講演番号:17aEK203-11

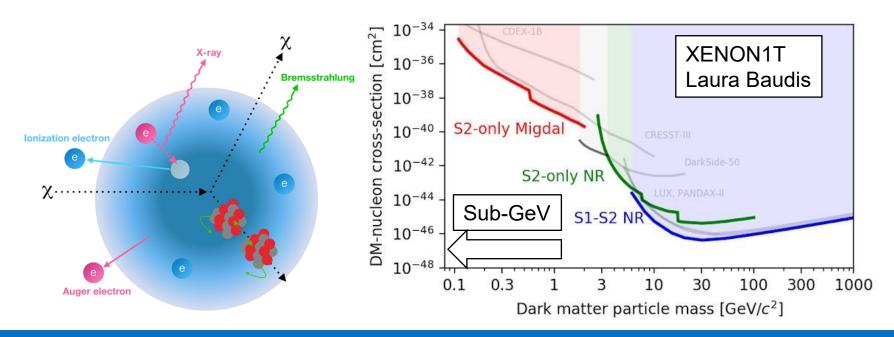
MIRACLUE実験における ミグダル効果観測のための ArガスTPCの改良

神戸大理 鈴木 啓司

神戸大理, 東北大理A, 東北大RCNSB

身内 賢太朗, 東野 聡, 西田 汐里, 生井 凌太遠山 和佳子, 柳 凜, 中村 輝石 A , 中野 愛弓 A , 細川 佳志 B

ミグダル効果

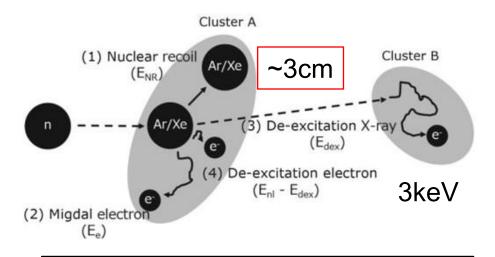


ミグダル効果とは

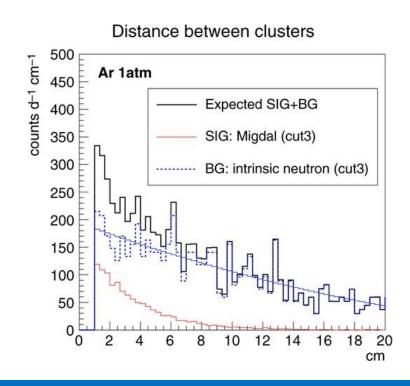
- 原子核が突然動いたときに低確率で追加の電離・励起が生じる
- ・原子核反跳(NR)に伴うものは実験的な観測事例がない

NRに伴うミグダル効果があれば...

- ・低エネルギー閾値化→軽い暗黒物質に対する感度UP
- ○ミグダル効果を実験的に検証して暗黒物質探索に応用したい!



MIRACLUE実験



中性子ビーム照射実験でミグダル効果の初観測を目指す

- 高フラックスの中性子ビーム($\sim 10^3 \, \text{cm}^{-2} \, \text{s}^{-1}$)で統計量を稼ぐ
- ガスTPCを用いた2-cluster手法による探索(PTEP 2021, 013C01)
 - 原子核反跳(NR) + Ar(Xe)の特性X線
 - 2-cluster間の距離分布から背景事象と識別可能

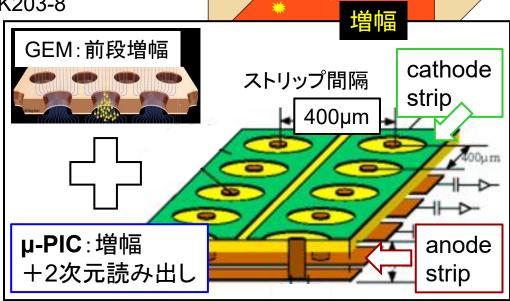
2-cluster手法における信号事象 距離分布は特性X線の吸収長に従う

ArガスTPC(検出器概要)

