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FIG. 4: Event distribution of the data (black dots), and back-
ground model (grey) of the solar axion search. The expected
signal for solar axions with m

A

< 1 keV/c2 is shown by the
dashed blue line, assuming g

Ae

= 2 ⇥ 10�11, the current best
limit, from EDELWEISS-II [31]. The vertical dashed red line
indicates the low S1 threshold, set at 3 PE. The top axis
indicates the expected mean energy for electronic recoils as
derived from the observed S1 signal.
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FIG. 5: The XENON100 limits (90% CL) on solar ax-
ions is indicated by the blue line. The expected sensitiv-
ity, based on the background hypothesis, is shown by the
green/yellow bands (1�/2�). Limits by EDELWEISS-II [31],
and XMASS [32] are shown, together with the limits from a
Si(Li) detector from Derbin et al. [33]. Indirect astrophysical
bounds from solar neutrinos [34] and red giants [35] are rep-
resented by dashed lines. The benchmark DFSZ and KSVZ
models are represented by black lines [4–7].

tom
A

< 1 keV/c2. For comparison, we also present other
recent experimental constraints [31–33]. Astrophysical
bounds [34–36] and theoretical benchmark models [4–
7] are also shown. For solar axions with masses below
1 keV/c2 XENON100 is able to set the strongest con-
straint on the coupling to electrons, excluding values of
g
Ae

larger than 7.7⇥ 10�12 (90% CL).
For a specific axion model the limit on the dimension-

less coupling g
Ae

can be translated to a limit on the ax-
ion mass. Within the DFSZ and KSVZ models [4–7]
XENON100 excludes axion masses above 0.3 eV/c2 and
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FIG. 6: Event distribution in the galactic ALPs search re-
gion between 3 and 100 PE (black dots). The grey line shows
the background model used for the profile likelihood func-
tion. The red dashed line indicates the S1 threshold. The
expected signal in XENON100 for various ALP masses, as-
suming g

Ae

= 9 ⇥ 10�13, is shown as blue dashed lines. The
top axis indicates the expected mean energy for electronic
recoils as derived from the observed S1 signal.

80 eV/c2, respectively. For comparison, the CAST ex-
periment, testing the coupling to photons, g

A�

, has ex-
cluded axions within the KSVZ model in the mass range
between 0.64 - 1.17 eV/c2 [37, 38].
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FIG. 7: The XENON100 limit (90% CL) on ALP coupling to
electrons as a function of the mass, under the assumption that
ALPs constitute all the dark matter in our galaxy (blue line).
The expected sensitivity is shown by the green/yellow bands
(1�/2�). The other curves are constraints set by CoGeNT [39]
(light brown dashed line), CDMS [40] (blue dashed line), and
EDELWEISS-II [31] (brown dashed line). The indirect astro-
physical bound from solar neutrinos [34] is represented as a
grey line. The benchmark KSVZ model is represented by a
black line [6, 7].

B. Galactic axions-like particles

Figure 6 shows the XENON100 data after the selection
cuts in the larger energy region of interest used for the
search for non-relativistic galactic ALPs (1422 surviving

à量⼦コンピュータ開発技術を暗⿊物質探索実験に応⽤できないか

ü DMハローアクシオンの𝑔"#(axion-electron	coupling)直接観測

E.	Aprile et	al.
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A. Interaction of magnon and axion

Axion emerges as the Nambu-Goldstone boson of PQ
symmetry which is broken at an energy scale Fa[14].
In non hadronic axion model as DFSZ model[15], such
Nambu-Goldstone boson is allowed to interact with
fermions, the Lagrangian is expressed as

L = gaff@µa(x) ̄(x)�
µ
�5 (x) (2)

where �µ is the Dirac matrices vector,  denotes a stan-
dard model fermion and gaff is coupling constant which
is proportional to 1/Fa. Considering electrons, the non-
relativistic limit leads to following term in Hamiltonian:
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⌘

=�2µBŜ ·Ba, (3)

where m is the electron mass, gaee is the axion-electron
coupling constant, �̂ is the Pauli matrices, µB is the Bohr
magneton and Ba is e↵ective axion field.

The motion of the Earth in the dark matter halo of
Galaxy leads to a relative velocity between the detector
and dark matter halo axion. The local circular speed
is va ' 220 km/s[16] with a dispersion of about 270
km/s[17]. Thus the axion field can be recognized as a
simple low momentum free scalar field oscillating in its
potential. The frequency fa is given by Eq.(2) and am-
plitude Ba of the axion field is written as

Ba =
gaee

e

r
2~na

mac
mava

=3.26⇥ 10�8

⇥gaee
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⇢DM

0.45 GeV/cm3
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◆
[T],(4)

where na is the number density of DM, ⇢DM is the local
dark matter density and ma is axion mass.

We then discuss the axion magnon interaction. The
total magnetic dipole moment of N electron spins in a
feromagnetic material can be expressed as

p
NµB . The

lower excitation states are collective waves of small-angle
spin precession called magnon. The coupling between
linear-polarized microwave photons and the spin ensem-
ble via the Zeeman e↵ect were discussed in Ref[18]. The
axion field also plays the role of photons and then the
Hamiltonian is expressed as

H = gµB

X

i

Ŝi ·Ba(ri)(â + â†)

= gµB

p
2s
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i
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n

sn(ri)
ĉn + ĉ
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2
·Ba(ri)(â + â†),

(5)

where ri is the position of i-th spin, B0 is the axion
magnetic field at ri, and â(â†) is the axion annihila-
tion(creation) operater. From Eq.(3), g factor is equal

to 2. In the second line, the Heisenberg operator Ŝi is
replaced with the sum of magnon operators multiplied
by their orthonormal mode functions sn(ri) and n is an
index of the mode. The sum over the spins is replaced
with integrating volume and then we obtained

H =
gµB

2

p
2s

X

n

Z

V
dr sn(r) ·Ba(r)(â

†
ĉn + â ĉ†n), (6)

where V is the sample volume. Here considering the
sphere sample, the Kittel mode, where all spins in the
sample precess in phase with the same amplitude, has a
finite coupling strength. In this case we obtain the e↵ec-
tive hamiltonian of axion-magnon interaction for Ba ? z:

Hint = ~geff (â†
ĉ+ â ĉ†), (7)

with

geff ⌘ gµBBa

2~
p
2sN, (8)

where ĉ(ĉ†) is the annihilation(creation) operator of
manon on the Kittel mode. Here we defined the direc-
tion of static magnetic field as z. The relic axion can be
seen as coming from the constellation cygnus due to the
motion of the sun. Where the static magnetic field is per-
pendicular to the direction of the cygnus, magnon most
e↵ectively couples to axion. Hence if magnon couples to
axion, the number of magnon, or the quanta of magnon,
can be increased.

B. Magnon readout with qubit

We then calculate magnon readout by a superconduct-
ing qubit. A quibit is a ... The magnon plus qubit Hamil-
tonian takes the Jaynes-Cummings form[19]:

HJC = ~!mĉ†ĉ +
~!q

2
�̂z � ~gq�m(ĉ†�̂� + �̂+ĉ), (9)

where !q and !m are the qubit transition frequency and
the magnon frequency, respectively and �̂z is the qubit
spin. In the dispersive regime, where the qubit is strongly
detuned from the magnon frequency, |�| = |!m � !q| �
gq�m, the total Hamiltonian HJC +Hint is given by

H =~!mĉ†ĉ +
~
2
(!̃q + 2�ĉ†ĉ)�̂z + ~geff (â†

ĉ+ â ĉ†)

+~⌦s(�̂+e
�i!st + �̂�e

+i!st) (10)

where !̃a = !a + � is the Lamb shifted qubit frequency
and we have defined � = g

2
q�m/�, !s is the spectroscopy

excitation frequency which causes Rabi flopping of the
qubit, ⌦s is the spectroscopy excitation strength (Rabi
frequency). The term proportional to qubit spin �̂z can
be interpreted as a shift of the qubit transition frequency
depending on the magnon number (ac-Stark shift). Thus,
by measuring the qubit state the magnon number can
be determined, which called quantum non-demolition
(QND) measurement.

ü フェルミオンとのカップリング項

ü ⾮相対論的なところでのアクシオンと電⼦の相互作⽤項
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Quantum magnonics: magnon meets superconducting qubit
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The techniques of microwave quantum optics are applied to collective spin excitations in a macro-
scopic sphere of ferromagnetic insulator. We demonstrate, in the single-magnon limit, strong cou-
pling between a magnetostatic mode in the sphere and a microwave cavity mode. Moreover, we
introduce a superconducting qubit in the cavity and couple the qubit with the magnon excitation
via the virtual photon excitation. We observe the magnon-vacuum-induced Rabi splitting. The
hybrid quantum system enables generation and characterization of non-classical quantum states of
magnons.

PACS numbers: 03.67.Lx, 42.50.Pq, 75.30.Ds, 76.50.+g

I. INTRODUCTION

The successful development of superconducting qubits
and related circuits has brought wide opportunities in
quantum control and measurement in the microwave do-
main [1–6]. In circuit quantum electrodynamics and mi-
crowave quantum optics, bosonic excitations of the elec-
tromagnetic modes, i.e., “photons” are handled with high
accuracy [7–10][11]. Therefore, it is natural to extend
the targets to other quantum mechanical degrees of free-
dom. The examples are found in recent reports on hybrid
quantum systems based on superconducting circuits: For
example, paramagnetic spin ensembles [12, 13], nanome-
chanical oscillators [14–16], and surface acoustic waves in
a piezoelectric substrate [17], have been coherently con-
trolled via a coupling with a superconducting qubit.

Our goal here is to apply the techniques of microwave
quantum optics to collective spin excitations in ferro-
magnet. Similar to superconductivity, ferromagnetism
has a rigidity in its order parameter. The lowest en-
ergy excitations are long-wavelength collective spin pre-
cessions. We couple the quantum of the collective mode,
a magnon, to a microwave cavity as well as a super-
conducting qubit to reveal its coherent properties in the
quantum limit [18, 19].

This paper is structured as follows: Section 2 reviews
the basics of magnons in ferromagnet. In Sec. 3, hy-
bridization of a magnon and a photon in a microwave
cavity is demonstrated. Finally, in Sec. 4, we demon-
strate strong coupling between a superconducting qubit
and a magnetostatic mode in a ferromagnetic crystal.
The magnon vacuum induces Rabi splitting in the qubit
excitation. Summary and outlook are presented in Sec. 5.

⇤
tabuchi@qc.rcast.u-tokyo.ac.jp

II. MAGNONS IN FERROMAGNET

A. Spin waves

In order to describe spin waves, or collective excita-
tions in ferromagnetic materials, we begin with a simple
Hamiltonian:

Ĥ = �gµ

B

B
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· Ŝ
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, (1)

where the first term represents the Zeeman energy and
the second one is the nearest-neighbor exchange interac-
tion. The sum in the second term is taken over the pairs
of the neighboring spins. Ŝ

i

is the Heisenberg spin op-
erator for the i-th site, g is the g-factor, µ

B

is the Bohr
magneton, B

z

is the static magnetic field along the z axis,
and J is the exchange integral. J takes positive values
for ferromagnetic materials, leading to the ferromagnetic
ground state, where all the spins are aligned along the z

axis.
We can express the Heisenberg operators in terms

of the bosonic operators ĉ
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by using the Holstein-
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ĉ

i

, (4)

where s is the total spin on each site. The meaning of
this transformation is illustrated in Fig. 1. We find from
Eq. (4) that the number of the bosons corresponds to the
reduction of the z-component of the total spin.
The bosonic operators defined on each lattice point are

related to the spin-wave operators by the Fourier trans-
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H =~!mĉ†ĉ +
~
2
(!̃q + 2�ĉ†ĉ)�̂z + ~geff (â†

ĉ+ â ĉ†)

+~⌦s(�̂+e
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+i!st) (10)

where !̃a = !a + � is the Lamb shifted qubit frequency
and we have defined � = g

2
q�m/�, !s is the spectroscopy

excitation frequency which causes Rabi flopping of the
qubit, ⌦s is the spectroscopy excitation strength (Rabi
frequency). The term proportional to qubit spin �̂z can
be interpreted as a shift of the qubit transition frequency
depending on the magnon number (ac-Stark shift). Thus,
by measuring the qubit state the magnon number can
be determined, which called quantum non-demolition
(QND) measurement.

2

A. Interaction of magnon and axion

Axion emerges as the Nambu-Goldstone boson of PQ
symmetry which is broken at an energy scale Fa[14].
In non hadronic axion model as DFSZ model[15], such
Nambu-Goldstone boson is allowed to interact with
fermions, the Lagrangian is expressed as

L = gaff@µa(x) ̄(x)�
µ
�5 (x) (2)

where �µ is the Dirac matrices vector,  denotes a stan-
dard model fermion and gaff is coupling constant which
is proportional to 1/Fa. Considering electrons, the non-
relativistic limit leads to following term in Hamiltonian:
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where m is the electron mass, gaee is the axion-electron
coupling constant, �̂ is the Pauli matrices, µB is the Bohr
magneton and Ba is e↵ective axion field.

The motion of the Earth in the dark matter halo of
Galaxy leads to a relative velocity between the detector
and dark matter halo axion. The local circular speed
is va ' 220 km/s[16] with a dispersion of about 270
km/s[17]. Thus the axion field can be recognized as a
simple low momentum free scalar field oscillating in its
potential. The frequency fa is given by Eq.(2) and am-
plitude Ba of the axion field is written as
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where na is the number density of DM, ⇢DM is the local
dark matter density and ma is axion mass.

We then discuss the axion magnon interaction. The
total magnetic dipole moment of N electron spins in a
feromagnetic material can be expressed as

p
NµB . The

lower excitation states are collective waves of small-angle
spin precession called magnon. The coupling between
linear-polarized microwave photons and the spin ensem-
ble via the Zeeman e↵ect were discussed in Ref[18]. The
axion field also plays the role of photons and then the
Hamiltonian is expressed as
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ĉn + ĉ
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where ri is the position of i-th spin, B0 is the axion
magnetic field at ri, and â(â†) is the axion annihila-
tion(creation) operater. From Eq.(3), g factor is equal

to 2. In the second line, the Heisenberg operator Ŝi is
replaced with the sum of magnon operators multiplied
by their orthonormal mode functions sn(ri) and n is an
index of the mode. The sum over the spins is replaced
with integrating volume and then we obtained
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†
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where V is the sample volume. Here considering the
sphere sample, the Kittel mode, where all spins in the
sample precess in phase with the same amplitude, has a
finite coupling strength. In this case we obtain the e↵ec-
tive hamiltonian of axion-magnon interaction for Ba ? z:
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where ĉ(ĉ†) is the annihilation(creation) operator of
manon on the Kittel mode. Here we defined the direc-
tion of static magnetic field as z. The relic axion can be
seen as coming from the constellation cygnus due to the
motion of the sun. Where the static magnetic field is per-
pendicular to the direction of the cygnus, magnon most
e↵ectively couples to axion. Hence if magnon couples to
axion, the number of magnon, or the quanta of magnon,
can be increased.

