陰イオンガスを用いた MPGD基礎特性

2017/3/19 JPS@大阪大学

神戸大理

中澤美季,身内賢太朗,矢ヶ部遼太,橋本隆,池田智法,帝釋稜介

★ NEWAGE

- ★ 陰イオンµTPC
- ★ µ-PIC+GEM Gain測定結果
- ★ 電場シミュレーション
- ★ まとめとこれから

NEWAGE

New Generation WIMP Search with an Advanced Gaseous Tracker Experiment

方向に感度を持った暗黒物質直接探索実験

μΤΡϹ

NEWAGEではマイクロパターンガス検出器の一種であるµ-PIC を読み出しに持つ**三次元微細検出器(µTPC)**を用いて実験を 行っている。

μ-PIC Drift plane

Pitch:400µm

厚さ:100µm

GEM

Pitch:140µm

SF₆によるz軸方向の絶対位置決定

Gain測定(µ-PIC+GEM)

JPS@大阪大学

Gain ~Anode依存~

Gain

~ΔGEM依存~

~Induction依存~

 $5.5 \times 10^2 \sim 7 \times 10^2$

 $2.8 \times 10^2 \sim 7 \times 10^2$

ΔGEM,Induction電圧依存性があることを確認

[SF₆ガス中で使用するMPGDに必要な条件] 電子増幅を引き起こすのに必要な電場を形成できること

シミュレーション

7つの解析分野(電場・磁 場・電磁波、熱伝導・応力、 圧電、音波)の解析と、連 成解析が可能な、有限要素 法解析システムである

Femtetを用いて電場シ ミュレーションを行った。

シミュレーション ~µ-PIC~

電子の増幅が始まるのに十分な電場(100kV/cm)ができることを確認。 100kV/cm以上の電場領域はanode上面から10μm~-10μm(PLC上面)の範囲。

シミュレーション ~µ-PIC~

JPS@大阪大学

シミュレーション ~GEM~

LCP上面での電場 300 200 ** 100 0 -100 0 100 穴中心からの距離[µm]

100kV/cm以上の電場領域はGEMの上下銅電極の 穴円周部分z方向に1µm程。 µ-PICに比べ100kV/cm以上の電場領域は小さいが 銅電極付近で電子増幅が始まると考えられる。

IPS@大阪大学

まとめとこれから

まとめ

☆SF₆ガスを用いたµTPCでµ-PIC+GEMのガスゲインを測定。

- SF₆ガス中のMPGDでMinority peak観測に十分なガスゲインを得られることを確認。
- ・Anode依存、ΔGEM依存、Induction依存性を確認。

☆Femtetを用いた電場シミュレーション

・電子増幅に必要な電場がµ-PIC,GEM共に形成できることを確認。
 これから

☆陰イオンガス特有の電子剥離に関してより深い理解が必要。シ ミュレーションと実測の両方からアプローチ

☆3段GEM(LCP 100µm)や小型MICROMEGAS(Pitch 400µm)など様々 なMPGDを試験し、SF₆ガスに最適なMPGDを探す

☆NIµTPC用ASICの開発

END

Back Up

NEWAGEの感度曲線 方向感度では nace run NEWAGE 2010 (RUN5) 世界最高 10⁵ NEWAGE surface run 10⁴ DMTPC 2012(E) 10³ THIS WORK (RUN14 DRIFT POTOIN 10² $\sigma_{\chi_{\text{-p}}}[\text{pb}]$ DAMA allowed(Nal) DAMA/LXe(Xe)2000 Tokyo(CaF2)2006 0 CDMS2(Ge)2009 1 XENON10(Xe)2008 NAIAD(Nal)2005 KIMS(Nal)2007 PICASSO(C4F10)2012 10⁻¹ COUPP(CF3I)2012 SIMPLE(C2CIF5)2011 10⁻² 10^{3} M_{γ} [GeV/c²] 10

Induction領域におけるイオンの移動

陽イオンがInduction間の電場 によってGEMの方へ移動する。 この時の陽イオンの電荷移動 が検出されている。

基本思想

- デフォルトHIGHGAINモードで動かして閾値超えるとLOWGAINにスイッチ する
- ADC(\$\$bit
- デジタルボードに流れる情報はADC(8bit)+L&HMODE(1bit) +Slow&Fast(1bit)

シミュレーション ~µ-PIC~

電界-大きさ

シミュレーション ~GEM~

電界-大きさ 9e+5 8e+5 7e+5 **電界-大きさ [V/m]** 6e+5 5e+5 4e+5 3e+5 2e+5 1e+5 0e+0 200 300 250 150 350 400 0 50 100 始点からの

距離 [um] GEM上面 GEM下面

μ-PICに比べて10⁷V/m 以上の電場領域は小さいが、 GEMの上部(10⁷V/m)で電子の増幅が起こり、空洞部(10⁵V/m) を通り、再び下部(10⁷V/m)で電子の増幅を起こすと考えられる。

小型MICROMEGAS

100mm×100mm 400µm pitch

NIµTPC用ASICの開発

電子のドリフト速度 [~5^{cm}/_{µs}] に対して陰イオンのドリフト速度 [~10⁻² ^{cm}/_{µs}]

液体Ar用TPCのために開発(@KEK)されたASIC (LTARS2014)を一部修正して

NIµTPC用読み出し回路(LTARS2016_K01)を開発中

	従来の ASD	LTARS2014	NIµTPC要請値
ゲイン	0.160V/pC	11.4mV/fC	8mV/fC
ダイナミックレンジ		10 ²	104
ENC		6000(@300pF)	<2000(0.3fC)
時定数	16ns	1µs	4µs

2017/3/19