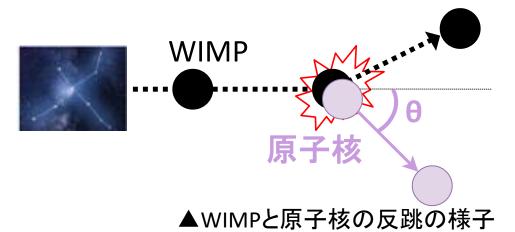
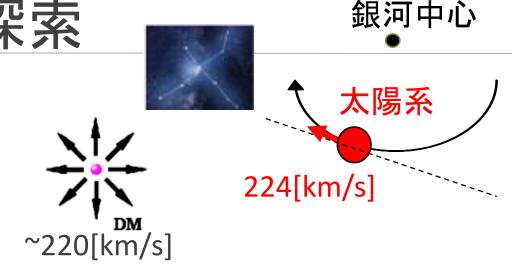
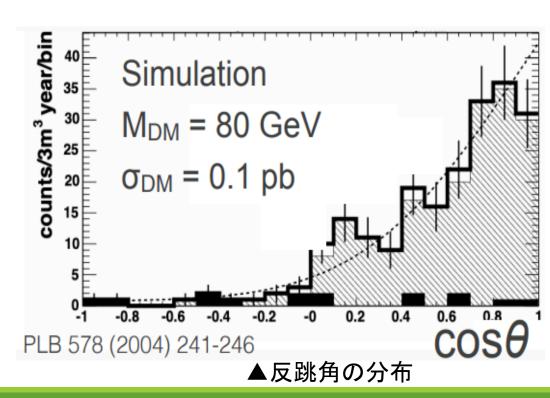


NEWAGE実験73: 大型ガスTPCのための モジュール型検出器の動作実験

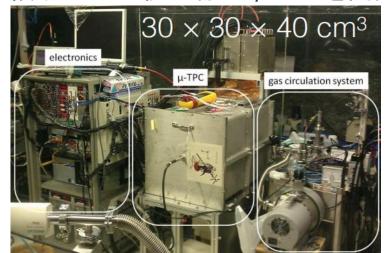

神戸大学 M1 大藤 瑞乃,身内 賢太朗,東野 聡,中山 郁香

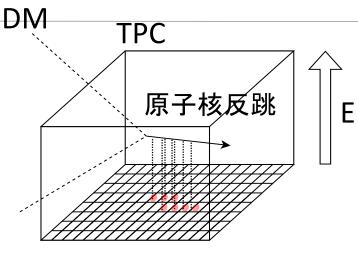

目次


- イントロダクション
 - ▶方向に感度を持つ暗黒物質探索
 - ➤開発中の大型TPC: C/N-1.0
- ▶モジュール型検出器の動作実験・性能評価
 - ▶モジュール型検出器
 - ▶動作実験
- ▶展望・まとめ

方向に感度を持つ暗黒物質探索

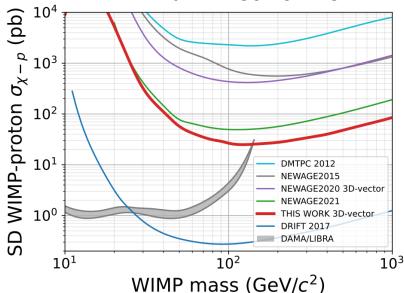
- >WIMPs: Weakly Interacting Massive Particles
 - ▶暗黒物質の有力候補
- >方向に感度を持つ暗黒物質の直接探索
 - ▶太陽系:運動方向にはくちょう座が見える
 - ▶WIMPsの運動が銀河に対して等方的であると仮定
 - ▶到来方向は,はくちょう座の方向に偏りが生じる
 - ➤WIMPsの確実な証拠となる