B. Magnon readout with qubit

We then calculate magnon readout by a superconduct-
ing qubit. A quibit is a ... The magnon plus qubit Hamil-
tonian takes the Jaynes-Cummings form[19]:

HJC = ~!mĉ†ĉ +
~!q

2
�̂z � ~gq�m(ĉ†�̂� + �̂+ĉ), (9)

where !q and !m are the qubit transition frequency and
the magnon frequency, respectively and �̂z is the qubit
spin. In the dispersive regime, where the qubit is strongly
detuned from the magnon frequency, |�| = |!m � !q| �
gq�m, the total Hamiltonian HJC +Hint is given by

H =~!mĉ†ĉ +
~
2
(!̃q + 2�ĉ†ĉ)�̂z + ~geff (â†

ĉ+ â ĉ†)

+~⌦s(�̂+e
�i!st + �̂�e

+i!st) (10)

where !̃a = !a + � is the Lamb shifted qubit frequency
and we have defined � = g

2
q�m/�, !s is the spectroscopy

excitation frequency which causes Rabi flopping of the
qubit, ⌦s is the spectroscopy excitation strength (Rabi
frequency). The term proportional to qubit spin �̂z can
be interpreted as a shift of the qubit transition frequency
depending on the magnon number (ac-Stark shift). Thus,
by measuring the qubit state the magnon number can
be determined, which called quantum non-demolition
(QND) measurement.
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If the atomic frequency is detuned from the cavity mode by d/2p
with jdj$ V0, emission and absorption of photons by the probe
atoms are suppressed owing to the adiabatic variation of V(z) when
the atom crosses the gaussian cavity mode (see Methods). The atom–
field coupling results in shifts of the atomic and cavity frequencies9.
The atomic shift depends on the field intensity and thus provides
QND information on the photon number n. Following a proposal
made in refs 14 and 15, our aim is to read this information by an
interferometric method and to monitor the jumps of n between 0 and
1 under the effect of thermal fluctuations and relaxation in the cavity.

Before entering C, the atoms are prepared in a superposition of e
and g by a classical resonant field in the auxiliary cavity R1 (see Fig. 1).
During the atom–cavity interaction, this superposition accumulates
a phase W(n,d). The atomic coherence at the exit of C is probed by
subjecting the atoms to a second classical resonant field in R2, before
detecting them in the state-selective counter D. The combination of
R1, R2 and D is a Ramsey interferometer. The probability of detecting
the atom in g is a sine function of the relative phase of the fields in R1

and R2. This phase is adjusted so that the atom is ideally found in g if
C is empty (n 5 0). The detuning d/2p is set at 67 kHz, corresponding
to W(1,d) 2 W(0,d) 5 p. As a result, the atom is found in e if n 5 1. As
long as the probability of finding more than one photon remains
negligible, e thus codes for the one-photon state, j1æ, and g for the
vacuum, j0æ. The probability of finding two photons in a thermal
field at T 5 0.8 K is only 0.3%, and may be neglected in a first
approximation.

We first monitor the field fluctuations in C. Figure 2a (top trace)
shows a 2.5 s sequence of 2,241 detection events, recording the birth,
life and death of a single photon. At first, atoms are predominantly
detected in g, showing that C is in j0æ. A sudden change from g to e
in the detection sequence at t 5 1.054 s reveals a jump of the field
intensity, that is, the creation of a thermal photon, which disappears

at t9 5 1.530 s. This photon has survived 0.476 s (3.7 cavity lifetimes),
corresponding to a propagation of about 143,000 km between the
cavity mirrors.

The inset in Fig. 2a zooms into the detection sequence between
times t1 5 0.87 s and t2 5 1.20 s, and displays more clearly the indi-
vidual detection events. Imperfections reduce the contrast of the
Ramsey fringes to 78%. There is a pgj1 5 13% probability of detecting
an atom in g if n 5 1, and a pej0 5 9% probability of finding it in e
if n 5 0. Such misleading detection events, not correlated to real
photon number jumps, are conspicuous in Fig. 2a and in its inset.
To reduce their influence on the inferred n value, we apply a simple
error correction scheme. For each atom, n is determined by a major-
ity vote involving this atom and the previous seven atoms (see
Methods). The probabilities for erroneous n 5 0 (n 5 1) photon
number assignments are reduced below 1.4 3 1023 (2.5 3 1024)
respectively per detected atom. The average duration of this mea-
surement is 7.8 3 1023 s, that is, Tc/17. The bottom trace in Fig. 2a
shows the evolution of the reconstructed photon number. Another
field trajectory is presented in Fig. 2b. It displays two single-photon
events separated by a 2.069 s time interval during which C remains in
vacuum. By probing the field non-destructively in real time, we real-
ize a kind of ‘Maxwell demon’, sorting out the time intervals during
which the thermal fluctuations are vanishing.

Analysing 560 trajectories, we find an average photon number
n0 5 0.063 6 0.005, slightly larger than nt 5 0.049 6 0.004, the thermo-
dynamic value at the cavity mirror temperature, 0.80 6 0.02 K.
Attributing the excess photon noise entirely to a residual heating of
the field by the atomic beam yields an upper bound to the emission
rate per atom of 1024. This demonstrates the efficient suppression of
atomic emission due to the adiabatic variation of the atom–field
coupling. This suppression is a key feature that makes possible many
repetitions of the QND measurement. Methods based on resonant
phase shifts have much larger emission rates, in the 1021 range per
atom3. Non-resonant methods in which the detector is permanently
coupled to the cavity12 have error rates of the order of V0

2/d 2, and
would require much larger d/V0 ratios to be compatible with the
observation of field quantum jumps.

In a second experiment, we monitor the decay of a single-photon
Fock state prepared at the beginning of each sequence. We initialize
the field in j0æ by first absorbing thermal photons with ,10 atoms
prepared in g and tuned to resonance with the cavity mode (residual
photon number ,0.003 6 0.003). We then send into the cavity a
single atom in e, also resonant with C. Its interaction time is adjusted
so that it undergoes half a Rabi oscillation, exits in g and leaves C in
j1æ. The QND probe atoms are then sent across C. Figure 3a shows a
typical single photon trajectory (signal inferred by the majority vote)
and Fig. 3b–d presents the averages of 5, 15 and 904 such trajectories.
The staircase-like feature of single events is progressively smoothed
out into an exponential decay, typical of the evolution of a quantum
average.

We have neglected so far the probability of finding two photons in
C. This is justified, to a good approximation, by the low n0 value. A
precise statistical analysis reveals, however, the small probability of
two-photon events, which vanishes only at 0 K. When C is in j1æ, it
decays towards j0æ with the rate (1 1 n0)/Tc. This rate combines
spontaneous (1/Tc) and thermally stimulated (n0/Tc) photon
annihilation. Thermal fluctuations can also drive C into the two-
photon state j2æ at the rate 2n0/Tc (the factor of 2 is the square of
the photon creation operator matrix element between j1æ and j2æ).
The total escape rate from j1æ is thus (1 1 3n0)/Tc, a fraction 2n0/
(1 1 3n0) < 0.10 of the quantum jumps out of j1æ being actually
jumps towards j2æ.

In this experiment, the detection does not distinguish between j2æ
and j0æ. The incremental phase shift W(2,d) 2 W(1,d) is 0.88p for
d/2p5 67 kHz . The probability of detecting an atom in g when C
is in j2æ is ideally [1 2 cos(0.88p)]/2 5 0.96, indistinguishable from 1
within the experimental errors. Since the probability for n . 2 is
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Figure 2 | Birth, life and death of a photon. a, QND detection of a single
photon. Red and blue bars show the raw signal, a sequence of atoms detected
in e or g, respectively (upper trace). The inset zooms into the region where
the statistics of the detection events suddenly change, revealing the quantum
jump from | 0æ to | 1æ. The photon number inferred by a majority vote over
eight consecutive atoms is shown in the lower trace, revealing the birth, life
and death of an exceptionally long lived photon. b, Similar signals showing
two successive single photons, separated by a long time interval with cavity
in vacuum.
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estimate of the maximum number of peaks that could possibly be
resolved, 2x/k 5 70, and determines the contrast of a qubit measure-
ment by the cavity. These values of our parameters place the system
well into the strong dispersive regime.

The photon-number-dependent frequency shift of the qubit is
detected by performing spectroscopy on the qubit–cavity system
(Fig. 2e). The cavity is coherently excited by applying a microwave
signal (the cavity tone) at a frequency (vrf) near the cavity resonance
(Fig. 2e). A spectrum is taken by sweeping the frequency (vs) of a
second microwave signal (the spectroscopy tone), which probes the
qubit absorption without significantly populating the resonator as it
is detuned by many linewidths (vs – vr? k). The detection is com-
pleted by exploiting the dual nature of the qubit–photon coupling,
reusing the cavity photons as a measure of cavity transmission,
demonstrated previously1,2,16,18 to measure the qubit excited state
population. The measured transmission amplitude (Figs 3 and 4) is
an approximate measure of the actual qubit population, which could
in principle be measured independently. For clarity, the transmission

amplitude in Figs 3 and 4 is plotted from high to low frequency. In
order to reduce nonlinearities in the response, the cavity tone was
applied at a small detuning d=2p~ vrf {vg

r

! "#
2p~2 MHz from the

resonator frequency when the qubit is in the ground state. This also
slightly modifies the peak splitting24 (Fig. 2e).

The measured spectra reveal the quantized nature of the cavity
field, containing a separate peak for each photon number state
(Fig. 3)24,25. These peaks approximately represent the weight of each
Fock state in a coherent field with mean photon number !nn, which is
varied from zero to 17 photons. At the lowest photon powers, nearly
all of the weight is in the first peak, corresponding to no photons in
the cavity, and confirming that the background cavity occupancy is
nth , 0.1. As the input power is increased, more photon number
peaks can be resolved and the mean of the distribution shifts pro-
portional to !nn. The data agree well with numerical solutions at low
powers (solid lines in Fig. 3) to the markovian master equation4,24

with three damping sources, namely the loss of photons at rate
k/2p5 250 kHz, energy relaxation in the qubit at rate c/2p5
1.8 MHz and the qubit dephasing rate cw/2p5 1.0 MHz. However,
adequate numerical modelling of this strongly coupled system at
higher photon numbers is quite difficult and has not yet been
achieved.

In earlier work17,18 in the weak dispersive limit (x/c , 1), the mea-
sured linewidth resulted from an ensemble of Stark shifts blurring the
transition, whereas here in the strong limit (x/c . 1) each member of
the ensemble is individually resolved. In the spectra measured here
(Fig. 3), the linewidth of a single peak can be much less than the
frequency spread of the ensemble, but changes in photon number
during a single measurement can still completely dephase the
qubit. Taking this into account yields a predicted photon-number-
dependent linewidth, cn~c=2zcwz !nnznð Þk=2 for the nth peak24.
The lowest power peak (in the !nn 5 0.02 trace) corresponds to zero
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Figure 3 | Direct spectroscopic observation of quantized cavity photon
number. Shown are qubit spectra with coherent cavity drive at different
average cavity occupations !nnð Þ. The spectra have resolved peaks
corresponding to each photon number. The peaks are separated by 2 | xeff | /
2p5 17 MHz. Approximately ten peaks are distinguishable. The data (blue)
are well described by numerical simulations (red) with all parameters
predetermined except for a single frequency offset, overall power scaling,
and background thermal photon number (nth 5 0.1) used for all traces.
Computational limitations prevented simulations of photon numbers
beyond ,3. At the lowest power nearly all of the weight is in the | 0æ peak,
meaning that the cavity has a background occupation less than (nth , 0.1).
Peaks broaden as nz!nnð Þk=2 plus some additional contributions due to
charge noise. At higher powers the peaks blend together and the envelope
approaches a gaussian shape for a coherent state. As xeff , 0, spectra are
displayed from high to low frequency, and also have been normalized and
offset for clarity.
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Figure 4 | Qubit spectrum distinguishes between coherent and thermal
distributions. a, Reduction in transmitted amplitude is plotted as a proxy
for qubit absorption for the case of a coherent drive with !nn~3 photons.
b, Spectrum when cavity is driven with gaussian white noise approximating a
thermal state also with !nn~3. The coherent spectrum is clearly non-
monotonic and qualitatively consistent with the Poisson distribution,
P nð Þ~e{!nn!nnn=n!, while the thermal spectrum monotonically decreases in a
fashion consistent with the Bose–Einstein distribution
P nð Þ~!nnn= !nnz1ð Þnz1:
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estimate of the maximum number of peaks that could possibly be
resolved, 2x/k 5 70, and determines the contrast of a qubit measure-
ment by the cavity. These values of our parameters place the system
well into the strong dispersive regime.

The photon-number-dependent frequency shift of the qubit is
detected by performing spectroscopy on the qubit–cavity system
(Fig. 2e). The cavity is coherently excited by applying a microwave
signal (the cavity tone) at a frequency (vrf) near the cavity resonance
(Fig. 2e). A spectrum is taken by sweeping the frequency (vs) of a
second microwave signal (the spectroscopy tone), which probes the
qubit absorption without significantly populating the resonator as it
is detuned by many linewidths (vs – vr? k). The detection is com-
pleted by exploiting the dual nature of the qubit–photon coupling,
reusing the cavity photons as a measure of cavity transmission,
demonstrated previously1,2,16,18 to measure the qubit excited state
population. The measured transmission amplitude (Figs 3 and 4) is
an approximate measure of the actual qubit population, which could
in principle be measured independently. For clarity, the transmission

amplitude in Figs 3 and 4 is plotted from high to low frequency. In
order to reduce nonlinearities in the response, the cavity tone was
applied at a small detuning d=2p~ vrf {vg

r
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2p~2 MHz from the

resonator frequency when the qubit is in the ground state. This also
slightly modifies the peak splitting24 (Fig. 2e).

