

NEWAGE実験77: 地下実験のための低BG検出器性能評価

2024/3/20 JPS2024春 20aV1-1 神戸大学 生井凌太 身内賢太朗,東野聡,大藤瑞乃

方向に感度を持つ暗黒物質の直接探索

- WIMP (Weakly Interacting Massive Particles)
 - :暗黒物質の候補粒子
- 太陽系の進行方向からのWIMPの到来量が多くなる
 →この方向依存性を観測する
- どうやって?

→WIMPと原子核の弾性散乱での反跳角分布を見る

NEWAGE実験

μ-PICの低放射能化

(PTEP (2023) 103F01)

- *μ*-PIC低RI化の歴史
 - 検出器表面からのα線を減らしたLAµ-PICを製作
 →検出感度の向上 (*PTEP*(2023) 103F01)
 - 一方でラドンBGが顕在化
- ➢ Low Background µ-PICの製作
 - ✓ コア材を低RIなものに変更

μ-PIC断面図	マ材	コア材	²³⁸ U upper [ppm]	²³⁸ U middle [ppm]	
		ポリイミド樹脂 (ガラスクロス入り)	(7.8×0.1) ×10 ⁻¹	(7.6×0.1)×10 ^{−1}	$\sim 10^{-2}$
	新	Quartz (レジン入り)	(5.6×1.0) ×10 ⁻³	(5.1×1.0)×10 ⁻³	

LBGµ-PICの製作

arXiv:2403.11736 Fig. 3(c)

- 400 µm pitch
- 768×768 pixels

▶ 2023年完成

- 製作:大日本印刷
- 素材:信越化学

➤ 暗黒物質探索実験に使えるか<u>性能評価</u>する必要 本研究の目的

ラドン量測定

LBG_µ-PIC

• 静電捕集法で湧き出しラドン娘核の²¹⁴Poレートを測定、ラドンレートに変換

< 0.03 (90% C. L)

→要請値をクリア

pixel形成状態の確認

測定の動機

- ➢ pixelの形成状態の確認
- ▶ 神戸大学にある3D実態顕微鏡では大きずぎて 測定不可

→CNCマシン+USB顕微鏡で測定器を自作

- ・撮影速度:~1000 cm²/day
- ・撮影枚数:170×170
- ▶ 以下の情報を取得
 - カソード径(*R*_C)
 - アノードの明るさ
 形成不良時暗く映る
 - カソードの明るさ 「 ルルハ 反 町 咀 ヽ ト
- ▶ 基板の変色などの影響を排除するため、明るさ(Br) を以下のように定義

7

pixel形成状態の確認

ゲイン測定

ゲインとcathode半径の関係

Conclusion

- ▶ 低ラドン放出量のµ-PICを新しく製造した。
- ▶ 性能評価の結果、暗黒物質探索実験に使用可能であることを確認した。
 - ラドンレートが従来の1/60未満
 - Anode voltage 480V以上でゲインの要請値を満たす
 - ゲインの一様性がRMS 20.0%以下

→以上の結果について論文投稿済み(<u>arXiv:2403.11736</u>, submitted to NIM A)

• NEXT presentation:暗黒物質探索実験へのinstallation

Radon Decay Chain

9.1 Uranium / Thorium decay chain

Radon emanation rate

calibration factor $Cf = 0.403 \pm 0.024 [(count/day)/(mBq/m^3)]$

Quartz cloth

1)石英クロス(商品名: SQXシリーズ)

誘電率3.7以下、誘電正接0.001以下、線膨張係数1ppm/℃以下など、伝送損失(電気信号の劣化の度合い)に関わる特性が極めて優れている。5Gのキーワードである超高速通信を支える配線基板のコア材として最適であり、アンテナやレーダードームの繊維強化プラスチック部材としてもその特性を発揮する。

石英クロスは、非常に細い石英の糸を素材とし、厚さを20µm以下とすることも可能で、積層基板の薄膜化に対応可能である。また、 石英はa線の発生が極めて少ない特長を有し、放射線によるデバイスの誤動作を防止できる。需要に応じ逐次生産能力を上げていく計画で ある。

https://www.shinetsu.co.jp/jp/news