フィールドケージ

ドリフト

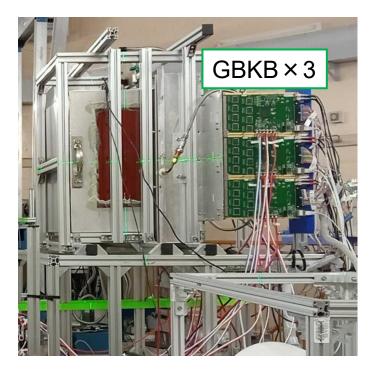
 $(30cm)^3$

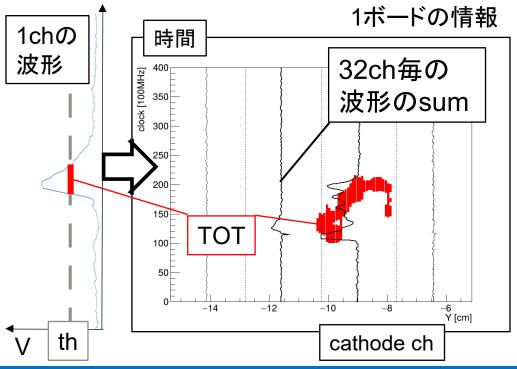

電離

KMArT(Kobe MIRACLUE Argon TPC) ...NEWAGEの技術を応用したガスTPC

- Arガスとクエンチャー(放電を抑制するガス)の混合ガス(合計1atm)を封入
- 低物質量の部材で構成 →(n,γ)反応による背景事象を低減
- ・荷電粒子の3次元飛跡を取得可能(次スライド)

※東北大のXeガスTPC...講演番号: 17aEK203-8

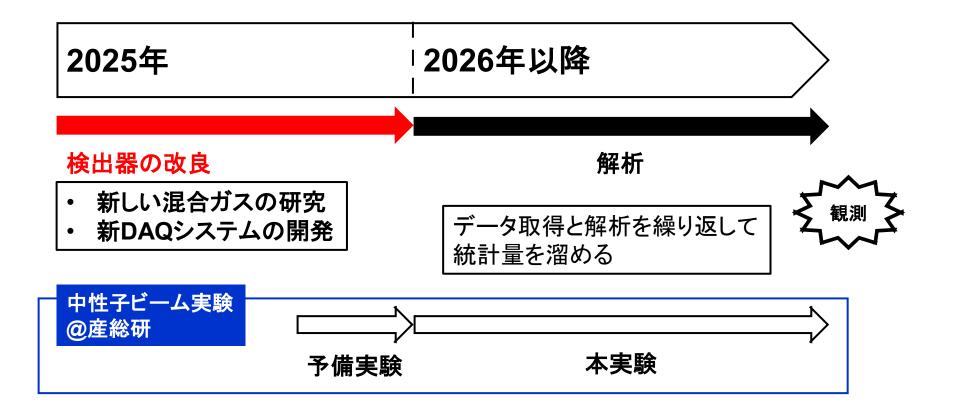

ArガスTPC(DAQ)



読み出しボード: GBKB(Giga Bit Kobe Board)

- 10cm(800µm×128ch)ごとにボードを割り当て
- chごとのTOT TOFを用いて3次元飛跡を取得
 - どのchに(2次元)+いつ(1次元)
- FADCの積分値を用いてエネルギーを算出

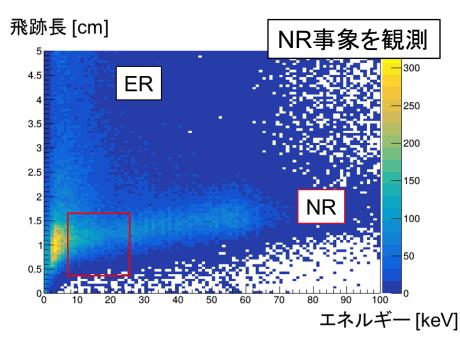
※現状は2stripずつ東ねて800µm間隔で読み出し読み出しの微細化に向けた新しいDAQシステムを開発中(講演番号:16pEK215-11)



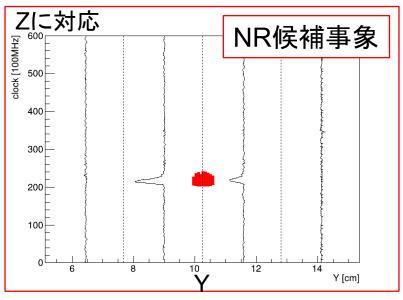
MIRACLUE実験のロードマップ

検出感度を向上すべく、検出器の改良に取り組んでいる

- ・ 改良した検出器を用いた予備実験を11月上旬に実施する
- ・2026年には本格的なミグダル効果探索を開始する



前回の中性子ビーム実験



2024年12月@産業技術総合研究所(産総研)