The measured spectra reveal the quantized nature of the cavity
field, containing a separate peak for each photon number state
(Fig. 3)24,25. These peaks approximately represent the weight of each
Fock state in a coherent field with mean photon number !nn, which is
varied from zero to 17 photons. At the lowest photon powers, nearly
all of the weight is in the first peak, corresponding to no photons in
the cavity, and confirming that the background cavity occupancy is
nth , 0.1. As the input power is increased, more photon number
peaks can be resolved and the mean of the distribution shifts pro-
portional to !nn. The data agree well with numerical solutions at low
powers (solid lines in Fig. 3) to the markovian master equation4,24

with three damping sources, namely the loss of photons at rate
k/2p5 250 kHz, energy relaxation in the qubit at rate c/2p5
1.8 MHz and the qubit dephasing rate cw/2p5 1.0 MHz. However,
adequate numerical modelling of this strongly coupled system at
higher photon numbers is quite difficult and has not yet been
achieved.

In earlier work17,18 in the weak dispersive limit (x/c , 1), the mea-
sured linewidth resulted from an ensemble of Stark shifts blurring the
transition, whereas here in the strong limit (x/c . 1) each member of
the ensemble is individually resolved. In the spectra measured here
(Fig. 3), the linewidth of a single peak can be much less than the
frequency spread of the ensemble, but changes in photon number
during a single measurement can still completely dephase the
qubit. Taking this into account yields a predicted photon-number-
dependent linewidth, cn~c=2zcwz !nnznð Þk=2 for the nth peak24.
The lowest power peak (in the !nn 5 0.02 trace) corresponds to zero
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Figure 3 | Direct spectroscopic observation of quantized cavity photon
number. Shown are qubit spectra with coherent cavity drive at different
average cavity occupations !nnð Þ. The spectra have resolved peaks
corresponding to each photon number. The peaks are separated by 2 | xeff | /
2p5 17 MHz. Approximately ten peaks are distinguishable. The data (blue)
are well described by numerical simulations (red) with all parameters
predetermined except for a single frequency offset, overall power scaling,
and background thermal photon number (nth 5 0.1) used for all traces.
Computational limitations prevented simulations of photon numbers
beyond ,3. At the lowest power nearly all of the weight is in the | 0æ peak,
meaning that the cavity has a background occupation less than (nth , 0.1).
Peaks broaden as nz!nnð Þk=2 plus some additional contributions due to
charge noise. At higher powers the peaks blend together and the envelope
approaches a gaussian shape for a coherent state. As xeff , 0, spectra are
displayed from high to low frequency, and also have been normalized and
offset for clarity.
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Figure 4 | Qubit spectrum distinguishes between coherent and thermal
distributions. a, Reduction in transmitted amplitude is plotted as a proxy
for qubit absorption for the case of a coherent drive with !nn~3 photons.
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thermal state also with !nn~3. The coherent spectrum is clearly non-
monotonic and qualitatively consistent with the Poisson distribution,
P nð Þ~e{!nn!nnn=n!, while the thermal spectrum monotonically decreases in a
fashion consistent with the Bose–Einstein distribution
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The first term describes a single photon mode (a) as a harmonic
oscillator of frequency vr. The second term describes an atom or
qubit, with transition frequency va, as a two-level pseudo-spin (sz)
system. The third term is a dispersive interaction that can be viewed
as either an atom-state-dependent shift of the cavity frequency or a
photon-number-dependent light shift (the Stark plus Lamb shifts) of
the atom transition frequency. This interaction means that when the
atom state is changed, an energy 2"x is added to or removed from
each cavity photon. The form of the interaction is of particular inter-
est because it commutes with the individual atom and photon terms,
meaning that it is possible to do a quantum non-demolition14,15

(QND) measurement of either the atom state by measuring the phase
shift of photons in the cavity16 or photon number using the atomic
Stark shift17,18.

A QND measurement protocol to measure photon number might
drive the atom at the Stark shifted atom frequency vn 5 va 1 2nx,
followed by an independent measurement of the atom state. If the
atom is excited, the field must have exactly n photons. Because the
photon number is not changed in this process, the QND protocol can
be repeated indefinitely. In practice, all measurements have some
demolition, which limits the number of repetitions before the mea-
surement changes the measured variable (the number of photons). In
our experiment, the cavity transmission is used to measure the atom
state, so while the interaction is QND, the detection performed here
is not. Any cavity QED experiment that employs a fixed coupling will
have demolition arising from the overlap of the atomic and photonic
wavefunctions, creating a probability, (g/D)2, that a measurement of
photon number will absorb a photon or a measurement of the atomic
state will induce a transition, demolishing the measured state. This
source of demolition could be minimized by adiabatically changing
the coupling strength, as happens in the case of a Rydberg or alkali
atom slowly passing through a cavity.

In analogy with the strong resonant case, the strong dispersive
limit can be entered when the Stark shift per photon is much larger
than the decoherence rates (2x . c, k, 1/T; the white region in Fig. 1),
while the demolition remains small (g/D)2= 1. The small number-

dependent frequency shift present in the weak dispersive regime (red
region in Fig. 1) becomes so large that each photon number produces
a resolvable peak in the atomic transition spectrum, allowing the
measurement we report here. It has been proposed that the disper-
sive photon shift could be used to make a QND measurement of the
photon number state of the cavity using Rydberg atoms19. Previously
attainable interaction strengths required photon number detection
experiments to employ absorptive quantum Rabi oscillations in the
resonant regime20, allowing a QND measurement21 restricted to dis-
tinguishing only between zero and one photon. More recently, a non-
resonant Rydberg atom experiment entered the strong dispersive
limit, measuring the single photon Wigner function with demolition
(g/D)2 5 6%, in principle allowing ,15 repeated measurements22.
We present here a circuit QED experiment clearly demonstrating
the strong dispersive regime, resolving states of up to ten photons,
and having demolition (g/D)2 , 1%, which should allow up to ,100
repeated QND measurements.

In circuit QED1,16 the ‘atom’–photon interaction is implemented
by a Cooper pair box (CPB)23, chosen for its large dipole moment,
capacitively coupled to a full-wave one-dimensional transmission
line resonator (Fig. 2). The reduced mode volume of a one-dimen-
sional resonator compared with that of a three-dimensional cavity7 of
similar wavelength (w2l < 1026 cm3 versus l3 < 1 cm3), where w is
the transverse dimension of the resonator, yields 106 times larger
energy density. This large energy density, together with the large
geometric capacitance (dipole moment) of the CPB, yields an inter-
action strength that is g/va,r 5 2% of the total photon energy. This
dimensionless coupling, 104 times larger than currently attainable in
atomic systems, allows circuit QED to overcome the larger decoher-
ence rates present in the solid-state environment, maintaining
g/ceff 5 40 possible coherent vacuum Rabi oscillations in the strong
resonant regime, where ceff 5 (c 1 k)/2 is the combined photon-
qubit decay rate. The equivalent comparison of the dispersive inter-
action to decoherence examines the Stark shift per photon in relation
to the qubit decay, 2x/c 5 6, and determines the resolution of photon
number peaks. Comparing instead to the cavity lifetime yields an
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Figure 2 | A Cooper pair box inside a cavity, and spectral features of the
circuit QED system. a, An on-chip coplanar waveguide (CPW) cavity with
resonant frequency vr/2p5 5.7 GHz. The area within the red box is shown
magnified in b. b, The Cooper pair box (CPB), placed at a voltage antinode of
the CPW (metal is beige, substrate is dark), consists of two superconducting
islands (light blue) connected by a pair of Josephson tunnel junctions
(purple in c). Both the CPB and cavity are made from aluminium. The
transition frequency between the lowest two CPB levels is
va=2p<

ffiffiffiffiffiffiffiffiffiffiffiffi
8EJEC
p

=h~6:9 GHz, where the Josephson energy EJ/h 5 11.5 GHz
and the charging energy EC/h 5 e2/2CSh 5 520 MHz, where CS is the total
capacitance between the islands. Both the large dipole coupling,
g/2p5 105 MHz, and the small charging energy are due to the large
geometric capacitance of the CPB to the resonator. The anharmonicity is
10%, allowing the first two levels to be addressed uniquely, though higher
levels do contribute dispersive shifts, resulting in a negative effective Stark
shift per photon, xeff/p5 217 MHz. d, Dispersive cavity–qubit energy levels.
Each level is labelled by the qubit state, | gæ or | eæ, and photon number | næ.

Dashed lines are qubit–cavity energy levels with no interaction (g 5 0),
where solid lines show eigenstates dressed by the dispersive interaction.
Transitions from | næ R | n 1 1æ show the qubit-dependent cavity shift.
Transitions at constant photon number from | gæ | næ R | eæ | næ show a
photon-number-dependent frequency shift, 2nxeff. e, Cavity–qubit spectral
response. To measure the qubit state and populate the cavity, a coherent
tone is driven at vrf (bottom left), which is blue detuned from the cavity by
several linewidths, reducing any cavity nonlinearity. Thermal fields are
generated with gaussian noise applied in the red envelope, spanning the
cavity. The qubit spectrum (bottom right) is detuned from the cavity by
D/2p5 1.2 GHz? g/2p. Information about photon number is measured by
monitoring transmission at vrf while driving the qubit with a spectroscopy
tone at vs. Each photon shifts the qubit transition by more than a linewidth
( | xeff | /2p. c/2p5 1.9 MHz, k/2p5 250 kHz), giving a distinct peak for
each photon number state. The maximum number of resolvable peaks is
2 | xeff | /k.
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estimate of the maximum number of peaks that could possibly be
resolved, 2x/k 5 70, and determines the contrast of a qubit measure-
ment by the cavity. These values of our parameters place the system
well into the strong dispersive regime.

The photon-number-dependent frequency shift of the qubit is
detected by performing spectroscopy on the qubit–cavity system
(Fig. 2e). The cavity is coherently excited by applying a microwave
signal (the cavity tone) at a frequency (vrf) near the cavity resonance
(Fig. 2e). A spectrum is taken by sweeping the frequency (vs) of a
second microwave signal (the spectroscopy tone), which probes the
qubit absorption without significantly populating the resonator as it
is detuned by many linewidths (vs – vr? k). The detection is com-
pleted by exploiting the dual nature of the qubit–photon coupling,
reusing the cavity photons as a measure of cavity transmission,
demonstrated previously1,2,16,18 to measure the qubit excited state
population. The measured transmission amplitude (Figs 3 and 4) is
an approximate measure of the actual qubit population, which could
in principle be measured independently. For clarity, the transmission

amplitude in Figs 3 and 4 is plotted from high to low frequency. In
order to reduce nonlinearities in the response, the cavity tone was
applied at a small detuning d=2p~ vrf {vg

r

! "#
2p~2 MHz from the

resonator frequency when the qubit is in the ground state. This also
slightly modifies the peak splitting24 (Fig. 2e).

The measured spectra reveal the quantized nature of the cavity
field, containing a separate peak for each photon number state
(Fig. 3)24,25. These peaks approximately represent the weight of each
Fock state in a coherent field with mean photon number !nn, which is
varied from zero to 17 photons. At the lowest photon powers, nearly
all of the weight is in the first peak, corresponding to no photons in
the cavity, and confirming that the background cavity occupancy is
nth , 0.1. As the input power is increased, more photon number
peaks can be resolved and the mean of the distribution shifts pro-
portional to !nn. The data agree well with numerical solutions at low
powers (solid lines in Fig. 3) to the markovian master equation4,24

with three damping sources, namely the loss of photons at rate
k/2p5 250 kHz, energy relaxation in the qubit at rate c/2p5
1.8 MHz and the qubit dephasing rate cw/2p5 1.0 MHz. However,
adequate numerical modelling of this strongly coupled system at
higher photon numbers is quite difficult and has not yet been
achieved.

In earlier work17,18 in the weak dispersive limit (x/c , 1), the mea-
sured linewidth resulted from an ensemble of Stark shifts blurring the
transition, whereas here in the strong limit (x/c . 1) each member of
the ensemble is individually resolved. In the spectra measured here
(Fig. 3), the linewidth of a single peak can be much less than the
frequency spread of the ensemble, but changes in photon number
during a single measurement can still completely dephase the
qubit. Taking this into account yields a predicted photon-number-
dependent linewidth, cn~c=2zcwz !nnznð Þk=2 for the nth peak24.
The lowest power peak (in the !nn 5 0.02 trace) corresponds to zero
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Figure 3 | Direct spectroscopic observation of quantized cavity photon
number. Shown are qubit spectra with coherent cavity drive at different
average cavity occupations !nnð Þ. The spectra have resolved peaks
corresponding to each photon number. The peaks are separated by 2 | xeff | /
2p5 17 MHz. Approximately ten peaks are distinguishable. The data (blue)
are well described by numerical simulations (red) with all parameters
predetermined except for a single frequency offset, overall power scaling,
and background thermal photon number (nth 5 0.1) used for all traces.
Computational limitations prevented simulations of photon numbers
beyond ,3. At the lowest power nearly all of the weight is in the | 0æ peak,
meaning that the cavity has a background occupation less than (nth , 0.1).
Peaks broaden as nz!nnð Þk=2 plus some additional contributions due to
charge noise. At higher powers the peaks blend together and the envelope
approaches a gaussian shape for a coherent state. As xeff , 0, spectra are
displayed from high to low frequency, and also have been normalized and
offset for clarity.
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estimate of the maximum number of peaks that could possibly be
resolved, 2x/k 5 70, and determines the contrast of a qubit measure-
ment by the cavity. These values of our parameters place the system
well into the strong dispersive regime.

The photon-number-dependent frequency shift of the qubit is
detected by performing spectroscopy on the qubit–cavity system
(Fig. 2e). The cavity is coherently excited by applying a microwave
signal (the cavity tone) at a frequency (vrf) near the cavity resonance
(Fig. 2e). A spectrum is taken by sweeping the frequency (vs) of a
second microwave signal (the spectroscopy tone), which probes the
qubit absorption without significantly populating the resonator as it
is detuned by many linewidths (vs – vr? k). The detection is com-
pleted by exploiting the dual nature of the qubit–photon coupling,
reusing the cavity photons as a measure of cavity transmission,
demonstrated previously1,2,16,18 to measure the qubit excited state
population. The measured transmission amplitude (Figs 3 and 4) is
an approximate measure of the actual qubit population, which could
in principle be measured independently. For clarity, the transmission

amplitude in Figs 3 and 4 is plotted from high to low frequency. In
order to reduce nonlinearities in the response, the cavity tone was
applied at a small detuning d=2p~ vrf {vg
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resonator frequency when the qubit is in the ground state. This also
slightly modifies the peak splitting24 (Fig. 2e).