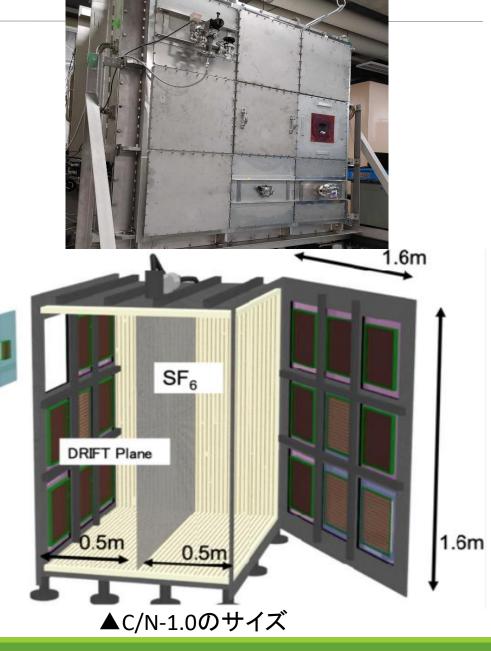
NEWAGE実験

- ▶ガスTPCを用いた,方向に感度を持つ暗黒物質の直接探索実験
 - ▶ガスTPC
 - ▶DMとガス中の原子核が反跳, 飛跡にそってガスが電離される
 - ▶電場に従い電子/陰イオンがドリフトされる
 - ▶30 cm*30 cm*40 cmの検出器が稼働中@神岡
 - >CF₄ 76 Torr
 - ▶~1 mの検出領域の大型検出器: C/N-1.0を開発中@神戸



←運転中の検出器

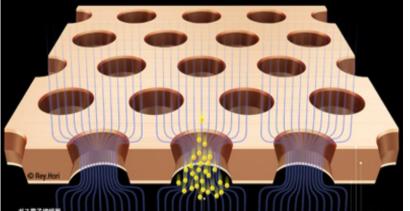
▲ガスTPCの検出原理



▲NEWAGE実験による制限曲線*

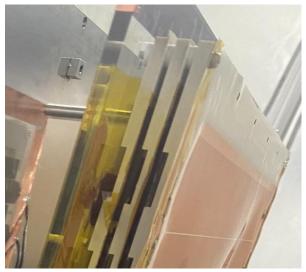
開発中の大型TPC

- > C/N-1.0
 - ▶検出領域 ~1 m³
 - ▶読み出し面積30 cm*30 cm*9枚*2面, ドリフト領域50 cm
 - ▶低圧SF₆ガスまたは低圧CF₄ガス
 - ▶18ヶのモジュール検出器
 - ▶導入予定のモジュール0号機を開発: Module-0

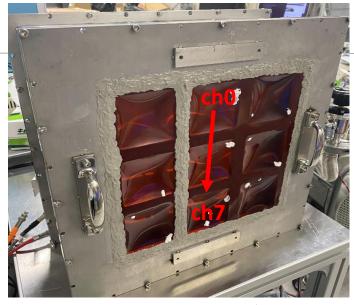


Module-0

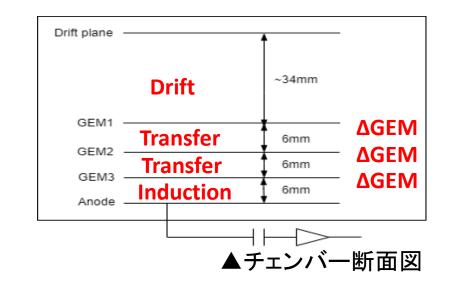
- ➤ Module-0
 - ▶30 cm角
 - ▶8 chのAnode Pad で読み出し
 - ➤ Anode Padに対応した8短冊が並んだGEMを三枚用いたモジュール
 - ➤GEM間の距離 6 mm = GEM枠 4 mm + スペーサー 2 mm


ch0
ch7

- ➤ GEM(Gas Electron Multiplier)
 - >厚さ100 μm, 140 μm間隔で直径70 μmの穴
 - ▶両側の電極に異なる電圧を印加
 - ▶強い電場を生成,雪崩増幅を起こす


