方向に感度を持った 暗黒物質探索実験NEWAGE

2016.10.30 第1回宇宙素粒子若手の会秋の研究会 @東京大学宇宙線研究所柏キャンパス 神戸大学 池田智法

第1回宇宙素粒子若手の会秋の研究会

方向に感度を持った暗黒物質探索

2016/10/30

方向に感度を持った暗黒物質探索

- □ 最近では方向情報を利用した 様々な解析手法が提案されて 来た
- ニュートリノフロアの探索

方向情報を用いることで太陽 ニュートリノと暗黒物質の原子 核反跳イベントを分別できる

• 暗黒物質の速度分布の検証

暗黒物質が発見された際に、少 ない統計量での暗黒物質の速度 分布の検証方法なども提案され てきている

ガス検出器と暗黒物質実験の世界情勢

DRIFT

- MWPC(2mm pitch)
- First started gas detector

- Underground
- Low background
- Large size(~1m³)

MIMAC

MicroMegas(~424um pitch)

μ-ΤΡϹ

- Underground
- •10×10×25 cm³

25cm

1m

• CCD(256um pitch) • 2D track • Head/tail recognition • Underground

- **NEWAGE**
- •μ-PIC(400um pitch)
- 3D track
- Direction-sensitive limit
- Underground

NEWAGE

□ µTPC:NEWAGE0.3b'@神岡

NEWAGE

ロμTPC:NEWAGE0.3b'@神岡

dE/dx : nuclear (²⁵²Cf) > electron (¹³⁷Cs) track length : electron > nuclear

- 2次元飛跡検出器µ-PIC
- ・ 前置ガス増幅器GEM
 - 検出体積 30×30×41cm³ CF₄ 0.1気圧 飛跡検出を利用したガンマ線BG 除去

NEWAGEの検出感度

□ 最新結果

方向感度を用いた実験では世界最高感度を誇るがDAMA領域には感度届かず 現在も観測を継続 31.6days -> 230.2days(2016/8/24時点)

バックグラウンド研究

T.Hashimoto@72JPSのスライドから 2013年のデータから、主なBGは μ -PICの構成物質に含まれる放射不純物のU/ Th系列の崩壊によって出てくる α 線(図中C,C'')であることが示唆

• 暗黒物質イベントは原子核反跳イベントであり、a線はHe原子核なので解析的に除去しづらい

μ-PICのバックグラウンド

橋本隆(神戸大学)の修士論文から

μ-PIC由来の主なBGはμ-PIC補強材のガラス繊維が原因

	PI(100um)	測定試料	²³⁸ U[µBq/cm ²] U系列	²³² Th[µBq/cm ²] Th系列
	PI(800um)	PI 100μm	68.5±1.5	102.1±2.3
	PI(100um)	ガラス繊維	64.5±0.8	86.8±1.1

PI100um中のU/Thの約9割はガラス繊維由来

・ 低バックグラウンドμ-PICの開発

新材料のPI+エポキシは現行の μ -PIC材料よりBGが100倍以上少ない

ΝΙμΤΡΟ

解析的にµ-PIC由来のBGを除去する→ 陰イオンガスµTPC(NIµTPC)の開発

SF₆ガスゲイン

2015年から自分が研究してきたSF₆ガスを用いたNIµTPCの開発

マイノリティピークの観測

ロドリフト距離30cmのTPCを用いたマイノリティピークの観測

- 観測できたとは言えない
- ・ これから定量的に評価をしていく予定

Direction-Sensitive

WIMP-search

SF₆ガスと μ -PICの2次元飛跡検出

第1回宇宙素粒子若手の会秋の研究 Y[mm] (cathode)

CF_4 (76Torr)から SF_6 (20Torr)にすることでうれしいことが結構ある

大型化へ

□ NEWAGE実験

- 方向に感度を持った暗黒物質探索実験を行ない、方向に感度を持つ制 限を更新している
- 現在はバックグラウンド除去の研究(NIµTPC、低BGµ-PIC)が進行
 中

□ NIµTPCの開発

SF₆ガスを用いたµ-PIC+GEMで、ガス気圧20Torrでガスゲイン最大
 2000程度、2次元位置分解能140umが得られた

□ 展望

次期計画ではSF₆ガスを用いた容積60×60×100cm³のNIµTPCを開発し、方向情報を用いた手法でDAMA領域の探索を目指す

Back up

from K.Miuchi's slide@72回JPS

▶ PTEP2015 (RUN14-1,2)以降
 ▶ DM RUN継続 (RUN 14- RUN17)
 ■ 2013/7/20-2016/8/24
 ■ live time : 31.6 days → 230.2 days
 ■ 制限 2倍程度更新

三拍子そろう陰イオンガスはあまりない

Direction-Sensitive

- DM実験でターゲットとしても使用
- ・ 典型的なドリフト速度 : ~cm/µs
- ・ ガスゲイン 3000 (76Torr)
 - プリアンプ 160mV/pC(ASDchip)

陰イオンを用いたTPCのZの絶対位置決応が

DRIFTグループがMWPC-TPCでのZの絶対位置決定に成功

• <u>陰イオンガスCS₂にO₂加えることでドリフト速度の異なる陰イオンが複数生成される</u>

[[]Physics of the Dark Universe 9-10(2015)1-7]

$NI \mu PIC ASIC$

NIμTPC用ASIC 要請值				
	Minority Charge	Main Charge		
detector Cap	300pF	300pF		
Minimum signal	3fC(ENC×10)	80fC		
ENC	2000(0.3fC)以下	6.25×4(10fC)以下		
Dynamic range	-300fC~300fC	-10pC~10pC		
ゲイン	10mV/fC	0.3-0.5mV/pC		
時定数	4us	4us		

α線の飛跡検出試験

• 12.8mm×12.8mmの検出領域でα線(²⁴¹Am)の飛跡検出を行なう

Direction-Sensitive

NEWAGE

WIMP-search

SF₆-Drift Velocity

- Direction-Sensitive WIMP-search NEWAGE
- カソード信号の最大時間差がドリフト距離2cmを走ったイベントであることを 用いてSF₆-イオンのドリフト速度を求める

エレクトロニクス

2016/09/24