The measured spectra reveal the quantized nature of the cavity
field, containing a separate peak for each photon number state
(Fig. 3)24,25. These peaks approximately represent the weight of each
Fock state in a coherent field with mean photon number !nn, which is
varied from zero to 17 photons. At the lowest photon powers, nearly
all of the weight is in the first peak, corresponding to no photons in
the cavity, and confirming that the background cavity occupancy is
nth , 0.1. As the input power is increased, more photon number
peaks can be resolved and the mean of the distribution shifts pro-
portional to !nn. The data agree well with numerical solutions at low
powers (solid lines in Fig. 3) to the markovian master equation4,24

with three damping sources, namely the loss of photons at rate
k/2p5 250 kHz, energy relaxation in the qubit at rate c/2p5
1.8 MHz and the qubit dephasing rate cw/2p5 1.0 MHz. However,
adequate numerical modelling of this strongly coupled system at
higher photon numbers is quite difficult and has not yet been
achieved.

In earlier work17,18 in the weak dispersive limit (x/c , 1), the mea-
sured linewidth resulted from an ensemble of Stark shifts blurring the
transition, whereas here in the strong limit (x/c . 1) each member of
the ensemble is individually resolved. In the spectra measured here
(Fig. 3), the linewidth of a single peak can be much less than the
frequency spread of the ensemble, but changes in photon number
during a single measurement can still completely dephase the
qubit. Taking this into account yields a predicted photon-number-
dependent linewidth, cn~c=2zcwz !nnznð Þk=2 for the nth peak24.
The lowest power peak (in the !nn 5 0.02 trace) corresponds to zero
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number. Shown are qubit spectra with coherent cavity drive at different
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2p5 17 MHz. Approximately ten peaks are distinguishable. The data (blue)
are well described by numerical simulations (red) with all parameters
predetermined except for a single frequency offset, overall power scaling,
and background thermal photon number (nth 5 0.1) used for all traces.
Computational limitations prevented simulations of photon numbers
beyond ,3. At the lowest power nearly all of the weight is in the | 0æ peak,
meaning that the cavity has a background occupation less than (nth , 0.1).
Peaks broaden as nz!nnð Þk=2 plus some additional contributions due to
charge noise. At higher powers the peaks blend together and the envelope
approaches a gaussian shape for a coherent state. As xeff , 0, spectra are
displayed from high to low frequency, and also have been normalized and
offset for clarity.
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Experimental observation of this effect would be a direct
demonstration of number quantization in the dispersive
regime. We also discuss how, by using irradiation which
is off-resonant from both the cavity and the qubit, one
can obtain substantial ac-Stark shifts without significant
dephasing and how this could be used as the basis of a
phase gate for quantum computation.

II. CAVITY QED WITH SUPERCONDUCTING
CIRCUITS

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED ar-
chitecture first introduced in Ref. [13] and experimentally
studied in Refs. [2, 17, 19]. As shown in Fig. 1, the sys-
tem consists of a superconducting charge qubit [1, 12, 26]
strongly coupled to a transmission line resonator [27].
Near its resonance frequency ωr, the transmission line
resonator can be modeled as a simple harmonic oscilla-
tor composed of the parallel combination of an inductor
L and a capacitor C. Introducing the annihilation (cre-
ation) operator â(†), the resonator can be described by
the Hamiltonian

Hr = h̄ωrâ
†â, (2.1)

with ωr = 1/
√

LC. Using this simple model, one
finds that the voltage across the LC circuit (or, equiv-
alently, on the center conductor of the resonator) is
VLC = V 0

rms(â
† + â), where V 0

rms =
√

h̄ωr/2C is the rms
value of the voltage in the ground state. An important
advantage of this architecture is the extremely small sep-
aration b ∼ 5 µm between the center conductor of the
resonator and its ground planes. This leads to a large
rms value of the electric field E0

rms = V 0
rms/b ∼ 0.2 V/m

for typical realizations [2, 17, 19]. As illustrated in Fig. 1,
by placing the qubit at an antinode of the voltage, it will
strongly interact with the resonator through the large
electric field E0

rms.
In the two-state approximation, the Hamiltonian of the

qubit takes the form

Hq = −
Eel

2
σ̂x −

EJ

2
σ̂z , (2.2)

where Eel = 4EC(1−2ng) is the electrostatic energy and
EJ = EJ,max cos(πΦ/Φ0) the Josephson energy. Here,
EC = e2/2CΣ is the charging energy with CΣ the total
box capacitance and ng = CgVg/2e the dimensionless
gate charge with Cg the gate capacitance and Vg the gate
voltage. EJ,max is the maximum Josephson energy and
Φ the externally applied flux, with Φ0 the flux quantum.

Due to capacitive coupling with the center conductor,
the gate voltage Vg = V dc

g + VLC has a dc contribution

V dc
g (coming from a dc bias applied to the input port of

the resonator) and a quantum part VLC. When working

FIG. 1: (Color online) Schematic layout and lumped element
version of the circuit QED implementation. A superconduct-
ing charge qubit (green) is fabricated inside a superconducting
1D transmission line resonator (blue).

at the charge degeneracy point ndc
g = 1/2 where dephas-

ing is minimized [4] and neglecting fast oscillating terms,
the resonator plus qubit Hamiltonian takes the Jaynes-
Cummings form [13]

HJC = h̄ωrâ
†â +

h̄ωa

2
σ̂z − h̄g

(

â†σ̂− + σ̂+â
)

, (2.3)

where ωa = EJ/h̄ is the qubit transition frequency and
g = e(Cg/CΣ)V 0

rms/h̄ is the coupling strength.
As shown in Ref. [13], the qubit can be measured

and coherently controlled by applying microwaves, of
frequency ωrf and ωs respectively, to the input port of
the resonator. This can be described by the additional
Hamiltonian

HD =
∑

j=s,rf

h̄εj(t)
(

â†e−iωjt + âe+iωjt
)

, (2.4)

where εj(t) is the amplitude of the external drives at rf
and spectroscopy frequencies.

B. Dispersive regime

In the situation where the qubit is strongly detuned
from the cavity, |∆| = |ωr − ωa| ≫ g, the total Hamil-
tonian HJC + HD can be approximately diagonalized to
second order in g/∆ to yield the following quantized ver-
sion of the dynamical Stark shift Hamiltonian [13]

Heff = h̄ωrâ
†â +

h̄

2

(

ω̃a + 2χâ†â
)

σ̂z

+
∑

j=s,rf

h̄εj(t)
(

â†e−iωjt + âe+iωjt
)

+
∑

j=s,rf

h̄gεj(t)

∆

(

σ̂+e−iωjt + σ̂−e+iωjt
)

.

(2.5)

Here ω̃a = ωa + χ is the Lamb shifted qubit frequency
and we have defined χ = g2/∆. The term proportional
to â†âσ̂z can be interpreted as a shift of the qubit tran-
sition frequency depending on the photon number in the
resonator (ac-Stark shift) or as a pull on the resonator

Cooper	pair	box	qubit

4

FIG. 3: (Color online) (a) Rotor analogy for the transmon.
The transmon Hamiltonian can be understood as a charged
quantum rotor in a constant magnetic field ∼ ng . For large
EJ/EC , there is a significant “gravitational” pull on the pen-
dulum and the system typically remains in the vicinity of
ϕ = 0. Only tunneling events between adjacent cosine wells
(i.e. a full 2π rotor movement) will acquire an Aharonov-
Bohm like phase due to ng . The tunneling probability de-
creases exponentially with EJ/EC , explaining the exponential
decrease of the charge dispersion. (b) Cosine potential (black
solid line) with corresponding eigenenergies and squared mod-
uli of the eigenfunctions.

a cosine in the limit of large EJ/EC :

Em(ng) ≃ Em(ng = 1/4)−
ϵm
2

cos(2πng), (2.3)

where

ϵm ≡ Em(ng = 1/2)− Em(ng = 0) (2.4)

gives the peak to peak value for the charge dispersion of
the mth energy level. To extract ϵm, we start from the
exact expression (2.2) for the eigenenergies and study the
limit of large Josephson energies. The asymptotics of the
Mathieu characteristic values can be obtained by semi-
classical (WKB) methods (see e.g. Refs. [24, 25, 26]).
The resulting charge dispersion is given by

ϵm ≃ (−1)mEC
24m+5

m!

√

2

π

(

EJ

2EC

)
m
2

+ 3

4

e−
√

8EJ/EC ,

(2.5)
valid for EJ/EC ≫ 1. The crucial point of this result
is the exponential decrease of the charge dispersion with
√

EJ/EC .
The physics behind this feature can be understood by

mapping the transmon system to a charged quantum ro-
tor, see Fig. 3. We consider a mass m attached to a stiff,
massless rod of length l, fixed to the coordinate origin by
a frictionless pivot bearing. Using cylindrical coordinates
(r,ϕ, z), the motion of the mass is restricted to a circle in
the z = 0 plane with the polar angle ϕ completely speci-
fying its position. The rotor is subject to a strong homo-
geneous gravitational field g = gex in x direction, giving
rise to a potential energy V = −mgl cosϕ. The kinetic
energy of the rotor can be expressed in terms of its angu-
lar momentum along the z axis, L̂z = (r×p)·ez = −i! ∂

∂ϕ ,

so that the rotor’s Hamiltonian reads

Hrot =
L̂2

z

2ml2
− mgl cosϕ. (2.6)

Identifying the (integer-valued) number operator for
Cooper pairs with the angular momentum of the rotor,
n̂ ↔ L̂z/!, and relating EJ ↔ mgl, EC ↔ (!2/8ml2),
one finds that the rotor Hamiltonian is identical to the
transmon Hamiltonian with ng = 0.

To capture the case of a nonzero offset charge, we imag-
ine that the mass also carries an electrical charge q and
moves in a homogeneous magnetic field with strength B0

in z direction. Representing the magnetic field by the
vector potential A = B0(−y, x, 0)/2 (symmetric gauge)
and noting that the vector potential enters the Hamilto-
nian according to

p → p − qA ⇒ Lz → Lz +
1

2
qB0l

2, (2.7)

one finds that the offset charge ng can be identified with
qB0l2/2!. This establishes a one-to-one mapping be-
tween the transmon system and the charged quantum
rotor in a constant magnetic field. We emphasize that for
the transmon (and CPB) the island charge is well-defined
so that n̂ has discrete eigenvalues and ϕ is a compact vari-
able leading to ψ(ϕ) = ψ(ϕ + 2π). In the rotor picture,
this corresponds to the fact that the eigenvalues of the
angular momentum L̂z are discrete and that the “posi-
tions” ϕ and ϕ+2π are identical. It is important to note
that this mapping is different from the tilted washboard
model used within the context of resistively shunted junc-
tions, see e.g. [27], and must not be confused with this
case.

In the transmon regime, i.e. large EJ/EC , the dynam-
ics of the rotor is dominated by the strong gravitational
field. Accordingly, small oscillation amplitudes around
ϕ = 0 are favored; see Fig. 3. Perturbation theory for
small angles immediately leads to an anharmonic oscilla-
tor with quartic perturbation (Duffing oscillator). [This
method will be employed in Section II C to obtain the
leading-order anharmonicity corrections.] However, the
charge dispersion ϵm cannot be captured in such a pertur-
bative picture. Within the perturbative approach (at any
finite order) the ϕ periodicity is lost and the angular vari-
able becomes noncompact, −∞ < ϕ < ∞. Now, in the
absence of the boundary condition ψ(ϕ+2π) = ψ(ϕ) the
vector potential can be eliminated by a gauge transfor-
mation. In other words, the effect of the offset charge ng

only enters through the rare event of a full 2π rotation,
in which case the system picks up an Aharonov-Bohm
like phase. This corresponds to “instanton” tunneling
events through the cosine potential barrier to adjacent
wells, and explains the WKB-type exponential decrease
of the charge dispersion. It is interesting to note that
the nonvanishing charge dispersion is truly a nonpertur-
bative quantum effect, which can be ascribed to the dis-
creteness of charge or equivalently to the peculiar role of

J.Koch,	et.al,	Phys.Rev.A76,042319(2007

ü リドベルグ原⼦から⼈⼯原⼦(Qubit)へ
Qubitのポテンシャル

Ø Qubitの遷移周波数から光子数を決
定できている𝜔i"

2𝜒

反
射
係
数



アクシオン-マグノン結合の
期待されるスペクトル

2018/9/17 2018年JPS秋季⼤会 10

3

C. Axion spectrum

In the situation of the dispersive regime, an analytical
expression for the qubit spectrum is derived in Ref[20].
It’s written as

S(!) =
1

⇡

1X

j=0

1

j!
Re


(�A)jeA

�j/2� i(! � !j)

�
, (11)

with

�j = �q + (j +Ds), (12)

!j = !̃a +B + j(�+�a), (13)

A = Ds
�m/2� i(�+�a)

�m/2 + i(�+�a)
, (14)

B = �(n̄+ + n̄� �Ds), (15)

Ds =
2(n̄+ + n̄�)�2

�

2
m/4 + �

2 +�2
a

, (16)

n̄

m
± =

g

2
eff

�

2
m/4 + (�a ± �)2

, (17)

where �q and �m are the linewidth of qubit and magnon
respectively and we have defined �a = !m � !a. Here,
n̄

m
± is the stationary average number of magnons when

the qubit is in the excited (+) or ground (�) state. From
Eq.(11), the spectroscopic line shape is given by the sum
over Lorentzians, all centered on the ac-Stark shifted
qubit transition. If the axion magnetic field couple to the
magnon and increase average number of magnon, then
the peak will appear on the qubit transition frequency
!j=1.

Here we calculate the expected cubit spectrum of axion
and magnon coupling. We assumed expeimental value is
�m/2⇡ = 0.1 MHz, �/2⇡ = 5.0 MHz, and !m/2⇡ =
8.0000GHz and !q/2⇡ = 8.0406 GHz. The measurement
dephasing rate becomes largest at �a = ±p

�

2 � �

2
m/4,

then axion mass is 33 µeV. We choice a single sphere of
yttrium iron garnet (Y3Fe5O12; YIG) as a target, which
has a high net spin density ⇠ 1022 cm�3 and the ra-
dius is 10 m. The expected spectrum is shown in Fig.1.
At no coupling, only one peak appear at the qubit fre-
quency !j=0 with the Kittel mode in the vacuum state.
Where axion couple to magnon, the spectral weights be-
come Poisson distributed with mean Ds and the peaks
are separated by �+�a. The axion-like signal will appear
around the qubit frequency !j=1.