- ビーム→565keVの単色中性子
- 封入ガス \rightarrow Ar(0.84atm) + C_2H_6 (0.16atm)
 - ・放電耐性に特化したガス混合比
- 有感領域→20cm×30cm×30cm(5ボード)
- 測定時間 $\rightarrow 1.4 \times 10^4$ sec(live time)

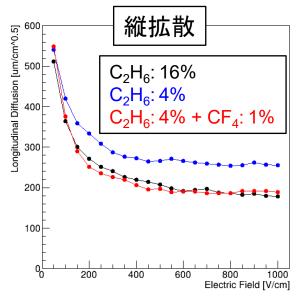
ArガスTPC改良のモチベーション

Ar(0.84atm) + C₂H₆(0.16atm) における事象の計数率の見積もり

Target nuclei	Ar	Н
Number of nuclei	6.1×10^{23}	7.0×10^{23}
Cross-section for 565keV neutron	0.65 barn	5.75 barn
Migdal branching	7.2×10^{-5}	
Fluorescence yield (K shell)	0.14	
Expected event rate	$4.0 \times 10^2 \mathrm{s}^{-1}$	$4.0 \times 10^3 \mathrm{s}^{-1}$
Expected event rate (Migdal)	$2.9 \times 10^{2} \text{day}^{-1}$	

従来の混合ガスの問題点

※ビームフラックスは 103 cm⁻² s⁻¹を仮定


- クエンチャーに含まれるH(およびC)原子核の反跳事象が支配的
- 低エネルギーのNR事象は短飛跡で、反跳原子核の識別が難しい
- →ミグダル効果探索における背景事象の元になりうる
- ◎ガスゲイン・放電耐性を維持しつつ、クエンチャーを減らしたい!

使用する混合ガスの検討

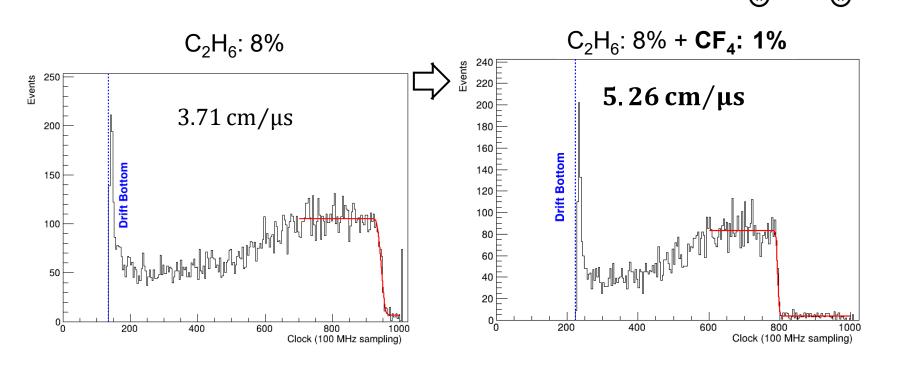
電子のドリフト速度・拡散がもたらす影響

- 横拡散が大きい→位置分解能を悪化させる
- 縦拡散が大きい・ドリフト速度が遅い →波形がなまり、検出効率を悪化させる
- \bigcirc C₂H₆の割合を減らすとガスTPCの性能が悪化 \rightarrow **少量のCF₄を加えて影響を緩和**

混合ガス(合計1atm)	ドリフト速度 (cm/μs)	横拡散係数 (µm/√cm)	縦拡散係数 (μm/√cm)
$Ar: C_2H_6 = 84:16$	4.30	420	301
$Ar: C_2H_6 = 96:4$	3.37	677	358
Ar: C_2H_6 : CF ₄ = 95: 4: 1	5.89	442	291

各混合ガスにおけるドリフト速度と拡散(Magboltz, ドリフト電場は150V/cm)

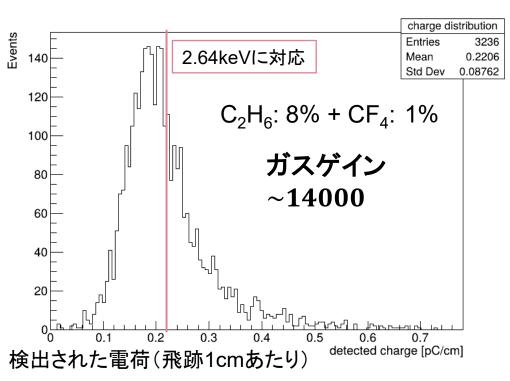
基礎測定(ドリフト速度)

