陰イオンガスにおける MPGDの性能評価

2017年9月13日 日本物理学会@宇都宮大学

神戸大理 石浦宏尚,身内賢太朗,中村輝石,矢ケ部遼太,橋本隆, 池田智法,中澤美季,越智敦彦

2017/09/13

NEWAGE

- ・神戸大主導の方向に感度を持つ暗黒物質直接探索実験
- ・ガス検出器「µ-TPC」を用いて到来方向異方性の観測を目指す

NEWAGEの検出器: µ-TPC

- マイクロパターン検出器µ-PIC を読み出しに用いた3次元飛跡検出器
- µ-PICによる2次元飛跡情報+信号時間差&ドリフト速度によるz方向情報 →3次元飛跡情報

GEM 140µm pitch

陰イオンガスµ-TPC R 現在のµ-TPCの課題:バックグラウンド → µ-PICのガラス繊維由来a線 対策 μ-PICの低アルファ化によるBG低減(橋本隆13pS34-09) gap (CF₄) 3.99mr TPC Drift plan z軸方向への有効体積カット (CF₄) 41cm (Copper) (ただし従来のµ-TPCではドリフト方向については相対位置しかわからない)

- <u>陰イオンガスを用いたz軸方向絶対位置決定</u> DRIFTグループ(英・米)が陰イオンガスを用いてz軸方向の 絶対位置決定に成功
- ドリフト速度の異なる複数イオン到達時間差から絶対位置決定 $z = (t_a - t_b) \frac{v_a v_b}{v_b - v_a}$

z軸方向への有効体積カットに使える→

- 陰イオンガスµ-TPCの開発(池田智法 15aT11-14)
- ・ 陰イオンガス中でのマイクロパターンガス検出器(MPGD)性能評価の必要性

陰イオンガス中におけるMPGD

世界各国でSF6+MPGDの研究: µ-PIC+GEM(100µm), Triple GEM(50µm), THGEM(1mm, 400µm), Micromegas

その中でもGEMでは

SF₆中で増幅を確認したGEMと各パラメータ (身内 CYGNUS GAS WG report@CYGNUS 2017 他)

Gain Device	厚さ	枚数	SF6 pressure(Torr)	Max Gain	グループ
GEM	50µm	3	150-370	5000	Frascati, Italy
μ-PIC+GEM	100µm	1	20-152	2000	Kobe, Japan (JPS2016春 池田)
THGEM	400μm, 1mm	1	20-100	3000	NewMexico, US (N.S. Phan <i>et al</i> 2017 <i>JINST</i> 12 P02012)
THGEM	400µm	1	30, 40, 50		Sheffield, UK

本研究の動機:SF₆ガス中で100µmのGEMを用いたTriple-GEMを動作させ、 100µmGEMのSF₆ガス中性能評価

まずAr+C2H6中でTriple-GEM動作確認、その後SF₆中での動作を目指す 2017/09/13 日本物理学会2017年秋季大会@宇都宮大学

 ΔV_{GEM}

 ΔV_{GEM}

HV

ΗV

ΗV

HΛ

ΗV

HV (8系統)

Driftメッシュ(SUS)

1nF Amp CREMAT CR-110 Amp: CREMAT CR-110, Gain: 1.4V/pC, 時定数:140µs Readout: 400µm pitch strip読み出し 24strip(9.6mm)束ねて使用 HV: Drift, 3つのGEMのTop&Bottom, Readoutに独立して電圧を かけられるように

3.5mm

3.5mm

2mm

Transfer

Transfer

Induction

GEM2

GEM3

USBオシロ UDS-5206S

Readout

Ar + C₂H₆でのTriple-GEM動作試験

ガス条件

Ar + C₂H₆(90:10) 1気圧

線源

⁵⁵Feによる5.9keV X線を用いた

基本的に測定時基準電圧として 右の電圧を用い、任意のパラメータ を変えて特性を見ていく

をガウスフィットし、アンプゲインと合わせてガスゲインを算出

2017/09/13

Transfer電場とGain

共通パラメータ Ar + $C_2H_6(90:10)$ 1気圧 $\Delta V_{GEM}=360$ V $E_{Drift}=200$ V/cm $E_{Induction}=1500$ V/cm

1000 V/cmを超えたあた りからゲインが上がらな くなる

下がっているかはこの測 定結果からはわからず

Drift電場とGain

 $Ar + C_2H_6(90:10)$ 1気圧 $E_{transfer}=857V/cm$ $\Delta V_{GEM}=360V$ $E_{Induction}=1500$ V/cm

測定している範囲では 変化は見られなかった

Induction電場とGain

Ar+C2H6 1atm ΔV_{GEM} =350V E_{Drift} =200V/cm $E_{Transfer}$ =857V/cm

3000 V/cmから5000 V/cm で一旦緩やかになった後、再 び上昇に転じている

杉山史憲 修士論文 (東京理科大学 2008) での測定結果(下図)と同一傾向

Triple GEMのSF₆中での動作確認

- Ar+C2H6(9:1) 1atm中でのTriple GEM動作を確認できた
 →次にSF₆ガス中で動作するか確認へ
- まずはµ-PIC+GEMで動作確認が取れているpure SF₆ 20Torr中で動作テスト
- その後パラメータを変え、他の条件で動くか確かめる

SF₆ガス中でのTriple-GEMの動作

今後とまとめ

今後

- Triple GEM(100µm厚)の各パラメータ(ΔV_{GEM}、電場、圧力など)を変えて SF₆ガス中特性の確認
- Micromegasの SF₆ガス中における試験
- 実験とシミュレーション両方による陰イオンの挙動の理解

まとめ

- Ar + C₂H₆(90:10) 1気圧でのTriple GEM(100µm厚)の動作を確認、性能評価した
- SF₆ 20,150Torr中でTriple GEM(100µm厚)を試験し⁵⁵Fe 線源の信号を確認

Backup

GEM 写真

GEM

ガスゲイン測定方法

- Fe55の5.9keV X線を利用
- 次式により導出

$$\frac{E_d}{W} \times e^- \times G_{gas} \times G_{amp} = Q$$

 E_d : ガス中でのエネルギー損失; W: 電子-イオン対を生成するのに必要な平均エネルギー e^- : 電気素量、 G_{gas} :ガスゲイン、 G_{amp} :アンプゲイン、Q:アンプからの電荷

- アンプゲインを求める必要
- アンプからの電荷→波形情報から算出