III. EXPERIMENT

The measurement of coupling between the supercon-
ducting qubit and the Kittel mode and resolving of
quanta of magnon was demonstrated in Ref[12]. We ap-
plied this hybrid system to axion to magnon resonance
search. The detail configuration of the detector geometry,
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FIG. 1. The expected spectrum of qubit. The blue and
red line present no coupling and axion-magnon coupling with
the coupling constant gaee = 2.5 ⇥ 10�15. Experimental
parameters is �m/2⇡ = 0.1 MHz, �/2⇡ = 5.0 MHz, and
!m/2⇡ = 8.0000 GHz and !q/2⇡ = 8.0406 GHz. The ax-
ion mass corresponds to ma = 33 µeV.

readout system and experimental parameters is described
in Ref[12].

A. Apparatus

The hybrid system consists of a superconducting qubit
and a single crystalline sphere of yttrium iron garnet
(Y3Fe5O12; YIG) inside a three-dimensional microwave
cavity (Fig.2). The diameter of YIG sphere is 0.5 mm
and the net spin density 2sN/V is 2.1⇥ 1022 cm�3. We
used a pair of permanent magnets and a coil to apply a
magnetic field Bz to the YIG sphere, making it a single-
domain ferromagnet. The transmon-type superconduct-
ing qubit[21] has a resonant frequency of 7.9905 GHz.

In a microwave cavity, the coupling of the super-
conducting qubit and the Kittel mode is provided by
the TE102 cavity mode and creates an e↵ective interac-
tion between these two macroscopic systems ([18],[22]).
We verified the coupling strength strength gq�m of 7.79
MHz from the magnon-vacuum Rabi splitting of the
qubit and it is much higher than the power-broadened
qubit linewidth of �q/2⇡ = 1.74 MHz and the magnon
linewidth �m/2⇡ = 1.3 MHz[12]. Meanwhile we can use
the dispersive interaction of the qubit by the TE103 cav-
ity mode to read out the qubit state. We set current in
the coil I = �5.02 mA then we obtained the dispersive
regime of our hybrid system where the detuning between
magnon frequency and Kittel mode frequency, |!m�!q|,
is much lager than gq�m.

2

A. Interaction of magnon and axion

Axion emerges as the Nambu-Goldstone boson of PQ
symmetry which is broken at an energy scale Fa[14].
In non hadronic axion model as DFSZ model[15], such
Nambu-Goldstone boson is allowed to interact with
fermions, the Lagrangian is expressed as

L = gaff@µa(x) ̄(x)�
µ
�5 (x) (2)

where �µ is the Dirac matrices vector,  denotes a stan-
dard model fermion and gaff is coupling constant which
is proportional to 1/Fa. Considering electrons, the non-
relativistic limit leads to following term in Hamiltonian:
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◆
·
⇣
gaee

e

ra

⌘

=�2µBŜ ·Ba, (3)

where m is the electron mass, gaee is the axion-electron
coupling constant, �̂ is the Pauli matrices, µB is the Bohr
magneton and Ba is e↵ective axion field.

The motion of the Earth in the dark matter halo of
Galaxy leads to a relative velocity between the detector
and dark matter halo axion. The local circular speed
is va ' 220 km/s[16] with a dispersion of about 270
km/s[17]. Thus the axion field can be recognized as a
simple low momentum free scalar field oscillating in its
potential. The frequency fa is given by Eq.(2) and am-
plitude Ba of the axion field is written as

Ba =
gaee

e
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2~na
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✓
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◆
[T],(4)

where na is the number density of DM, ⇢DM is the local
dark matter density and ma is axion mass.

We then discuss the axion magnon interaction. The
total magnetic dipole moment of N electron spins in a
feromagnetic material can be expressed as

p
NµB . The

lower excitation states are collective waves of small-angle
spin precession called magnon. The coupling between
linear-polarized microwave photons and the spin ensem-
ble via the Zeeman e↵ect were discussed in Ref[18]. The
axion field also plays the role of photons and then the
Hamiltonian is expressed as

H = gµB

X

i

Ŝi ·Ba(ri)(â + â†)

= gµB

p
2s

X

i

X

n

sn(ri)
ĉn + ĉ

†
n

2
·Ba(ri)(â + â†),

(5)

where ri is the position of i-th spin, B0 is the axion
magnetic field at ri, and â(â†) is the axion annihila-
tion(creation) operater. From Eq.(3), g factor is equal

to 2. In the second line, the Heisenberg operator Ŝi is
replaced with the sum of magnon operators multiplied
by their orthonormal mode functions sn(ri) and n is an
index of the mode. The sum over the spins is replaced
with integrating volume and then we obtained

H =
gµB

2

p
2s

X

n

Z

V
dr sn(r) ·Ba(r)(â

†
ĉn + â ĉ†n), (6)

where V is the sample volume. Here considering the
sphere sample, the Kittel mode, where all spins in the
sample precess in phase with the same amplitude, has a
finite coupling strength. In this case we obtain the e↵ec-
tive hamiltonian of axion-magnon interaction for Ba ? z:

Hint = ~geff (â†
ĉ+ â ĉ†), (7)

with

geff ⌘ gµBBa

2~
p
2sN, (8)

where ĉ(ĉ†) is the annihilation(creation) operator of
manon on the Kittel mode. Here we defined the direc-
tion of static magnetic field as z. The relic axion can be
seen as coming from the constellation cygnus due to the
motion of the sun. Where the static magnetic field is per-
pendicular to the direction of the cygnus, magnon most
e↵ectively couples to axion. Hence if magnon couples to
axion, the number of magnon, or the quanta of magnon,
can be increased.

B. Magnon readout with qubit

We then calculate magnon readout by a superconduct-
ing qubit. A quibit is a ... The magnon plus qubit Hamil-
tonian takes the Jaynes-Cummings form[19]:

HJC = ~!mĉ†ĉ +
~!q

2
�̂z � ~gq�m(ĉ†�̂� + �̂+ĉ), (9)

where !q and !m are the qubit transition frequency and
the magnon frequency, respectively and �̂z is the qubit
spin. In the dispersive regime, where the qubit is strongly
detuned from the magnon frequency, |�| = |!m � !q| �
gq�m, the total Hamiltonian HJC +Hint is given by

H =~!mĉ†ĉ +
~
2
(!̃q + 2�ĉ†ĉ)�̂z + ~geff (â†

ĉ+ â ĉ†)

+~⌦s(�̂+e
�i!st + �̂�e

+i!st) (10)

where !̃a = !a + � is the Lamb shifted qubit frequency
and we have defined � = g

2
q�m/�, !s is the spectroscopy

excitation frequency which causes Rabi flopping of the
qubit, ⌦s is the spectroscopy excitation strength (Rabi
frequency). The term proportional to qubit spin �̂z can
be interpreted as a shift of the qubit transition frequency
depending on the magnon number (ac-Stark shift). Thus,
by measuring the qubit state the magnon number can
be determined, which called quantum non-demolition
(QND) measurement.

3

C. Axion spectrum

In the situation of the dispersive regime, an analytical
expression for the qubit spectrum is derived in Ref[20].
It’s written as
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where �q and �m are the linewidth of qubit and magnon
respectively and we have defined �a = !m � !a. Here,
n̄

m
± is the stationary average number of magnons when

the qubit is in the excited (+) or ground (�) state. From
Eq.(11), the spectroscopic line shape is given by the sum
over Lorentzians, all centered on the ac-Stark shifted
qubit transition. If the axion magnetic field couple to the
magnon and increase average number of magnon, then
the peak will appear on the qubit transition frequency
!j=1.

Here we calculate the expected cubit spectrum of axion
and magnon coupling. We assumed expeimental value is
�m/2⇡ = 0.1 MHz, �/2⇡ = 5.0 MHz, and !m/2⇡ =
8.0000GHz and !q/2⇡ = 8.0406 GHz. The measurement
dephasing rate becomes largest at �a = ±p

�

2 � �

2
m/4,

then axion mass is 33 µeV. We choice a single sphere of
yttrium iron garnet (Y3Fe5O12; YIG) as a target, which
has a high net spin density ⇠ 1022 cm�3 and the ra-
dius is 10 m. The expected spectrum is shown in Fig.1.
At no coupling, only one peak appear at the qubit fre-
quency !j=0 with the Kittel mode in the vacuum state.
Where axion couple to magnon, the spectral weights be-
come Poisson distributed with mean Ds and the peaks
are separated by �+�a. The axion-like signal will appear
around the qubit frequency !j=1.

III. EXPERIMENT

The measurement of coupling between the supercon-
ducting qubit and the Kittel mode and resolving of
quanta of magnon was demonstrated in Ref[12]. We ap-
plied this hybrid system to axion to magnon resonance
search. The detail configuration of the detector geometry,
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FIG. 1. The expected spectrum of qubit. The blue and
red line present no coupling and axion-magnon coupling with
the coupling constant gaee = 2.5 ⇥ 10�15. Experimental
parameters is �m/2⇡ = 0.1 MHz, �/2⇡ = 5.0 MHz, and
!m/2⇡ = 8.0000 GHz and !q/2⇡ = 8.0406 GHz. The ax-
ion mass corresponds to ma = 33 µeV.

readout system and experimental parameters is described
in Ref[12].

A. Apparatus

The hybrid system consists of a superconducting qubit
and a single crystalline sphere of yttrium iron garnet
(Y3Fe5O12; YIG) inside a three-dimensional microwave
cavity (Fig.2). The diameter of YIG sphere is 0.5 mm
and the net spin density 2sN/V is 2.1⇥ 1022 cm�3. We
used a pair of permanent magnets and a coil to apply a
magnetic field Bz to the YIG sphere, making it a single-
domain ferromagnet. The transmon-type superconduct-
ing qubit[21] has a resonant frequency of 7.9905 GHz.

In a microwave cavity, the coupling of the super-
conducting qubit and the Kittel mode is provided by
the TE102 cavity mode and creates an e↵ective interac-
tion between these two macroscopic systems ([18],[22]).
We verified the coupling strength strength gq�m of 7.79
MHz from the magnon-vacuum Rabi splitting of the
qubit and it is much higher than the power-broadened
qubit linewidth of �q/2⇡ = 1.74 MHz and the magnon
linewidth �m/2⇡ = 1.3 MHz[12]. Meanwhile we can use
the dispersive interaction of the qubit by the TE103 cav-
ity mode to read out the qubit state. We set current in
the coil I = �5.02 mA then we obtained the dispersive
regime of our hybrid system where the detuning between
magnon frequency and Kittel mode frequency, |!m�!q|,
is much lager than gq�m.

ü 平均マグノン数

ü アクシオンとマグノンの結合⼒

Ø アクシオンとマグノンが結合していれば、Qubitの遷移周波数𝒇𝒏l𝟏にピー
クがたつ

𝑓olp 𝑓ol; 𝑓ol=

𝛾r 2𝜋 = 0.1𝑀𝐻𝑧⁄
𝜒 2𝜋 = 5.0𝑀𝐻𝑧⁄

𝑚" = 33𝜇𝑒𝑉
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coherent interaction between the qubit and the Kittel mode (15). The
qubit-magnon coupling strength gq-m of 7.79MHz, obtained from the
magnon-vacuum Rabi splitting of the qubit (Fig. 1C), is much larger
than both the power-broadened qubit linewidth gq/2p = 1.74 MHz
and the magnon linewidth gm/2p= 1.3 MHz.

We now investigate the dispersive regime of our hybrid system,
where the detuning between the bare qubit and Kittel mode fre-
quencies, |wq

bare − wm
bare|, is much larger than gq-m. The exchange

of quanta of excitations between the qubit and the Kittel mode,
through virtual photons in the coupler cavity mode, is then highly
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Fig. 1. Hybrid system and qubit-magnon coherent interaction. (A) Schematic illustration of a ferromagnetic YIG sphere and a superconducting transmon qubit inside
a three-dimensional microwave cavity. A magnetic field B0 is applied to the YIG sphere using permanent magnets and a coil. The magnetostatic mode in which spins
uniformly precess in the ferromagnetic sphere, or the Kittel mode, couples to the magnetic field of the cavity modes. The qubit and the Kittel mode interact through virtual
excitations in the cavity modes at a rate gq-m. (B) The spectrum of the qubit is measured by probing the change of the reflection coefficient Re(Dr) of a microwave
excitation resonant, with the probe mode at frequency wp as a function of the spectroscopy frequency ws and the coil current I, changing the magnetic field at the
ferromagnet. The avoided crossing indicates a coherent interaction between the qubit and the Kittel mode. Vertical dashed lines indicate that I = −4.25 mA, where
the qubit and the Kittel mode are hybridized (Fig. 1D), and that I = −5.02 mA, where the qubit-magnon interaction is in the dispersive regime (Figs. 2 to 4). (C) Magnon-
vacuum Rabi splitting of the qubit on resonance, with the Kittel mode at I = −4.25 mA. From the fit, we extract the qubit-magnon coupling rate gq-m/2p = 7.79 MHz.
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Fig. 2. Dispersive qubit-magnon interaction. (A) Schematic illustration of the hybrid system in the strong dispersive regime. A microwave excitation at frequency
wmw is used to create a magnon coherent state in the Kittel mode. The excitation is detuned from the magnon frequency, with the qubit in the ground state, wm

g, by
Dmw = wm

g − wmw. In the strong dispersive regime, magnon number states |nm〉 (of probability distribution pnm ) are mapped into the qubit spectrum as peaks at
frequencies w̃ nmð Þ

q ¼ w nmð Þ
q þ nm∆mw, separated by 2cq-m + Dmw and with a spectral weight closely related to pnm . (B) Measurement of the qubit spectrum for a coil

current I = −5.02 mA as a function of the Kittel mode excitation frequency wmw and the spectroscopy frequency ws. The excitation frequency producing the maximum
magnon-induced ac Stark shift of the qubit from wq (horizontal dashed line) yields an estimation of wm

g/2p ≈ 7.95 GHz (vertical dashed line). The Kittel mode spectrum,
measured via its dispersive interaction with the probe mode, appears as a faint vertical line at ~7.95 GHz. The signature corresponding to the two-photon transition
involving both the spectroscopy and the excitation photons and exciting both the qubit and a magnon (fig. S1) is indicated by the diagonal dashed line given by
ws ¼ w nm¼0ð Þ

q þ 2cq‐m þ Dmw, calculated with cq-m/2p = 1.5 MHz at wm
g/2p = 7.95 GHz.
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transmon qubit fabricated on a silicon chip is seen in the deep cavity trench. The cavity with dimensions of 25 ⇥ 3 ⇥ 53 mm
supports the lowest-frequency (TE101, TE102, and TE103) modes with the frequencies of 6.987 GHz, 8.488 GHz, and 10.461 GHz,
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The qubit with a millimeter-sized dipole antenna strongly couples with the electric field. The YIG crystal is placed where the
magnetic field is large. The color scales indicate field intensities at the single photon level. c) Schematic energy diagram of the
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The cavity and the Kittel modes are subject to frequency shifts due to the coupling with the qubit, as indicated in the middle
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â

†
10p

â
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the third terms are dispersive shifts due to the coupling
between the cavity modes and the Kittel mode. The sec-
ond term indicates the Lamb shift of the qubit frequency
arising from the coupling to the cavity mode. The Lamb

shift for the first excited states �(1)

10p

coincides with �

10p

.
The fourth term shows the qubit-state-dependent cavity
frequency shift or the photon-number-dependent qubit
frequency shift. It is worth noting that the last term in-
dicates the static interaction between the cavity modes
and the Kittel mode, which originates from the fact that
the spin ensemble is not a perfect bosonic system. Be-
cause of the factor 1/N , however, for largeN such e↵ect is
not observable with usual experimental parameters. The
major energy shifts are summarized in Fig. 5c. In the
regime where g
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|, there is a qubit-
state-dependent frequency shift ⇠ of the Kittel mode [19].
Although it appears only in the third-order perturbative
treatment, the shift is still observable when the Kittel-
mode and the qubit frequencies are close enough to meet
the frequency condition. Such coupling is usable for
counting the magnon number in the Kittel mode via a
Ramsey interferometry using the qubit, for example.