▼GEM

▼GEMを重ねている様子



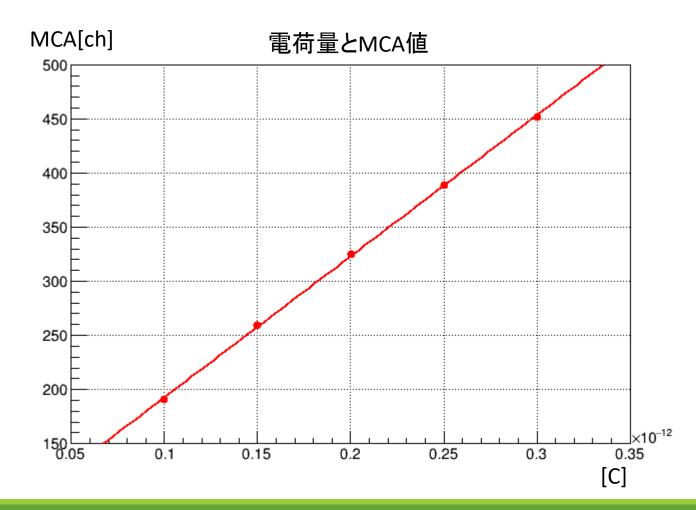
モジュール型検出器の性能評価

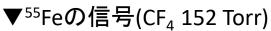
- ▶試験用のチェンバーで性能評価
 - ▶55Fe線源からのX線(5.9 keV)を用いた
 - ▶信号・スペクトル取得,分解能測定
 - ▶ΔGEM依存のゲインカーブ取得
 - ▶ Transfer/Induction電圧依存のゲインカーブ取得
 - ▶ゲインマップ取得
 - ▶CF₄を用いた場合のModule-0の動作電圧を決定
 - ▶現行の検出器のゲイン: 1000~2000目標
 - ▶CF₄ 76 Torr(論文, 学会発表[JPS2021秋 14aV2-7 東野]), 152 Torr

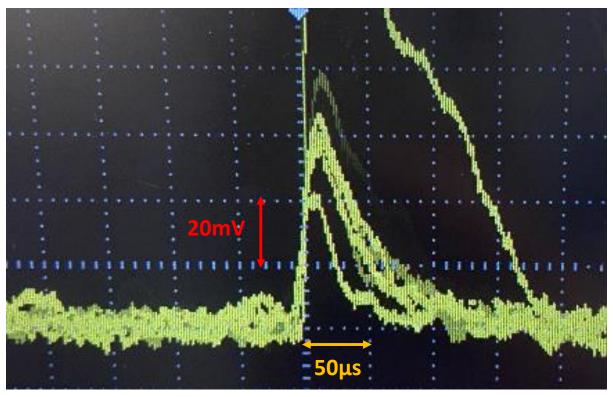
▲試験用チェンバー

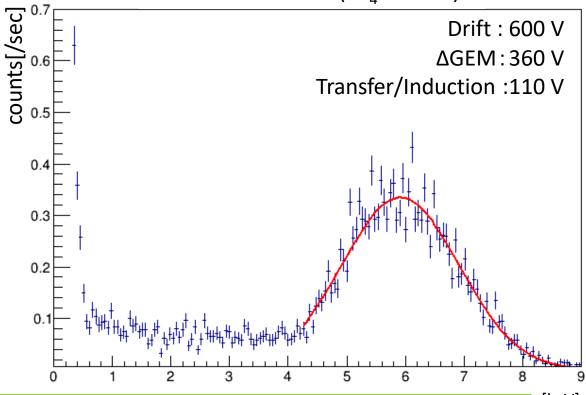
動作実験:エレクトロニクス

- ▶ チャージアンプ: ORTEC 142
 - ≥1V/pC
- ▶シェイパーアンプ
 - **≻**ゲイン:20
 - >shaping time : 5 uS
- ➤ MCA: データ取得
 - ▶1 V :10 bit

