

MPGDの暗黒物質探索 への応用

池田 智法 他NEWAGEグループ 2018年12月14日 第15回MPGD研究会@京都大学

方向に感度を持った暗黒物質探索

2018/12/14

第15回MPGD研究会

世界の動向

✓ 低BGなMPGDのR&Dへ

- ✓ Low-alpha μ -PIC
- μ-PIC表面素材を低BG素材に変更
- ・ 表面アルファ線を削減 (橋本work)

	²³⁸ U[ppb]	²³² Th[ppb]
PI including glass cloth (旧素材)	390±10	1810±40
PI+epoxy (新素材)	< 2.98	< 6.77

✓ Low-background Micromegas

T-REX project

Astroparticle Physics 34 (2011) 354-359

	²³⁸ U[ppb]	²³² Th[ppb]
Copper-kapton- copper fail	< 70.8	< 91.5

Bulk Micromegas

S Andriamonje et al 2010 JINST 5 P02001

Low-α μ-PICの地下実験

- ✓ 2018年1月から神岡にてRUNを開始 (橋本work)
 - Live time : 47days
 - Exposure : 0.49kg days

> α線バックグラウンドの減少を確認

▶ 陰イオンガス特有の信号(マイノリティピーク)を用いることでZ軸方向の 絶対位置を決定できる

Direction Sensitiv 世界情勢 - 陰イオンラッシュ WTMP-search

✓ 2015-2018に陰イオンガスに乗り出した人たち

NEWAGEでの取り組み

✓ 10cm角のµ-PICを使った小型のNIµTPCの開発

✓ 検出体積は1.28cm×2.56cm×14.4cm

← KEKで開発された液体アルゴン検出器 用の読み出しボードを利用

• 64×2チャンネル読み出し

▶ 絶対位置Zの位置分解能16mmを達成

Direction Sensitive <u>WIMP</u>-search

NEW AGE

NEWAGEの取り組み

- ✓ NIµTPCの飛跡検出能力の評価を 行った
- ▶ 3次元位置分解能130µmを達成
 ▶ Zの位置決定と飛跡検出の同時測定が可能

✓ 大面積読み出しに向けて、NIµTPC専用の読み出しボードを開発中

	要請値	測定値	• • • • • • • • • • • • • • • • • • •	←ASICチップ評価用ボード
Gain high/low [mV/fC]	10/0.5	10.05/0.54		ASICチップ
ENC@300pF	4000	6000		LTARS2016_K01
Dynamic range high/low [fC]	80/1600	160/2400		

2018/12/14

2018/12/14

第15回MPGD研究会 甲

氏名 中村 輝石

11

motivation

- to overcome potential problem of existing TPCs:
 - distortion of field cage or complicated design
 - radioactive background

 \Rightarrow Sheet Resistor (SR) μ -TPC

2010/12/14

h

まとめ

- ✓ MPGDを使った暗黒物質探索実験では低BGなMPGDの開発が行われ ている
 - 低BG素材を使用したMPGD
 - ・ 陰イオンガスTPC
- ✓ NEWAGE実験ではLow-αµPICを使った暗黒物質探索実験が行われている
 - 現在もデータ取得を継続 & BGstudy中

✓ 大型検出器のSRを使ったTPCゲージを開発中

Background Study

By Takashi Hashimoto

- Main BG is alpha particle from μ-PIC
 - Measured by high pure Ge detector

U/Th contamination

	²³⁸ U [μBq/cm ²] middle stream [†]	²³² Th [μBq/cm²]
PI 100μm	68.5 ± 1.5	102.1±2.3
Glass cloth	64.5±0.1	86.8±1.1
(PI)-(Glass cloth)	4.0±1.5	15.3 ± 2.6

- U/Th in the Polyimide 100um can be explained by U/Th of glass cloth
- Two approach for reduction of BGs
 - Low $\alpha \mu$ -PIC
 - Full-fiducialization analysis using Negative Ion

Cross-section view of µ-PIC

CYGNUS2017

Development of Low α $\mu\text{-PIC}$

By Takashi Hashimoto

PI + epoxy

- Production of μ-PIC with <u>low radioactive materials</u>
 - Glass cloth was used as reinforced material
 - Epoxy can be replacement

U/Th contamination

	²³⁸ U[ppm]	²³² Th[ppm]	
PI including glass cloth	0.39±0.01	1.81±0.04	
PI+epoxy	< 2.98×10 ⁻³	<6.77×10⁻³ ←	New materia

• Polyimide+epoxy is 100 times as pure as current materials

$$SF_{6}^{-*} + SF_{6} \rightarrow SF_{6}^{-} + SF_{6} \rightarrow SF_{6}^{-} + SF_{6} \rightarrow SF_{6}^{-} + SF_{6} \rightarrow SF_{6}^{-} + F$$

$$SF_{6}^{-*} \rightarrow SF_{6}^{-*} \rightarrow SF_{6}^{-} + F$$

$$\overrightarrow{SF_{6}^{-*}} \rightarrow SF_{6}^{-} + e^{-} \rightarrow SF_{6}^$$

アウトガスによる影響

- SF₅-領域の電荷の増加はSOF₄-が寄与している
- F-(HF)2⁻とSF4Oの生成比は1:4(J. Phys. Chem. A 2001, 105, 3527-3531)、PREチャージはF-(HF)2-で説明可能

TPC研究会@京都大学

Direction Sensiti

読み出し回路の要請値

parameter	value	comment	
C _{det}	300pF		
pulse shape	4μ sec, 1μ sec	gas,LAr 切り替え可能に	
power	<50mW/32ch	LTARS2014と同じ	
その他の機能	16ch input、低温動作、(出力differential :まずTEGで確認)		

parameter	narrow range	wide range	comment
signal size	3fC, 30fC	100fC, 150fC	gas,LAr
noise (ENC)	2000以下	6.25 x 104以下	S/N 10以上
gain	10mV/fC	0.5mV/fC	
dynamic range	80fC	1600fC	出力電圧~800mV

▶ マイノリティチャージの信号サイズが非常に小さいため、ダイナミックレン ジの大きな回路が必要になる

アウトガスによる影響

1200 1400

1600 1800 2000 2200 2400 2600

2800 3000

-0.04

Direction Sensitive

WIMP-search

GE