The coupling between the qubit and the Kittel mode
is mediated by the cavity modes TE

10p

when the qubit
and the Kittel-mode frequencies are degenerate with each
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rewrite the interaction Hamiltonian in Eq. (24) in the
corresponding rotating frame by adiabatically eliminat-
ing the cavity modes:
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FIG. 5. Qubit-cavity-YIG hybrid system. a) Photographs of an YIG sphere and a superconducting qubit mounted in an
extended cavity resonator. The YIG sphere is mounted in one side of the cavity. On the other side, the superconducting
transmon qubit fabricated on a silicon chip is seen in the deep cavity trench. The cavity with dimensions of 25 ⇥ 3 ⇥ 53 mm
supports the lowest-frequency (TE101, TE102, and TE103) modes with the frequencies of 6.987 GHz, 8.488 GHz, and 10.461 GHz,
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magnetic field is large. The color scales indicate field intensities at the single photon level. c) Schematic energy diagram of the
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The cavity and the Kittel modes are subject to frequency shifts due to the coupling with the qubit, as indicated in the middle
of the diagram. The cavity modes induce the Lamb shift of the qubit, as depicted on the right-hand side.
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â

†
10p

â
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the third terms are dispersive shifts due to the coupling
between the cavity modes and the Kittel mode. The sec-
ond term indicates the Lamb shift of the qubit frequency
arising from the coupling to the cavity mode. The Lamb

shift for the first excited states �(1)

10p

coincides with �

10p

.
The fourth term shows the qubit-state-dependent cavity
frequency shift or the photon-number-dependent qubit
frequency shift. It is worth noting that the last term in-
dicates the static interaction between the cavity modes
and the Kittel mode, which originates from the fact that
the spin ensemble is not a perfect bosonic system. Be-
cause of the factor 1/N , however, for largeN such e↵ect is
not observable with usual experimental parameters. The
major energy shifts are summarized in Fig. 5c. In the
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state-dependent frequency shift ⇠ of the Kittel mode [19].
Although it appears only in the third-order perturbative
treatment, the shift is still observable when the Kittel-
mode and the qubit frequencies are close enough to meet
the frequency condition. Such coupling is usable for
counting the magnon number in the Kittel mode via a
Ramsey interferometry using the qubit, for example.

The coupling between the qubit and the Kittel mode
is mediated by the cavity modes TE
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when the qubit
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rewrite the interaction Hamiltonian in Eq. (24) in the
corresponding rotating frame by adiabatically eliminat-
ing the cavity modes:
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coherent interaction between the qubit and the Kittel mode (15). The
qubit-magnon coupling strength gq-m of 7.79MHz, obtained from the
magnon-vacuum Rabi splitting of the qubit (Fig. 1C), is much larger
than both the power-broadened qubit linewidth gq/2p = 1.74 MHz
and the magnon linewidth gm/2p= 1.3 MHz.

We now investigate the dispersive regime of our hybrid system,
where the detuning between the bare qubit and Kittel mode fre-
quencies, |wq

bare − wm
bare|, is much larger than gq-m. The exchange

of quanta of excitations between the qubit and the Kittel mode,
through virtual photons in the coupler cavity mode, is then highly

A

C

7.97 7.98 7.99 8 8.01
0

0.05

0.1
Data
Fit

Ferromagnet Qubit

1 mm 0.5 mm 0.5 µm

Qubit

Microwave cavity

Kittel mode

Ferromagnet

B

−5.45 −3.05−3.65−4.25−4.85
7.97

7.98

7.99

8

8.01

Coil current    (mA)

R
eflection coefficient

0

0.1

0.2

0.3

0.4

Qubit

K
itt

el
 m

od
e

   
(G

H
z)

ω
π

   (GHz)ω π

π

Fig. 1. Hybrid system and qubit-magnon coherent interaction. (A) Schematic illustration of a ferromagnetic YIG sphere and a superconducting transmon qubit inside
a three-dimensional microwave cavity. A magnetic field B0 is applied to the YIG sphere using permanent magnets and a coil. The magnetostatic mode in which spins
uniformly precess in the ferromagnetic sphere, or the Kittel mode, couples to the magnetic field of the cavity modes. The qubit and the Kittel mode interact through virtual
excitations in the cavity modes at a rate gq-m. (B) The spectrum of the qubit is measured by probing the change of the reflection coefficient Re(Dr) of a microwave
excitation resonant, with the probe mode at frequency wp as a function of the spectroscopy frequency ws and the coil current I, changing the magnetic field at the
ferromagnet. The avoided crossing indicates a coherent interaction between the qubit and the Kittel mode. Vertical dashed lines indicate that I = −4.25 mA, where
the qubit and the Kittel mode are hybridized (Fig. 1D), and that I = −5.02 mA, where the qubit-magnon interaction is in the dispersive regime (Figs. 2 to 4). (C) Magnon-
vacuum Rabi splitting of the qubit on resonance, with the Kittel mode at I = −4.25 mA. From the fit, we extract the qubit-magnon coupling rate gq-m/2p = 7.79 MHz.
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Fig. 2. Dispersive qubit-magnon interaction. (A) Schematic illustration of the hybrid system in the strong dispersive regime. A microwave excitation at frequency
wmw is used to create a magnon coherent state in the Kittel mode. The excitation is detuned from the magnon frequency, with the qubit in the ground state, wm

g, by
Dmw = wm

g − wmw. In the strong dispersive regime, magnon number states |nm〉 (of probability distribution pnm ) are mapped into the qubit spectrum as peaks at
frequencies w̃ nmð Þ

q ¼ w nmð Þ
q þ nm∆mw, separated by 2cq-m + Dmw and with a spectral weight closely related to pnm . (B) Measurement of the qubit spectrum for a coil

current I = −5.02 mA as a function of the Kittel mode excitation frequency wmw and the spectroscopy frequency ws. The excitation frequency producing the maximum
magnon-induced ac Stark shift of the qubit from wq (horizontal dashed line) yields an estimation of wm

g/2p ≈ 7.95 GHz (vertical dashed line). The Kittel mode spectrum,
measured via its dispersive interaction with the probe mode, appears as a faint vertical line at ~7.95 GHz. The signature corresponding to the two-photon transition
involving both the spectroscopy and the excitation photons and exciting both the qubit and a magnon (fig. S1) is indicated by the diagonal dashed line given by
ws ¼ w nm¼0ð Þ

q þ 2cq‐m þ Dmw, calculated with cq-m/2p = 1.5 MHz at wm
g/2p = 7.95 GHz.
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power of 79 aW, we are able to resolve 0.026 ± 0.012 magnons in the
Kittel mode of the ferromagnetic sphere containing about 1.4 × 1018

spins. We are therefore able to resolve a change in the magnetic mo-
ment of the ferromagnet equivalent to a single spin flipped among
~5 × 1019 spins. Within our resolution of about 0.01 magnons, no
thermal occupancy of the Kittel mode is observed, indicating that the
millimeter-sized ferromagnet is indeed in its magnon-vacuum state.
Furthermore, the nonlinearity of !ng

m against the excitation power can
be explained by a Kerr nonlinearity in the Kittel mode caused by the
anharmonicity of the transmon (3, 29). We find a Kerr coefficient of
−0.20±0:09

0:13 MHz in good agreement with the expected value of −0.12MHz
(fig. S1).

Finally, we estimate the probability pnm of having nm magnons in
the Kittel mode with

pnm ≈ ∫dws SnmðwsÞ=SðwsÞ ð2Þ

where SðwsÞ ≈ ∑10nm¼0 Snm wsð Þ is the qubit spectrum in the analytical
model, to which data are fitted, and Snm wsð Þ is its component asso-
ciated with the magnon number state |nm〉. For 2cq-m≫gm, the
probability distribution calculated with Eq. 2 falls back to the Poisson
distribution expected for a driven harmonic oscillator (section S5)
(17). The probability distributions pnm of the first four magnon num-
ber states, shown in Fig. 4B, indicate small deviations from Poisson

distributions. This is expected because the qubit-magnon dispersive
shift is only slightly larger than the magnon linewidth in our hybrid
system (section S5). Nevertheless, our ability to map the probability
distribution of magnon number states to the spectrum of a qubit
provides a novel tool for investigating quantum states in magneto-
static modes.

DISCUSSION
Looking forward, the strong dispersive interaction between magnons
and a superconducting qubit demonstrated here should enable the
encoding of the qubit into a superposition of magnon coherent states
in a magnetostatic mode (19, 20). However, to implement this en-
coding protocol, the qubit-magnon system needs to be deeper into
the strong dispersive regime, either by increasing the qubit-magnon
coupling strength or by decreasing the magnon linewidth in the
quantum regime (23). Together with the recently demonstrated bi-
directional conversion between microwave and optical photons in
YIG (12), this could pave the way to the transfer of quantum states
between superconducting qubits and photons in optical fibers.
Combining two very promising candidates for both stationary and
flying qubits, such a breakthrough would be an important step
toward the realization of a superconducting qubit–based quantum
network. Furthermore, the ability to count the number of magnons
in a millimeter-sized ferromagnetic insulator in the quantum regime
from zero up to a few magnons could be used to study microscopic
mechanisms of collective spin excitations, such as decay, scattering,
and coupling to a bath of two-level systems. Finally, the demon-
strated architecture of quantum magnonics could also be used in ap-
plications in spintronics and spin-based quantum information
processing (30).

MATERIALS AND METHODS
Figure S2 shows the instruments and components used in the exper-
iment. Microwave powers Pr, Ps, and Pmw were calibrated using the
input of the cavity as the reference point. At that reference point, the
reflection coefficient r is in unity when |wr − w10p|≫k10p, where wr is
the readout frequency and w10p and k10p are the resonant frequency
and the linewidth of the TE10p cavity mode, respectively, with p =
1,2,3…. By taking into account the attenuation in cables outside
and inside the dilution refrigerator, the total attenuations between
the microwave sources and the input of the cavity are approximately
81, 122, and 121 dB for the readout, spectroscopy, and Kittel mode
microwave excitations, respectively.

The yoke, coil, cavity, and YIG sphere of the hybrid system used
in the paper were the same as in the study by Tabuchi et al. (15),
whereas the transmon qubit was a different one. The oxygen-free
copper microwave cavity had dimensions of 24 × 3 × 53 mm3. An
SMA (subminiature version A) connector connected to the cavity
was used to measure the reflection coefficient r. A pair of disc-shaped
neodymium permanent magnets, with a diameter of 10 mm and a
thickness of 1 mm each, were placed at the ends of a magnetic yoke
made of pure iron. The magnets produced a static field B0 ≈ 0.29 T in
the 4-mm gap between them. The magnetic field can be additionally
tuned by a current I in a 104-turn superconducting coil. The field-to-
current conversion ratio is approximately 1.7 mT/mA. A YIG sphere
glued to an aluminum oxide rod along the 〈110〉 crystal axis was
mounted in the cavity at the center of the gap between the magnets.
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Fig. 4. Magnon occupancy and probability distribution. (A) Magnon occupancy
!ng
m as a function of the excitation power Pmw. Dashed black line and solid orange

line show fits to a driven linear and nonlinear Kittel mode, respectively. Inset:
DeviationsD!ng

m from the linear fit, indicating a significant magnon Kerr nonlinearity.
(B) Probability pnm of the first four magnon number states as a function of Pmw.
Poisson distributions are shown as solid lines. Inset: pnm for Pmw = 3.1 fW. For both
(A) and (B), error bars correspond to 95% confidence intervals.
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suppressed. The dispersive part of the qubit-magnon Hamiltonian
is then given by

Ĥq‐m
disp ¼ ℏcq‐m

^sz ĉ
†ĉ ð1Þ

where ŝ z ¼ e〉〈e $ g〉〈gjjjj , with |g(e)〉 the ground (excited) state of
the transmon qubit, ĉ† (ĉ) is the magnon creation (annihilation)
operator, and cq-m is the qubit-magnon dispersive shift (4, 16). This
dispersive interaction makes the qubit and magnon frequencies
dependent on the state of the other system. More precisely, the
qubit frequency wq

(nm) depends on the magnon number state |nm =
{0, 1, 2, …}〉, and the magnon frequency wm

i depends on the trans-
mon state |i = {g, e, f, …}〉. As illustrated in Fig. 2A, the strong
dispersive regime, where |2cq-m| > max[gq,gm], enables the observa-
tion of magnon number states |nm〉 via magnon number–dependent
ac Stark shift of the qubit frequency (17, 18).

