

NEWAGE実験49:

小型の陰イオンµTPCを用いた3次 元飛跡検出とZの位置決定

池田 智法

身内賢太朗、矢ケ部遼太、橋本隆、中澤美季、石浦宏尚、中村輝石、伊藤博士 神戸大学

2017年9月15日

2017年日本物理学会秋季大会

モチベーション

□ バックグラウンド

RUN14で検出器感度を制限していたBG $-->\mu$ -PICのガラス繊維由来の α 線

■ 陰イオンガスを用いたZの位置決定

 $DRIFTグループ(英・米)が陰イオンガス<math>CS_2$ を用いて MWPC-TPCでZの絶対位置決定に成功した

- →陰イオンガスをµTPCに導入し、高位置分解能飛跡 検出と同時にZの有効体積カットをしたい
 - NIμTPC(陰イオンμTPC)の開発

原理

信号波形

N.Phan talked @CYGNUS2015

$$z = (t_a - t_b) \frac{v_a v_b}{(v_b - v_a)}$$

▶ 2種類の陰イオンの検出時間を用いることで、絶対位置Zを測定できる

前回JPSの発表

- 3チャンネルを足したμ-PICストリップからマイノリティチャージを観測
- Zの絶対位置決定に成功した

▶ 本研究では多チャンネル読み出し回路を用いて、飛跡検出と同時にZの絶対位置を測定した

セットアップ

- KEK・岩手大学で共同開発された液体 アルゴンTPC用の読み出しエレキ
- 64ch \times 4000 sampling
- サンプリング周波数<20MHz以下
- ✓ 検出容量: 1.28cm×1.28cm×16.1cm

 Anode 32ch Cathode 32ch Drift

1イベント例

Zの絶対位置較正

• PINフォトトリガーイベントからZの絶対位置を較正する

SF₆ (Main charge) Drift V: 8.0 [cm/ms]

SF₅ (Minority charge) Drift V: 8.6 [cm/ms]

3次元の飛跡再構成

• セルフトリガーモードでの3次元の飛跡再構成

+Zの絶対位置

> 3次元の飛跡検出と同時にAの絶対位置決定に成功

まとめと今後

□まとめ

- 1.28cm×1.28cm×16.1cmの検出容積を持つ陰イオンμTPCを開発した
- 3次元の飛跡検出をするとともにZの絶対位置測定を行なった

□ 今後

- 陰イオンµTPC専用の読み出し回路の開発
- 大型の検出器の性能評価を行い暗黒物質探索実験に導入

BACK UP

Minority detection Eff

フッ素原子核が1ストリップに落とす最小エネルギー = 8keV

3D Position Resolution

• カソードストリップに沿ったイベントが多いため分解能が 過小評価されている?

Zの決定精度

- $Z \propto \Delta T$
- Zの位置決定精度

$$\sigma_z = 2.6 \ cm$$

アウトガスH₂Oによる波形の変化

- H₂Oの混入量が増加すると
 - SF₅のピークが大きくなるように見える
 - SF₅よりドリフト速度の速い電荷が増える

陰イオンの生成過程

LTARS2014

Y.Kuromori's slide(岩手大)@2015JPS秋季大会

- ・ NIμTPCではシェイピングタイムの長いアンプが必要(O(us))
- KEK・岩手大学で共同開発された液体アルゴンTPC用読み出しエレキを用いる

LTARS2014

Conversion gain 約9.0mV/fC 最大入力電荷 60~100fC ENC 2000以下@300pF Shaping time 1us デジタルボード

32ch differential inputs(2Vpp)
12bits FADC

4000 sampling

サンプリング周波数<20MHz