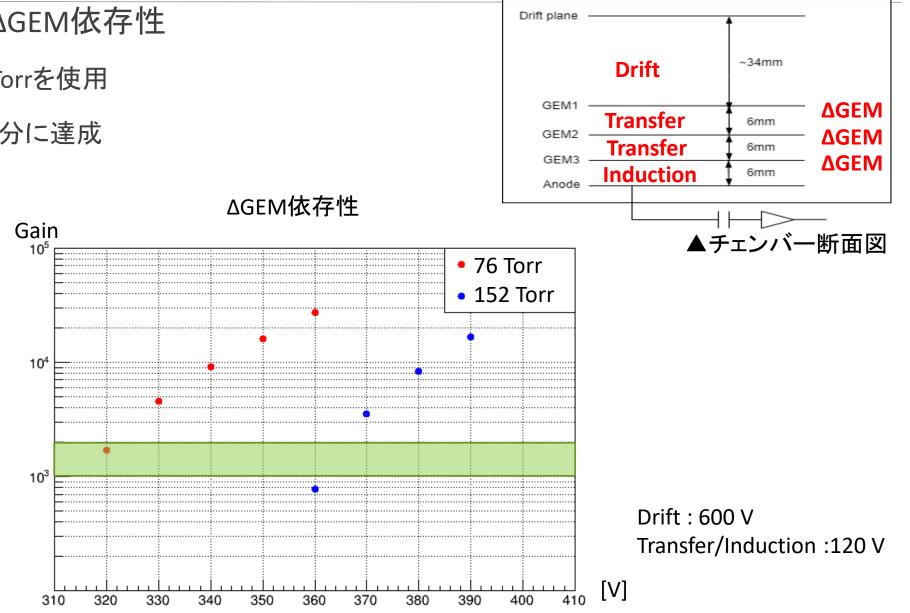



動作実験:テストパルスを用いたMCAの較正

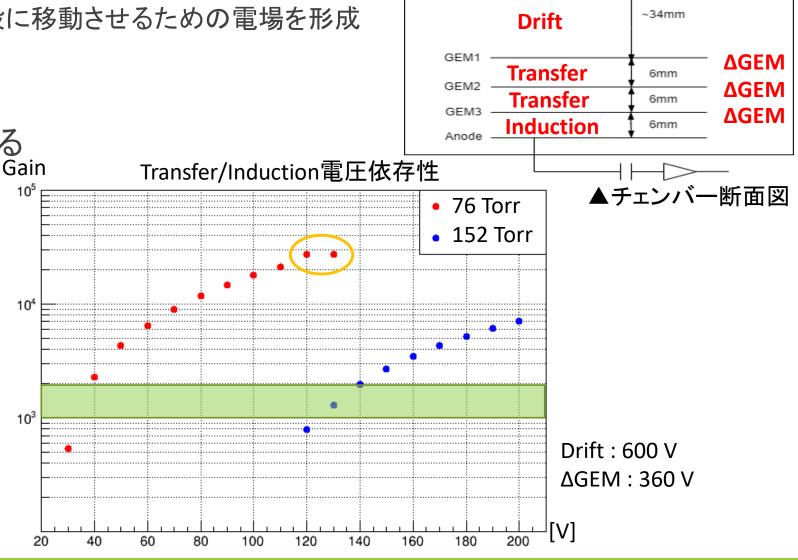

- **▶**テストパルス
 - ▶1 pFのコンデンサを介してパルスジェネレーター を出力
 - $ightharpoonup C_{in}[C] \sim (MCA[ch]-62.4) \times 10^{-15}$


動作実験:55Feの信号取得

- ▶CF₄での55Fe(5.9 keV X線)線源による信号を取得
 - ➤分解能:35.95 %(FWHM)

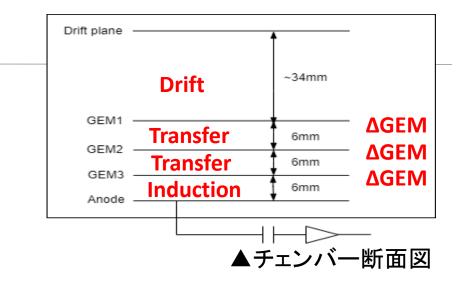


▼⁵⁵Feのスペクトル(CF₄ 76 Torr)


