低い検出効率が得られる。
- protonのenergy depositを基準とすると~100 %に収束

反跳エネルギーごとの検出効率

今後の課題

energy, lengthパラメータのシミュレーションとの不一致改善

- ▶ より高エネルギーでのcalibration
 - COOL-X: 約8 keVのX-ray source
- ▶ noiseがenergyに含まれてしまっている

エネルギーの低閾値化

• protonの抑制

COOL-X (AMPTEK)

改良手段候補

- アルミマイラ→鉄製のメッシュ
- カプトン窓→縮小

結論

▶まとめ・結論

- C/N-1.0に実装するModule-1の性能評価を行った
 - ゲインの要求値は検出器が安定な電圧で達成可能
 - 3週間の安定動作を確認(現在も稼働中、目標1ヶ月)
 - 宇宙線 μ を用いたドリフト速度評価:ドリフト速度 $5 \text{ cm}/\mu \text{s}$
- 再構成したtrackのパラメータにシミュレーションとの不一致が見られた。
 - ●シミュレーションの通りにゲインを補正した場合の検出効率は概ね理想的

▶今後の展望

- trackのlength, energyパラメータが一致しない原因の調査
 - より高エネルギー領域でのcalibration方法の模索
 - エネルギーの計算からのノイズ除去
- protonの抑制
 - 検出領域にprotonが飛ばないよう検出機の見直し
- → エネルギーの低閾値化、正確な検出効率の評価へ

Back up

FE2009bal μ -readout V3.1

- ➤ SMILE実験(京都大)用に開発されたものを使用させていただいている
 - > アンプ+エンコーダ

- 100 MHz
- > ADC waveform
 - 4 ch (Σ32 ch)
 - 50 MHz

- 1. 128 ch hitデータと4 ch ADCデータをbufferに保存
- 2. Triggerがかかった場合、対応するデータをEthernet方式で出力

⁵⁵Fe calibrationによるefficiency

MPGD2024 2024/12/23-24 **20**

検出効率の評価

<u>イベントレート</u>

> simulation

- ¹⁹F, ¹²C原子核反跳イベントのみ
- Fiducial cut適用

▶ 検出効率

- 少統計だが1付近に収束する傾向
- ⁵⁵Feによるcalibration値を用いた場合は 高エネルギー側で検出効率低下

反跳エネルギーごとの検出効率

Efficiency

Proton源

fiducial cutで落としきれないproton源→Z方向からのイベント

Kapton窓

アルミマイラ (drift plane)

- ➤ X線によるenergy calibration用のカプトン窓、drift planeのアルミマイラに protonが含まれる
- ▶ 側面 (X, Y方向) からの中性子照射でも反射によって入射
- → 構造変更, protonを含まない素材への換装などの対策が必要

22

CF₄中のドリフト速度

Figure 2.2.3: Drift Velocity of the electron in CF₄ gas calculated by MAG-BOLTZ simulation.

Module-1 読み出し

- ▶ トリガが発行されるとring Bufferに記録されたヒットパターンのデータを保存
 - self trigger (hit signalの波形がthresholdを超えた場合トリガ発行)
 - external trigger(外部からのsignalによるトリガ発行)