日本物理学会2015秋季大会@大阪市立大学 2015/9/28

NEWAGE実験34 内部バックグラウンドの 理解と低減

橋本隆(神戸大)

身内賢太朗,矢ケ部遼太,池田智法,帝釋稜介,中村輝石(京都大), 他NEWAGEグループ

1. NEWAGE

- 2. バックグラウンドの理解
- 3. バックグラウンドの低減

4. まとめ

1. NEWAGE ^(NEw generation WIMP search with an Advanced Gaseous tracker Experiment)

- 神戸大学主導の**方向に感度をもった**暗黒物質直接探索実験
- 方向に感度があるメリット
 - 季節変動と比較して暗黒物質の確かな証拠になる
 - 更なる性質解明につながる

ガス検出器『マイクロTPC』

3

- period : 2013/7/20~8/11, 10/19~11/12
- live time : 31.6 days
- fiducial volume : 28×24×41 cm
- mass : 10.36 g
- exposure : 0.327 kg days SD 90% C.L. upper limits and allowed region

• RUN5→RUN14

- ラドン除去システム導入
- ガス圧:0.2→0.1気圧
- γ線除去with新DAQ
- 方向感度では世界最良:
 557pb@200GeV
- 現在の感度を制限しているバック グラウンド(BG)イベント
- 制限を更新するにはBGの理解・ 低減が重要

2. バックグラウンドの理解

これまでの発表(橋本JPS2014秋、2015冬)より、µ-PICの補強材であるガラスに含まれるU/Th系列の崩壊により生じるa線が主なBGになっていることを示唆(図中C,C')

BGの理解にむけて

- 検出器各部分のU/Th含有量測定
- 測定値を用いたシミュレーション

U/Th含有量測定

ppm=_10 * × g/g						
	[g]	²³⁸ U[ppm] U系列 [†]	²³² Th[ppm] Th系列			
μ-ΡΙϹ	169.56	1.17 ± 0.01	5.84 ± 0.03			
PI 800µm	134	0.78 ± 0.01 3.42 ± 0.02	3.42 ± 0.03			
PI 100μm	35	0.39 ± 0.01	1.81 ± 0.04			
CuSO ₄	72	<0.009	<0.06			
ガラス繊維	15	0.84 ± 0.03	3.48 ± 0.12			
GEM	27.0	<0.022	<0.12			
			+ :放射平衡を仮定			
	}	100µm				

- 統計誤差のみを考慮
- U系列は²¹⁴Bi由来の609keV、Th系列は²⁰⁸Tl由来の583keVのガンマ線ピークから • 算出
- ガラス繊維に多くU/Thが含まれている ٠

 $10-6 \times -1-$

Geant4を用いてシミュレーション

- ガラス繊維のU/Th含有量の測定値を用いて、ポリイミド100µmのオレンジメッシュ部分からU/Th系列によるa線を発生させる
- 下側のポリイミド100µm、真ん中のポリイミド800µmから出るa線は考慮しない
 - a線はポリイミド100µm部分を通過できない

シミュレーション結果

- TPC event(右図中C)で150~400keVのフラット部分を定性的に説明
- gap event(右図中C')で50~150keVの立ち上がり部分を定性的に説明

検出器ジオメトリアップデート

<u>アップデート内容</u>

- 各部分の大きさの微修正
 - 1. µ-PICの銅の横にあったPIを撤去
 - 2. gap領域:4mm → 5mm
 - 3. GEMの厚さ:100um→110um
 - GEM穴の直径:デザイン値70um → 実測値80um
- GEMの考え方

今まで:GEMがないジオメトリでシミュレーションし、その後GEMによるエネルギー損失 を考慮に入れる

今回:詳細なGEMのジオメトリをいれてシミュレーション

3. バックグラウンドの低減

- メインBGはPI100um内のガラス繊維
- 低BG(現行の1/100以下)なものに取り替える必要がある

	♪^ 100μm	→ 低BG素材に取り替える
	- Β 800μm	
新材料候補		

		²³⁸ U[ppm]	²³² Th[ppm]	備考			
	PI100µm	0.39 ± 0.01	1.81 ± 0.04	現行のµ-PIC材料			
	ガラス無しPI+エポキシ	<0.01	<0.10	新材料候補			
	LCP	<0.02	<0.06	新材料候補			
_CP: liquid Crystal Polymer 上限値はHPGe検出器のBGによる (@surface lab) → 低BGHPGe検出器で測定 (@underground)							
現在ガラス無しPI+エポキシを用いた							

10cm角µ-PIC試作機を製作中(年内完成予定)

ガラス無しPI+エポキシ

製作中のBG源混入

μ-PIC試作機の製作にあたり、製作工程中のBG源の混入の有無を確認する

<u>測定するタイミング</u>

- 1. PI800um部分の表面の銅のエッチング後
- 2. 4 層基盤プレス後
- 3. ビアフェルめっき後
- 4. 読み出し部分に施すNi-Auめっき後

以上の工程後のサンプルを測定することで、 行程中でのBG源の混入の有無を確認する

ガラスを取り除いたあと取り除く べきBG源を発見できるかもしれ ない

4. まとめ

NEWAGE

• 神戸大学主導の方向に感度をもった暗黒物質直接探索実験

BGの理解・低減

- おもなBG源はPI100um内のガラス繊維
- 検出器ジオメトリをアップデートしたシミュレーションは解析中
- ガラス強化されたPI100um部分を低BG素材にかえた10cm角µ-PIC試作機 を製作中
- 試作機製作に加えて、製作工程でのBG源混入の有無を確認する

<u>今後</u>

- U/Th含有量の系統誤差の理解
- µ-PIC製作中でのBG源混入の有無の確認
- 10cm角のµ-PIC試作機の性能評価