動作実験: ΔGEM依存のゲインカーブ

- ▶CF₄ 76 Torr/152 Torrでの△GEM依存性
 - ▶*NEWAGE地下測定: CF₄ 76 Torrを使用
 - ▶目標ゲイン: 1000~2000 を十分に達成

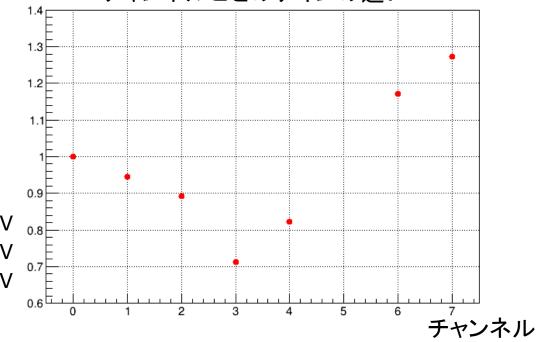
動作実験: Transfer/Induction依存のゲインカーブ


- ▶CF₄ 76 Torr/152 TorrでのTransfer/Induction依存を測定
 - ➤GEMで増幅された電子を上段から下段に移動させるための電場を形成
 - ▶目標ゲイン: 1000~2000 を十分に達成
- ▶プラトーになっている様子が見える
 - ▶増幅した電子が十分に検出できている

Drift plane

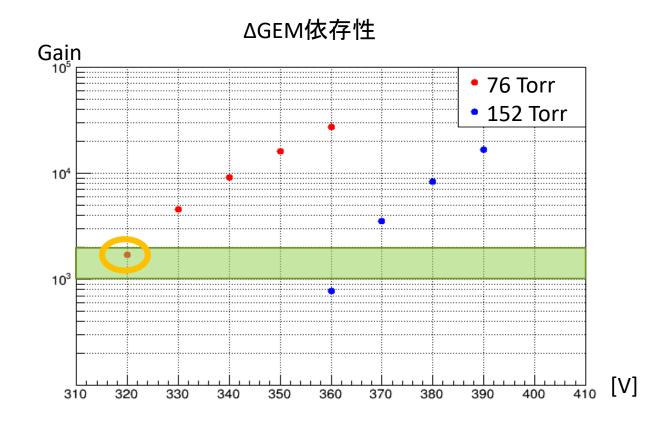
動作実験:ゲインマップ

- トチャンネルごとのゲインの違い
 - ▶チャンネル0のゲインに対する比で表示
 - ▶55Fe線源を各チャンネルのAnode Pad上に設置して測定
 - ▶チャンネル5はGEM導通のため故障中


相対ゲイン チャンネルごとのゲインの違い

- ▶GEMのたるみによってGEM間の距離が変化している可能性
 - ▶Transfer/Induction電場が変化する
- ▶原因は調査中

Drift: 600 V


ΔGEM: 360 V

Transfer/Induction: 120 V

動作実験:結果

- ▶30 cm角のモジュール型検出器が低圧CF₄ガスで動作することを確認した
- ▶現行の検出器のゲイン: 1000~2000を達成するための電圧を決定した
 - ▶十分なTransfer/Induction電圧: 120 V (プラトーに達する程度)
 - ▶CF₄ 76 Torr: ΔGEM=320 V程度が最適

展望・まとめ

▶展望

- ≻バックグラウンドモニター
 - >Rn由来のα線(~6 MeV) -> バックグラウンド測定
 - ▶適切なゲインで動作させることで測定可能
- ▶SF₆ 20 Torr ~ 120 Torr での測定
- > 多チャンネル読み出し
- ▶C/N-1.0に導入/実験
 - ▶CF₄ 76 Torrにおいて, Drift:~9 kV
 - ▶ 同様の動作実験 → 神岡へ運搬/運転開始

>まとめ

- ▶モジュール型検出器の動作実験・性能評価を行った
 - ▶55Fe線源を用いて5.9 keV X線の信号取得
 - ▶CF₄ 76 Torr, 152 Torrに関して∆GEM依存性, Transfer/Induction電圧依存性を測定
 - ▶チャンネルごとのゲインを測定