

NEWAGE実験51: 方向感度を持った暗黒物質 探索のためのR&D

池田智法A

身內賢太朗A、橋本隆A、石浦宏尚A、中村輝石A、伊藤博士A

神戸大学A

2018年日本物理学会秋季大会@信州大学

低BG化のためのR&D

✓ 2015年の結果ではμ-PICに含まれる不 純物U/ThからのBGを確認

U/Th測定結果

測定試料	[g]	²³⁸ U[ppm] U系列	²³² Th[ppm] Th系列
PI 100μm	35	0.39 ± 0.01	1.81 ± 0.04
ガラス繊維	15	0.84±0.03	3.48±0.12
CuSO ₄	72	<0.009	<0.06
GEM	27.0	<0.022	<0.12

μ-PICのBGを削減する研究に尽力

✓ 低バックグラウンド化のための2つのアプローチ

1. Low-a μ-PIC

→検出器の性能評価を完遂

→2017年12月から神岡にインストール

16pS13-6

橋本の発表

2. NIµTPC

→現在性能評価中

その1. Low- α μ -PIC

μ-PIC基板の表面素材を低BG素材に変更

新材料のU/Th測定結果

測定試料	²³⁸ U[ppm]	²³² Th[ppm]	備考
PI100µm	0.39±0.01	1.81±0.04	現行のµ-PIC材料
PI+エポキシ	< 2.98×10 ⁻³	< 6.77×10 ⁻³	新材料

→含有量1/100倍を達成

✔ 大型検出器(30×30cm²)の開発・評価を完遂し、神岡にインストール

その2. $NI\mu$ TPC

✔ 陰イオンガス検出器をµTPCに応用 = Negative ion uTPC

▶ 陰イオンガス特有の信号(マイノリティピーク)を用いることでz軸方向の 絶対位置を決定できる

その2. $NI\mu$ TPC

✔ 陰イオンガス検出器をµTPCに応用 = Negative ion uTPC

▶ Full-Fiducialカットによってさらに感度が向上

NI µ TPCの開発

✔ 10cm角のµ-PICを使った小型のNIµTPCの開発

2GEM

• 64×2チャンネル読み出し

✓ 多チャンネル読み出しボード(LTARS-2014)を用いてマイノリティチャージ の読み出しに成功

➤ 絶対位置Zの位置分解能16mmを達成

NIµTPCの開発:飛跡検出

✓ NIµTPCの飛跡検出能力の評価を 行った

- ▶ **3次元位置分解能130μm**を達成
- > Zの位置決定と飛跡検出の同時測定が可能

✓ 大面積読み出しに向けて、NIµTPC専用の読み出しボードを開発中

	要請値	測定値
Gain high/low [mV/fC]	10/0.5	10.05/0.54
ENC@300pF	4000	6000
Dynamic range high/low [fC]	80/1600	160/2400

←ASICチップ評価用ボード

ASICチップ LTARS2016_K01

大容積検出器の開発

✓ **容積1m**³の真空容器を製作、神戸大学に搬入

- ✓ 将来は2m²の検出面積の読み出しを行いたい
- ✓ まずはBGの確認のため、GEMだけで読み出しを行う→ダブルGEMの開発へ

大型ダブルGEM検出器

✔ 大容積検出器に使用するための大型ダブルGEM検出器(31×31cm²)を開発

実物写真 31cm 31cm 3.8cm

厚さ:100μm

素材: Liquid crystal polymer (LCP)

ダブルGEM構成図

✓ 材料は低BGなものを使用

U/Th含有量

	²³⁸ U [ppm]	²³² Th [ppm]
μ-PIC	1.17 ± 0.01	5.84 ± 0.03
GEM	<0.02	<0.12

大型ダブルGEM検出器:基礎試験

✔ 大型検出器の1ユニットと同サイズ ✔ Ar:C,H₆(9:1)ガスを用いてダブル の真空容器を製作

GEM検出器の基礎特性を評価 10000 $Ar:C_2H_6(9:1)$ 1atm

- ✔ 標準ガスでのガスゲインは十分に 出ている
- ✔ 今後、陰イオンガスSF。での試験を 開始する

まとめ

- □ NEWAGE実験では低BG化のための研究が行われている
 - ✓ Low-α μ-PIC
 - 神岡へインストール済み、RUN継続中
 - ✓ NI-µTPC
 - 小型の試験機を開発
 - 性能評価中
- □ 検出器の大型化に向けた検出器開発が進められている
 - ✓ 30cm角2段GEM検出器の開発
 - 標準ガスでの基礎試験終了
 - 陰イオンガスの試験へ

Back-up

方向感度のポテンシャル

100GeV

×角度分解能×Head-tailの分解能でフル

ASICの開発

• 2つの回路(Static/Dynamic)のTEGチップを製作

Static architecture

Dynamic architecture

アウトガスによる影響

- H₂Oの混入量が増加すると
 - SF₅のピークが大きくなるように見える
 - SF₅よりドリフト速度の速い電荷が増える

アウトガスによる影響

• SF₆-(H₂O)とH₂Oの反応

- 電荷量の変化はSF₆とH₂Oの反応で説明できる
- SF₅-領域の電荷の増加はSOF₄-が寄与している
- F-(HF)₂-とSF₄O-の生成比は1:4(*J. Phys. Chem. A* **2001,** 105, 3527-3531)、PREチャージはF⁻(HF)₂-で説明可能

SF₅の質量 : 127.05g/mol SOF₄の質量 : 124.05g/mol F⁻(HF)₂⁻の質量 : 59.00g/mol