The qubit-magnon dispersive regime is investigated through
spectroscopic measurements of the qubit while exciting the Kittel
mode at frequency wmw, detuned by Dmw = wm

g − wmw from the
dressed magnon frequency wm

g. The measurement of the qubit spectrum
while sweeping wmw for a coil current of −5.02 mA and a Kittel mode
excitation power Pmw of 7.9 fW is shown in Fig. 2B. Near resonant ex-
citation Dmw ~ 0, the qubit is ac Stark–shifted by the magnon occupan-
cy in the Kittel mode, a signature of the qubit-magnon dispersive
interaction similar to the qubit-photon counterpart in circuit quantum
electrodynamics experiments (17, 27). The positive magnon-induced
ac Stark shift shows that cq-m > 0, and the excitation frequency
producing the maximum shift indicates that wm

g/2p ≈ 7.95 GHz.
Both these features are consistent with the hybrid system being in
the straddling regime (fig. S1) (21, 28). Notably, the signature
corresponding to the two-photon transition, from |g, nm = 0〉 to |e,
nm = 1〉, involving both the spectroscopy and the excitation photons
and exciting both the qubit and a magnon (fig. S1), is also visible at
ws ¼ wðnm ¼ 0Þ

q þ 2cq‐m þ Dmw.
We now focus on resolving the magnon number states through

measurements with the excitation frequency close to resonance with
the Kittel mode (Dmw≪gm). In the qubit spectra shown in Fig. 3, the
excitation frequency is fixed at 7.95 GHz, close to resonance with wm

g

for I = −5.02 mA (Fig. 2B). The microwave excitation creates a mag-
non coherent state in the Kittel mode. When coherently driving the
Kittel mode, we observe peaks in the qubit spectrum at frequencies
higher than the zero-magnon peak. As shown next, these peaks cor-
respond to different numbers of magnons in the Kittel mode.

To fit the data of Fig. 3, we used an analytical model of the
spectrum of a qubit dispersively coupled to a harmonic oscillator
(17). The asymmetric qubit line shape at Pmw = 0 is well repro-
duced by including in the fit the photonic contribution to the qubit
line shape from the dispersive interaction between the qubit and the
probe mode (section S4). The fitting parameters for each excitation
power are the occupancy of the Kittel mode !ngm ¼ 〈n̂mP̂

g
q〉 (where

P̂g
q ¼ g〉〈gjj is the projector to the qubit ground state), the qubit-

magnon dispersive shift (cq-m), and the excitation detuning
(Dmw) (Fig. 3A). More information on the theory and the fitting
procedure canbe found in sections S3 to S5.We find a detuningDmwof
−0.38MHz, indicating a baremagnon frequencywm

bare of 7.9515GHz.
The condition for the dispersive regime is therefore respected with a
detuning |wq

bare−wm
bare| of89MHz,much larger than thequbit-magnon

coupling strength. The qubit-magnon dispersive shift cq-m is found

to be 1.5 ± 0.1 MHz, in good agreement with the theoretical value of
1.27 MHz (fig. S1). Resolving magnon number states demonstrates
thatwehavereachedthestrongdispersiveregimeofquantummagnonics,
with the dispersive shift per magnon 2cq-m being larger than both the
power-broadened qubit linewidth gq/2p = 0.78 MHz and the magnon
linewidth gm/2p = 1.3 MHz.

The average number of magnons !ng
m in the Kittel mode extracted

from the fit of the data is shown in Fig. 4A. At the lowest excitation
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Fig. 3. Resolving magnon number states. (A) Measurements of the qubit
spectrum at different Kittel mode excitation powers Pmw for a coil current of −5.02mA
and Kittel mode excitation frequency of 7.95 GHz. Black lines show fits of the data to
the spectrum of a qubit dispersively coupled to a harmonic oscillator. Color-coded
shaded areas show components of the spectrum corresponding to different photon
number states |np〉 of the probe cavity mode and magnon number states |nm〉.
Vertical offsets are shown by horizontal dashed lines. (B) Measured qubit spectra
as a function of Pmw. For clarity, after subtracting a power-dependent offset, Re(Dr)
is normalized relative to its maximum for each drive power. For both (A) and (B),
vertical dashed lines indicate the frequencies of the qubit |g〉 ↔ |e〉 transitions
corresponding to the first four magnon number states, neglecting a power-
dependent ac Stark shift, which is small relative to the dispersive shift per magnon
for this range of Pmw.
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FIG. 2. Schematic illustration of the hybrid system. Fer-
romagnetic and a superconducting qubit are inside a cavity.
The external magnetic field Bz creates the Kittel mode. The
axion magnetic field come from the direction of cygnus and
will be coupling to magnon with the axion-magnon coupling
strength geff . In the dispersive regime, the average num-
ber of magnon states appeares as peak positions separated by
�+�a.

B. Calibration

We can control the average number of magnon by ap-
plying microwaves of frequency !mw. Then the additional
Hamiltonian can be described by

H =~✏(t)
�
c†e�i!mwt + ce+i!mwt

�

+
~gq�m✏(t)

�

�
�̂+e

�i!mwt + �̂�e
+i!mwt

�
, (18)

where � = !q � !mw is the Kittel mode excitation de-
tuning and ✏(t) is the amplitude of the external drives.
If the excitation microwave !mw is largely detuned from
the qubit, does not lead to qubit transitions.

We supplied the excitation microwave power and mea-
sured qubit spectra as a function of Pmw with !mw/2⇡ =
7.95000 GHz. Fitting the spectra by Eq(11), then we
obtained the qubit-magnon dispersive shift �q�m/2⇡ =
1.5 ± 0.1 MHz and the magnon frequency !m/2⇡ =
7.94962 GHz (more detail in Ref[12]).

C. Result

The measurement of the e↵ective axion field was per-
formed at a spectroscopy window [ 7.9825 - 8.0025 GHz ]
with�f = 100 kHz. Each bin has 50 events. Then we ob-
tained the spectrum as shown Fig.3. The qubit line shape
at nm = 0 has asymmetry contributed by photon-qubit
coupling. For correcting this e↵ect, we fit the spectrum
with following function

f(x) = ↵ (Sm(x) + Sp(x)) + � (19)

where ↵ is conversion factor, Sm and Sp are spectrums
contributed by magnon and photon respectively and � is
an o↵set from zero. Here fit parameters are the qubit line
width !q, the qubit frequency �q, the occupancy of the

probe mode n̄

p
�, the qubit-probe mode dispersive shift

�q�p and probe cavity mode linewidth �p.
In order to embed the e↵ect of experimental uncertain-

ties we defined a chi square function �

2 with a nuisance
parameter “pull term” a, b and c. It is defined as

�

2 =
nX

i

yi � f(xi, �̃q�m, �̃m, �̃mw)

�yi

+a

2+ b

2+ c

2
, (20)

with

�̃q�m = �q�m � a��q�m , (21)

�̃mm = �m � b��m , (22)

�̃mw = �mw � c��mw , (23)

where yi and �yi are the reflection coe�cient of i bin and
the statistical error respectively. ��q�m , ��m and ��mw

represent systematic errors of �q�m, �m and �mw.
The result of fit is shown Fig.3 as a red line where

the average number of magnons is fixed with n̄

m
� = 0, or

geff = 0. Around the frequency of nm = 1, no signif-
icant amplitude excess was found. Hence we set a 95%
confidence level upper limit.
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FIG. 3. Top panel shows measurement of the qubit spectrum.
The black dots are observed data points. The red line shows a
best fit of the data using Eq(19). Bottom panel is the residual
distribution between data and best fit. The blue dotted curve
shows the 10 times zoomed expected residual distribution of
95% C.L. upper limit.

As the average number of magnon n̄

m
� is set as a free

parameter, we obtained reduced �

2 value of 191/190.
The 95% confidence level upper limit is calculated with
following equation

R nlimit

0 L dn̄

m
�R1

0 L dn̄

m
�

= 0.95, (24)

where L is defined by

L = exp

✓
��

2(n̄m
� )� �

2
min

2

◆
. (25)

𝜒=/𝑛𝑑𝑓=191/190

Δ𝑓 = 100𝑘𝐻𝑧, 50event/bin

Ø 統計的に有意な差は見られなかった
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FIG. 4. Constraints on gaee. The 95% C.L. upper limit
from this work is shown as a red line with a point. A pur-
ple line shows a constraint from QUAX experiment, which is
one of the experiment on direct detection of axion-magnon
coupling. Indirect astrophysical bounds from the solar axion
search (CAST experiment[24]), white dwarf cooling[25] and
red giants[26] are represented by dashed lines. The bench-
mark DFSZ model represent by a gray line.

Then we obtained nlimit = 7.5 ⇥ 10�3. The expected
residual distribution with nlimit is shown Fig.3 as a blue
dashed line.

The e↵ective axion magnetic field is represented by
Basin✓ where ✓ is an angle between the direction of exter-
nal magnetic field Bz and the direction of cygnus. Con-
sidering we supplied Bz parallel to the horizon, sin✓ takes
a range of 0.1 < sin✓ < 1.0. Here we choose a value of
sin✓ = 0.1 as a conservative limit.
From Eq.(17), 95% confidence level upper limit on the

axion magnetic field at ma = 33 µeV is

Ba < 4.1⇥ 10�14 [T]. (26)

Using conventional galactic constants of ⇢DM = 0.45
GeV/cm3[23] and va = 220 km/s[16], we obtained the
upper limit of the axion-electron coupling constant

gaee < 1.3⇥ 10�6 (27)

The constraint is plotted in Fig.4 with several experi-
ments of direct and indirect axion-electron searches.

IV. DISCUSSION

V. CONCLUSION

We produced the axion to magnon resonance and new
axion signal utilizing QND readout. The hybrid system
consisted of a superconducting qubit and a YIG sphere
was constructed. We performed the direct axion search
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C. Axion spectrum

In the situation of the dispersive regime, an analytical
expression for the qubit spectrum is derived in Ref[20].
It’s written as

S(!) =
1

⇡

1X

j=0

1

j!
Re


(�A)jeA

�j/2� i(! � !j)

�
, (11)

with

�j = �q + (j +Ds), (12)

!j = !̃a +B + j(�+�a), (13)
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, (17)

where �q and �m are the linewidth of qubit and magnon
respectively and we have defined �a = !m � !a. Here,
n̄

m
± is the stationary average number of magnons when

the qubit is in the excited (+) or ground (�) state. From
Eq.(11), the spectroscopic line shape is given by the sum
over Lorentzians, all centered on the ac-Stark shifted
qubit transition. If the axion magnetic field couple to the
magnon and increase average number of magnon, then
the peak will appear on the qubit transition frequency
!j=1.

Here we calculate the expected cubit spectrum of axion
and magnon coupling. We assumed expeimental value is
�m/2⇡ = 0.1 MHz, �/2⇡ = 5.0 MHz, and !m/2⇡ =
8.0000GHz and !q/2⇡ = 8.0406 GHz. The measurement
dephasing rate becomes largest at �a = ±p

�

2 � �

2
m/4,

then axion mass is 33 µeV. We choice a single sphere of
yttrium iron garnet (Y3Fe5O12; YIG) as a target, which
has a high net spin density ⇠ 1022 cm�3 and the ra-
dius is 10 m. The expected spectrum is shown in Fig.1.
At no coupling, only one peak appear at the qubit fre-
quency !j=0 with the Kittel mode in the vacuum state.
Where axion couple to magnon, the spectral weights be-
come Poisson distributed with mean Ds and the peaks
are separated by �+�a. The axion-like signal will appear
around the qubit frequency !j=1.

III. EXPERIMENT

The measurement of coupling between the supercon-
ducting qubit and the Kittel mode and resolving of
quanta of magnon was demonstrated in Ref[12]. We ap-
plied this hybrid system to axion to magnon resonance
search. The detail configuration of the detector geometry,
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FIG. 1. The expected spectrum of qubit. The blue and
red line present no coupling and axion-magnon coupling with
the coupling constant gaee = 2.5 ⇥ 10�15. Experimental
parameters is �m/2⇡ = 0.1 MHz, �/2⇡ = 5.0 MHz, and
!m/2⇡ = 8.0000 GHz and !q/2⇡ = 8.0406 GHz. The ax-
ion mass corresponds to ma = 33 µeV.

readout system and experimental parameters is described
in Ref[12].

A. Apparatus

The hybrid system consists of a superconducting qubit
and a single crystalline sphere of yttrium iron garnet
(Y3Fe5O12; YIG) inside a three-dimensional microwave
cavity (Fig.2). The diameter of YIG sphere is 0.5 mm
and the net spin density 2sN/V is 2.1⇥ 1022 cm�3. We
used a pair of permanent magnets and a coil to apply a
magnetic field Bz to the YIG sphere, making it a single-
domain ferromagnet. The transmon-type superconduct-
ing qubit[21] has a resonant frequency of 7.9905 GHz.

In a microwave cavity, the coupling of the super-
conducting qubit and the Kittel mode is provided by
the TE102 cavity mode and creates an e↵ective interac-
tion between these two macroscopic systems ([18],[22]).
We verified the coupling strength strength gq�m of 7.79
MHz from the magnon-vacuum Rabi splitting of the
qubit and it is much higher than the power-broadened
qubit linewidth of �q/2⇡ = 1.74 MHz and the magnon
linewidth �m/2⇡ = 1.3 MHz[12]. Meanwhile we can use
the dispersive interaction of the qubit by the TE103 cav-
ity mode to read out the qubit state. We set current in
the coil I = �5.02 mA then we obtained the dispersive
regime of our hybrid system where the detuning between
magnon frequency and Kittel mode frequency, |!m�!q|,
is much lager than gq�m.

現状CavityのQ値より3桁悪い
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• マグノン数検出器を⽤いて暗⿊物質アクシオンの探索を⾏った

• アクシオン質量33μeVについて、95%𝐶. 𝐿.の制限値𝑔"## <
1.3×10/}を与えた

• 現状感度を制限している要因はマグノンのQ値であり、量⼦限
界を超えた感度を達成するには3桁の向上が必要
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suppressed. The dispersive part of the qubit-magnon Hamiltonian
is then given by

Ĥq‐m
disp ¼ ℏcq‐m

^sz ĉ
†ĉ ð1Þ

where ŝ z ¼ e〉〈e $ g〉〈gjjjj , with |g(e)〉 the ground (excited) state of
the transmon qubit, ĉ† (ĉ) is the magnon creation (annihilation)
operator, and cq-m is the qubit-magnon dispersive shift (4, 16). This
dispersive interaction makes the qubit and magnon frequencies
dependent on the state of the other system. More precisely, the
qubit frequency wq

(nm) depends on the magnon number state |nm =
{0, 1, 2, …}〉, and the magnon frequency wm

i depends on the trans-
mon state |i = {g, e, f, …}〉. As illustrated in Fig. 2A, the strong
dispersive regime, where |2cq-m| > max[gq,gm], enables the observa-
tion of magnon number states |nm〉 via magnon number–dependent
ac Stark shift of the qubit frequency (17, 18).

