

低質量暗黒物質探索に向けた ピクセルガスTPC開発

神戸大 東野 聡

2023年 11月 18日

MPGD & Active媒質研究会 @東北大 2023年11月17-18日

イントロダクション

方向に感度を持つ暗黒物質 (WIMP) 直接探索

- ・原子核反跳からWIMP到来方向を知る
 - ➡DMの素性を明らかにする
 - →ニュートリノBGとの分離も可能

WIMP wind from Cygnus!

ニュートリノフロア

• ニュートリノよるBGによって感度が制限される境界

➡特に⁸B太陽ニュートリノによる低質量領域が探索を制限し始めている

- Cygnus方向を見つめていれば散乱角からBG分離可能
 - ➡一方、現状の方向感度をもつ実験 (NEWAGE) は低質量領域が苦手

方向感度をもつ実験: NEWAGE

- ターゲットはTPC中のガス (CF₄)
- 飛跡から原子核反跳方向測定

2次元位置検出器 + ドリフト時間 →3次元飛跡でWIMP探索 (世界唯一)

- 2次元読み出しはu-PICが担う
 - **→400 um**ピッチの2D strip
 - ガス増幅はGEM + µ-PIC

低質量暗黒物質探索に向けて

- ●低質量 → 低エネルギー原子核反跳 → 短飛跡で検出困難
- 短飛跡事象を検出するための策
 - ➡より低圧ガスを使う... 簡単だが放電しやすい & ターゲット減る
 - ➡より微細な読み出し検出器 ... 今回のテーマ

本研究のテーマ

低質量暗黒物質探索のための微細読み出しガスTPC開発

➡ストリップ読み出しからピクセル読み出しへ

■ドリフト電子の拡散を抑えないと意味がない

▶ "陰イオンガス"を用いてドリフト拡散を低減

考えること

陰イオンガス: SF₆

(以前のMPGD研究会で話しているので詳細は省略)

陰イオンガスTPC

- 電離電荷のドリフト時間を"投影"して位置情報を知る
 - ➡陰イオンガス:電離電子の代わりに陰イオンが形成されドリフトするガス

重たいのでゆっくりドリフト、低拡散

SF₆ガス

11

多チャンネル読み出し (ASIC開発)

ピクセル読み出し型ガス検出器情勢

•世の中に存在しないわけではない

➡TPCとして機能する、かつマルチヒット対応のASICは存在しないため要自作

e.g.) ASIC	TimePix	FE-I4	LArPix	QPIX
Application	Gas TPC	Silicon (ATLAS) Gas TPC (SuperKEKB)	LAr TPC	Gas TPC
Digitization	Time over Threshold	Time over Threshold	Charge integral AD	Charge integral ADC Time over Threshold
Pixel size	55 × 55 µm² (ASIC) ~O(1) mm² (Pad)	$50 \times 250 \ \mu m^2$	$4 \times 4 \text{ mm}^2$ (Pad)	200 × 200 µm² (ASIC) 400 × 400 µm² (Pad)
7+ 2/6-5+4-3+2+1 10+16-14 14 12 10 10 14 10 14 10 14 10 10 10 10 10 10 10 10 10 10	(a)	TPC @KEK (w/ Fl TRCellent track reconstruction! M.Hedges, S.Vahsen, et. al. NIM A, Volume 1026, 1 March 2022 13	- 4) however 0.4 € ^{0.3} 0.2 0.1 0.1 0 0.1 0 0 0.1	SF ₅ 0.2 0.4 0.6 0.8 1 1.2 1.4 Time (ms) ルチヒット非対応 新しいASICを開発

ASICの仕様

プロトタイプなので冗長に情報取得

ASICの仕様

プロトタイプなので冗長に情報取得

プロトタイプのASIC version 1開発 (8×8 = 64 ch)

QPIX NEO搭載基板 (MIQAN)

MultI-hit readout board using QPIX NEO for dArk matter experimeNt

エレキテスト用のver.1開発 QPIX NEOはパッケージング (電極パッドはN/C)

通電テストOK! (やや消費電力高め→確認中)

• Xilinx ZYNQ (ZC702ボード) を用いてシステム構築

• ZynqでQPIX NEOを制御、テストパルスを送ってADC波形確認

全チャンネルの1/4を抜き出して 正常動作確認

アナログ回路とADCの動作OK! →ToT/ToFの動作は検証中

自動ゲイン切り替え

• 高ダイナミックレンジ実現のため2種類のアンプ搭載

➡x1アンプとx8アンプがとある閾値で切り替わる

ゲイン切り替わりの様子

ゲイン切り替わりの様子

ゲイン切り替わりの様子

- ToT / ToFの機能確認
 - ➡ Firmware / Softwareの改良が必要
 - ➡機能を確認して論文執筆へ進む予定
- より小さなピクセルサイズへ
 - ➡主にアナログ回路が面積とるが、削減難しい
 - ➡デジタル側の機能削減できれば改善の見込みはある
 - が、ADC動く。まずこのASICでピクセル型検出器の実証へ!

ASICと電極の接続は要工夫 →インターポーザー +バンプボンディング

現実的なピクセルサイズ

- 細かい配線のインターポーザー 基板開発を余儀なくされる
- 現実的 (?) なサイズの**400** µm ピッチで業者に設計依頼中 (ハヤシレピック様)

ホントは250 µmピッチ以下にしたい (400じゃµ-PICと変わらない)

ピクセルガスTPCでの夢

- •低質量暗黒物質探索に向けたピクセルガスTPC開発
 - < 250 µmピッチの微細ピクセル読み出し目指す</p>
 - ➡初期ステップとしてまずはピクセルガスTPC開発へ
- 読み出しASICを開発、動作確認ほぼOK
 - ➡さらに検証して論文執筆準備中
- ピクセル電極設計中、検出器として形にしていく段階

➡まだまだ困難だらけ → 誰か手伝ってください

LTARSのゲイン切り替えとの違い

LTARS2018_K06B

チャージアンプのゲインを キャパシター容量変えて切り替える QPIX NEO v1 アンプを2種類用意して 出力切り替え