日本物理学会2015春季大会@早稲田大学 2015/3/24

NEWAGE実験33 高感度化のための研究

橋本隆(神戸大)

身内賢太朗,山口祐史郎,稲田知大,中村輝石(京都大), 他NEWAGEグループ

2. バックグラウンドスタディー

前回発表(橋本JPS2014秋)より、μ-PICの補強材に使われているガラスに含まれるU/Th系列の崩壊により生じるα線がBGになっていることを示唆(図中C,C')

今回の発表は

- ガンマ線検出器を用いたµ-TPCの各部分のU/Thの含有量測定
- 測定値を用いたシミュレーション

2.1 U/Th測定

HPGe検出器(東大蓑輪研)を用いて、各部分のU/Thの含有量を測定

✓ 本郷地下一階

✓ サイズ : Φ57.1mm×54.5mm

<u>測定サンプル</u> (: JPS2014秋、 : 今回)

- µ-PIC本体
- ガラス繊維で強化されたポリイミド(PI)(800µm, 100µm)
- メッキ液(CuSO₄)
- GEM(LCP+銅)

U/Th測定結果

	[g]	²³⁸ U[ppm] U系列中流⁺	²³⁸ U[ppm] U系列上流	²³² Th[ppm] Th系列
μ-ΡΙϹ	169.56	1.17±0.01	1.14±0.01	5.84±0.03
PI 800µm	134	0.78±0.01	0.76±0.01	3.42±0.03
PI 100μm	35	0.39±0.01	0.38±0.01	1.81±0.04
CuSO ₄	72	<0.009	<0.13	<0.06
ガラス繊維	15	0.84±0.03	0.91±0.02	3.48±0.12
GEM	27.0	<0.022	<0.17	<0.12

+:放射平衡を仮定した時の²³⁸Uの含有量

- 統計誤差のみを考慮
- 系統誤差は評価中
- U系列中流は²¹⁴Bi由来の609keV、上流は²³⁴Th由来の93keVのガンマ線 ピークから算出
- Th系列は²⁰⁸Tl由来の583keVのガンマ線ピークから算出
- ガラス繊維でPI100µmに含まれているU/Thを説明できそう。

バックグラウンド源

- PI100µm1枚1cm²あたりに含まれる²³⁸Uの崩壊レート
 <u>68.5±1.5</u> [µBq/cm²]
- ガラス繊維1枚1cm²あたりに含まれる²³⁸Uの崩壊レート
 <u>64.5±0.82</u> [µBq/cm²]
- PI100µm1枚1cm²あたりに含まれる²³²Thの崩壊レート
 <u>102.1±2.3</u> [µBq/cm²]
- ガラス繊維1枚1cm²あたりに含まれる²³²Thの崩壊レート
 <u>86.79±1.12</u> [µBq/cm²]

2.2 シミュレーション

Geant4を用いてシミュレーション

- ガラス繊維のU/Th含有量の測定値を用いて、ポリイミド100µmのオレンジ メッシュ部分からU/Th系列によるa線を発生させる
- 下側のポリイミド100µm、真ん中のポリイミド800µmから出るa線は考慮しない
 - a線はポリイミド100μm部分を通過できない

- ガラスの測定結果を用いた
- TPC事象を検出器の分解能20%でぼかした
- 今後改善すべき点
- GEMの穴径を70µm→80µmに

TPC事象に2つの山が見えることに関しては、現在調査中

GEMの穴径

- デザイン値は70µmだったが、実際測ってみるとおよそ80µmだった
- GEMの穴径を大きくすると、TPC事象は増えると予想

3. まとめ バックグラウンドスタディー

- 補強材のガラス繊維のみのU/Th含有量を測定した
- ポリイミド100µmに含まれるU/Th含有量は補強材のガラスで 大部分を説明できた

• 低エネルギー側のバックグラウンドを定量的に理解する

- 系統誤差の理解を深める
 - ・ 質量測定の不定性
 - HPGe検出器における、ガンマ線のピークの強度による不定性
- NEWAGE検出器のジオメトリの更新
- U/Thの少ないµ-PIC開発