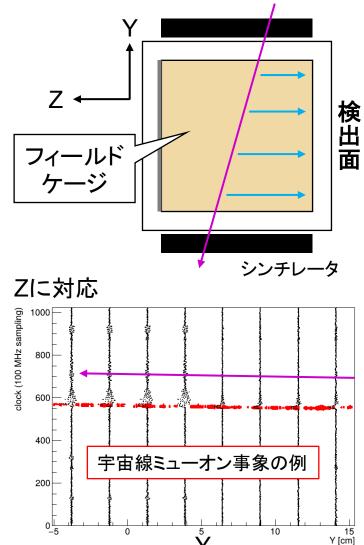


トリガー

²⁵²Cf線源の自発核分裂(SF)…複数の中性子•γ線を放出

- •トリガーとTPCの信号の時間差(=ドリフト時間)を測定
 - 事象数が急激に減少するところ(図の赤線)が フィールドケージの上端に対応する
- ○CF₄を加えたときのドリフト速度の上昇が確認できた




基礎測定(エネルギー較正)

宇宙線ミューオンを用いたエネルギー較正

- 検出領域を挟んだシンチレータの コインシデンスをトリガーにしてデータ取得
- ○Migdal効果探索に必要なガスゲイン (>104)が得られることを確認できた

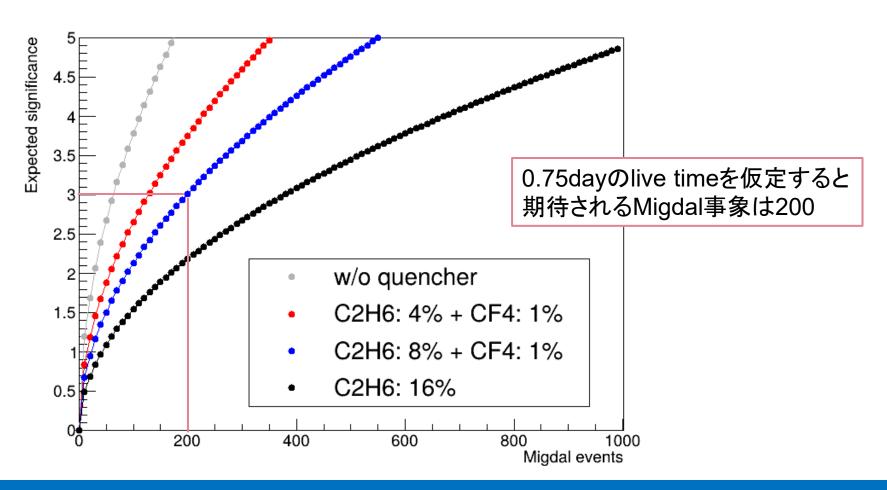
今後の展望・まとめ

展望

- ・現在開発中の新DAQシステムとの統合試験
- ・ガス混合比の最適化→検出効率の評価(NR・3keV ER)

まとめ

- 暗黒物質探索への応用を見据えたミグダル効果探索実験「MIRACLUE」
 - ガスTPCを用いた2-cluster手法により背景事象を分離
- 現在は検出器の改良に取り組んでいる
 - 高性能化に向けた新たな混合ガスでの試験的運用を開始
 - 基礎測定(ドリフト速度・エネルギー較正)を進めている
 - 読み出し微細化に向けた新DAQシステムを開発中
- ◎万全の準備をして11月上旬のビーム実験に臨む!


BACK UP

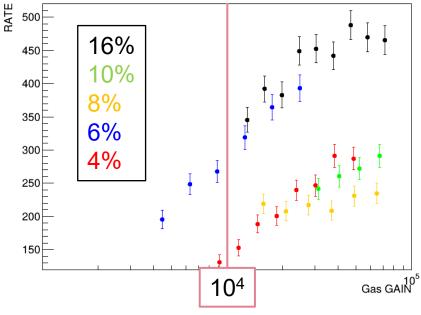
MIRACLUE実験で予想される感度

11月上旬の予備実験では3日間のビームタイムを計画している

• C2H6 8%+CF4 1%でも3σの有意性に到達する見込み



ArガスTPCの放電耐性試験



中性子ビーム照射試験@神戸大学タンデム加速器

- KMArTと同様の電子増幅機構を持つテストチェンバーを使用
- クエンチャー (C_2H_6) の割合を変化させながら放電耐性を評価
- ◎すべての混合比でガスゲインの要請値(>10⁴)をクリア (放電が頻発した場合は計数率が急激に低下する)

ガスゲインに対する事象計数率