The qubit-magnon dispersive regime is investigated through
spectroscopic measurements of the qubit while exciting the Kittel
mode at frequency wmw, detuned by Dmw = wm

g − wmw from the
dressed magnon frequency wm

g. The measurement of the qubit spectrum
while sweeping wmw for a coil current of −5.02 mA and a Kittel mode
excitation power Pmw of 7.9 fW is shown in Fig. 2B. Near resonant ex-
citation Dmw ~ 0, the qubit is ac Stark–shifted by the magnon occupan-
cy in the Kittel mode, a signature of the qubit-magnon dispersive
interaction similar to the qubit-photon counterpart in circuit quantum
electrodynamics experiments (17, 27). The positive magnon-induced
ac Stark shift shows that cq-m > 0, and the excitation frequency
producing the maximum shift indicates that wm

g/2p ≈ 7.95 GHz.
Both these features are consistent with the hybrid system being in
the straddling regime (fig. S1) (21, 28). Notably, the signature
corresponding to the two-photon transition, from |g, nm = 0〉 to |e,
nm = 1〉, involving both the spectroscopy and the excitation photons
and exciting both the qubit and a magnon (fig. S1), is also visible at
ws ¼ wðnm ¼ 0Þ

q þ 2cq‐m þ Dmw.
We now focus on resolving the magnon number states through

measurements with the excitation frequency close to resonance with
the Kittel mode (Dmw≪gm). In the qubit spectra shown in Fig. 3, the
excitation frequency is fixed at 7.95 GHz, close to resonance with wm

g

for I = −5.02 mA (Fig. 2B). The microwave excitation creates a mag-
non coherent state in the Kittel mode. When coherently driving the
Kittel mode, we observe peaks in the qubit spectrum at frequencies
higher than the zero-magnon peak. As shown next, these peaks cor-
respond to different numbers of magnons in the Kittel mode.

To fit the data of Fig. 3, we used an analytical model of the
spectrum of a qubit dispersively coupled to a harmonic oscillator
(17). The asymmetric qubit line shape at Pmw = 0 is well repro-
duced by including in the fit the photonic contribution to the qubit
line shape from the dispersive interaction between the qubit and the
probe mode (section S4). The fitting parameters for each excitation
power are the occupancy of the Kittel mode !ngm ¼ 〈n̂mP̂

g
q〉 (where

P̂g
q ¼ g〉〈gjj is the projector to the qubit ground state), the qubit-

magnon dispersive shift (cq-m), and the excitation detuning
(Dmw) (Fig. 3A). More information on the theory and the fitting
procedure canbe found in sections S3 to S5.We find a detuningDmwof
−0.38MHz, indicating a baremagnon frequencywm

bare of 7.9515GHz.
The condition for the dispersive regime is therefore respected with a
detuning |wq

bare−wm
bare| of89MHz,much larger than thequbit-magnon

coupling strength. The qubit-magnon dispersive shift cq-m is found

to be 1.5 ± 0.1 MHz, in good agreement with the theoretical value of
1.27 MHz (fig. S1). Resolving magnon number states demonstrates
thatwehavereachedthestrongdispersiveregimeofquantummagnonics,
with the dispersive shift per magnon 2cq-m being larger than both the
power-broadened qubit linewidth gq/2p = 0.78 MHz and the magnon
linewidth gm/2p = 1.3 MHz.

The average number of magnons !ng
m in the Kittel mode extracted

from the fit of the data is shown in Fig. 4A. At the lowest excitation
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Fig. 3. Resolving magnon number states. (A) Measurements of the qubit
spectrum at different Kittel mode excitation powers Pmw for a coil current of −5.02mA
and Kittel mode excitation frequency of 7.95 GHz. Black lines show fits of the data to
the spectrum of a qubit dispersively coupled to a harmonic oscillator. Color-coded
shaded areas show components of the spectrum corresponding to different photon
number states |np〉 of the probe cavity mode and magnon number states |nm〉.
Vertical offsets are shown by horizontal dashed lines. (B) Measured qubit spectra
as a function of Pmw. For clarity, after subtracting a power-dependent offset, Re(Dr)
is normalized relative to its maximum for each drive power. For both (A) and (B),
vertical dashed lines indicate the frequencies of the qubit |g〉 ↔ |e〉 transitions
corresponding to the first four magnon number states, neglecting a power-
dependent ac Stark shift, which is small relative to the dispersive shift per magnon
for this range of Pmw.
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ü マグノン数の測定へ

𝑃r�

Ø 同様にマグノン数の測定も可能

coherent interaction between the qubit and the Kittel mode (15). The
qubit-magnon coupling strength gq-m of 7.79MHz, obtained from the
magnon-vacuum Rabi splitting of the qubit (Fig. 1C), is much larger
than both the power-broadened qubit linewidth gq/2p = 1.74 MHz
and the magnon linewidth gm/2p= 1.3 MHz.

We now investigate the dispersive regime of our hybrid system,
where the detuning between the bare qubit and Kittel mode fre-
quencies, |wq

bare − wm
bare|, is much larger than gq-m. The exchange

of quanta of excitations between the qubit and the Kittel mode,
through virtual photons in the coupler cavity mode, is then highly
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Fig. 1. Hybrid system and qubit-magnon coherent interaction. (A) Schematic illustration of a ferromagnetic YIG sphere and a superconducting transmon qubit inside
a three-dimensional microwave cavity. A magnetic field B0 is applied to the YIG sphere using permanent magnets and a coil. The magnetostatic mode in which spins
uniformly precess in the ferromagnetic sphere, or the Kittel mode, couples to the magnetic field of the cavity modes. The qubit and the Kittel mode interact through virtual
excitations in the cavity modes at a rate gq-m. (B) The spectrum of the qubit is measured by probing the change of the reflection coefficient Re(Dr) of a microwave
excitation resonant, with the probe mode at frequency wp as a function of the spectroscopy frequency ws and the coil current I, changing the magnetic field at the
ferromagnet. The avoided crossing indicates a coherent interaction between the qubit and the Kittel mode. Vertical dashed lines indicate that I = −4.25 mA, where
the qubit and the Kittel mode are hybridized (Fig. 1D), and that I = −5.02 mA, where the qubit-magnon interaction is in the dispersive regime (Figs. 2 to 4). (C) Magnon-
vacuum Rabi splitting of the qubit on resonance, with the Kittel mode at I = −4.25 mA. From the fit, we extract the qubit-magnon coupling rate gq-m/2p = 7.79 MHz.
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Fig. 2. Dispersive qubit-magnon interaction. (A) Schematic illustration of the hybrid system in the strong dispersive regime. A microwave excitation at frequency
wmw is used to create a magnon coherent state in the Kittel mode. The excitation is detuned from the magnon frequency, with the qubit in the ground state, wm

g, by
Dmw = wm

g − wmw. In the strong dispersive regime, magnon number states |nm〉 (of probability distribution pnm ) are mapped into the qubit spectrum as peaks at
frequencies w̃ nmð Þ

q ¼ w nmð Þ
q þ nm∆mw, separated by 2cq-m + Dmw and with a spectral weight closely related to pnm . (B) Measurement of the qubit spectrum for a coil

current I = −5.02 mA as a function of the Kittel mode excitation frequency wmw and the spectroscopy frequency ws. The excitation frequency producing the maximum
magnon-induced ac Stark shift of the qubit from wq (horizontal dashed line) yields an estimation of wm

g/2p ≈ 7.95 GHz (vertical dashed line). The Kittel mode spectrum,
measured via its dispersive interaction with the probe mode, appears as a faint vertical line at ~7.95 GHz. The signature corresponding to the two-photon transition
involving both the spectroscopy and the excitation photons and exciting both the qubit and a magnon (fig. S1) is indicated by the diagonal dashed line given by
ws ¼ w nm¼0ð Þ

q þ 2cq‐m þ Dmw, calculated with cq-m/2p = 1.5 MHz at wm
g/2p = 7.95 GHz.
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C. Axion spectrum

In the situation of the dispersive regime, an analytical
expression for the qubit spectrum is derived in Ref[20].
It’s written as

S(!) =
1

⇡

1X

j=0

1

j!
Re


(�A)jeA

�j/2� i(! � !j)

�
, (11)

with

�j = �q + (j +Ds), (12)

!j = !̃a +B + j(�+�a), (13)

A = Ds
�m/2� i(�+�a)

�m/2 + i(�+�a)
, (14)

B = �(n̄+ + n̄� �Ds), (15)

Ds =
2(n̄+ + n̄�)�2

�

2
m/4 + �

2 +�2
a

, (16)

n̄

m
± =

g

2
eff

�

2
m/4 + (�a ± �)2

, (17)

where �q and �m are the linewidth of qubit and magnon
respectively and we have defined �a = !m � !a. Here,
n̄

m
± is the stationary average number of magnons when

the qubit is in the excited (+) or ground (�) state. From
Eq.(11), the spectroscopic line shape is given by the sum
over Lorentzians, all centered on the ac-Stark shifted
qubit transition. If the axion magnetic field couple to the
magnon and increase average number of magnon, then
the peak will appear on the qubit transition frequency
!j=1.

Here we calculate the expected cubit spectrum of axion
and magnon coupling. We assumed expeimental value is
�m/2⇡ = 0.1 MHz, �/2⇡ = 5.0 MHz, and !m/2⇡ =
8.0000GHz and !q/2⇡ = 8.0406 GHz. The measurement
dephasing rate becomes largest at �a = ±p

�

2 � �

2
m/4,

then axion mass is 33 µeV. We choice a single sphere of
yttrium iron garnet (Y3Fe5O12; YIG) as a target, which
has a high net spin density ⇠ 1022 cm�3 and the ra-
dius is 10 m. The expected spectrum is shown in Fig.1.
At no coupling, only one peak appear at the qubit fre-
quency !j=0 with the Kittel mode in the vacuum state.
Where axion couple to magnon, the spectral weights be-
come Poisson distributed with mean Ds and the peaks
are separated by �+�a. The axion-like signal will appear
around the qubit frequency !j=1.

III. EXPERIMENT

The measurement of coupling between the supercon-
ducting qubit and the Kittel mode and resolving of
quanta of magnon was demonstrated in Ref[12]. We ap-
plied this hybrid system to axion to magnon resonance
search. The detail configuration of the detector geometry,
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FIG. 1. The expected spectrum of qubit. The blue and
red line present no coupling and axion-magnon coupling with
the coupling constant gaee = 2.5 ⇥ 10�15. Experimental
parameters is �m/2⇡ = 0.1 MHz, �/2⇡ = 5.0 MHz, and
!m/2⇡ = 8.0000 GHz and !q/2⇡ = 8.0406 GHz. The ax-
ion mass corresponds to ma = 33 µeV.

readout system and experimental parameters is described
in Ref[12].

A. Apparatus

The hybrid system consists of a superconducting qubit
and a single crystalline sphere of yttrium iron garnet
(Y3Fe5O12; YIG) inside a three-dimensional microwave
cavity (Fig.2). The diameter of YIG sphere is 0.5 mm
and the net spin density 2sN/V is 2.1⇥ 1022 cm�3. We
used a pair of permanent magnets and a coil to apply a
magnetic field Bz to the YIG sphere, making it a single-
domain ferromagnet. The transmon-type superconduct-
ing qubit[21] has a resonant frequency of 7.9905 GHz.

In a microwave cavity, the coupling of the super-
conducting qubit and the Kittel mode is provided by
the TE102 cavity mode and creates an e↵ective interac-
tion between these two macroscopic systems ([18],[22]).
We verified the coupling strength strength gq�m of 7.79
MHz from the magnon-vacuum Rabi splitting of the
qubit and it is much higher than the power-broadened
qubit linewidth of �q/2⇡ = 1.74 MHz and the magnon
linewidth �m/2⇡ = 1.3 MHz[12]. Meanwhile we can use
the dispersive interaction of the qubit by the TE103 cav-
ity mode to read out the qubit state. We set current in
the coil I = �5.02 mA then we obtained the dispersive
regime of our hybrid system where the detuning between
magnon frequency and Kittel mode frequency, |!m�!q|,
is much lager than gq�m.
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transmon qubit fabricated on a silicon chip is seen in the deep cavity trench. The cavity with dimensions of 25 ⇥ 3 ⇥ 53 mm
supports the lowest-frequency (TE101, TE102, and TE103) modes with the frequencies of 6.987 GHz, 8.488 GHz, and 10.461 GHz,
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magnetic field is large. The color scales indicate field intensities at the single photon level. c) Schematic energy diagram of the
qubit-cavity-YIG hybrid system. The left shows unperturbed (bare) frequencies of the qubit, the cavity and the Kittel modes.
The cavity and the Kittel modes are subject to frequency shifts due to the coupling with the qubit, as indicated in the middle
of the diagram. The cavity modes induce the Lamb shift of the qubit, as depicted on the right-hand side.
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â

†
p

â
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â

†
10p

â
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where �
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10p

�!

q

�(l�1)↵)]. The first and
the third terms are dispersive shifts due to the coupling
between the cavity modes and the Kittel mode. The sec-
ond term indicates the Lamb shift of the qubit frequency
arising from the coupling to the cavity mode. The Lamb

shift for the first excited states �(1)

10p

coincides with �

10p

.
The fourth term shows the qubit-state-dependent cavity
frequency shift or the photon-number-dependent qubit
frequency shift. It is worth noting that the last term in-
dicates the static interaction between the cavity modes
and the Kittel mode, which originates from the fact that
the spin ensemble is not a perfect bosonic system. Be-
cause of the factor 1/N , however, for largeN such e↵ect is
not observable with usual experimental parameters. The
major energy shifts are summarized in Fig. 5c. In the
regime where g
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10p
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|, there is a qubit-
state-dependent frequency shift ⇠ of the Kittel mode [19].
Although it appears only in the third-order perturbative
treatment, the shift is still observable when the Kittel-
mode and the qubit frequencies are close enough to meet
the frequency condition. Such coupling is usable for
counting the magnon number in the Kittel mode via a
Ramsey interferometry using the qubit, for example.

The coupling between the qubit and the Kittel mode
is mediated by the cavity modes TE

10p

when the qubit
and the Kittel-mode frequencies are degenerate with each
other and detuned from the cavity so that |!

q

� !

m

| ⌧
g

q,10p

, g

m,10p

⌧ |!
10p

� !

q

| ' |!
10p
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| [40]. We
rewrite the interaction Hamiltonian in Eq. (24) in the
corresponding rotating frame by adiabatically eliminat-
ing the cavity modes:

H̃
int

/~ = g

q�m

�̂

�
ĉ
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