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Dark Matter Direct Detection Experiment

The Earth is immersed in a dark matter halo (ρDM ~ 0.3-0.6  GeV/cm3) 

Dark Matter in such a halo has a velocity distribution (<vDM>~220km/s) 

The Sun moves at a speed of 220 km/s around the Galaxy.  

(The Earth moves around the Sun with a speed of 30 km/s)

Dark matter scatters a nucleus of the detector  
material and deposits recoil energy.

Underground

detector

DM

DM
vDM The recoil energy is detected through ionization, 

scintillation, and the production of heat in the 
detectors. recoil energy



What is missing in the conventional analysis?

In conventional analysis, the recoiled nucleus is treated as a 
recoiled neutral atom. 

NN

In reality, it takes some time for the electrons to catch up…

v
NN

v

≠

The process to catch up causes electron excitations/ionizations!

→ Migdal Effect ! [1939, Migdal]

Xe

Xe

Xe

DM
DM

[ ’05 Vergados&Ejiri, ’07 Bernabei et al.  Application to DM detection ]



Migdal’s approach

NN
v

Just after the nuclear recoil, we assume only the nucleus is moving 
while the electron cloud is left behind.
(The electron clouds are no more in the energy eigenstates.)

Take the rest frame of the nucleus by the Galilei transformation. 
NN In this frame, the wave function of the electron cloud looks like :

|Φ′
ec〉 = e−ime

∑
i v·x̂i |Φec〉

Electron wave function in the initial 
state e.g. the ground state.

NN

The probability of the excitation/ionization is given by



Disadvantage of the Migdal Approach

The nuclear scattering and the electron excitations/ionizations 
are treated separately.

Energy Momentum Conservation is not clear… 

Where does the electron get energy & momentum?

→ It is important to reformulate the Migdal effects in a more coherent way !

It is not clear whether the electron excitation energy can be larger 
than the recoil energy or not.



Reformulation of the Migdal Effect

Migdal’s approach

Initial state of the DM scattering :  (DM plane wave) x (Nucleus plane wave)

Final state of the DM scattering :    (DM plane wave) x (Nucleus plane wave)

Migdal Effect = Final state effects 

New approach

Initial state of the DM scattering :  (DM plane wave) x (Atomic plane wave)

Final state of the DM scattering :    (DM plane wave) x (Atomic plane wave)

The Migdal Effect is automatically taken into account !

The Migdal Effect is treated separately from the nuclear scattering

How do we construct the plane wave function of the atoms?



Construction of the atomic plane wave

ĤA � p̂2
N

2mN

+ Ĥec(x̂N) =
p̂2
N

2mN

+
Ne∑
i

p̂2
i

2me

+ V (x̂i − x̂N)

Hamiltonian of an isolated atomic system (neutral atom)

(
p̂2
N

2mN

+ Ĥec(xN)

)
ΨE(xN , {x}) = EA ΨE(xN , {x})

Energy eigenstate of the total atomic system (EA : non-relativistic energy)

The approximated energy eigenstate of the atom at rest.

Ψ
(rest)
EA

(xN , {x}) ≡ ΦEec({x− xN})

Ĥec(xN)Φec({x}|xN) = Eec(xN)Φec({x}|xN)

Eec(xN) = Eec , ΦEec({x}|xN) = ΦEec({x− xN})
Born-Oppenheimer approximation !

EA = Eec

Electron Cloud Energy Eigenstate for a “fixed” xN . 

Electron could system does not depend on where the Nucleus is.

[ V are Coulomb forces between the nucleus-electron and the electron-electron ]



Construction of the atomic plane wave

Ψ
(rest)
EA

(xN , {x}) ≡ ΦEec({x− xN})

(
p̂2
N

2mN

+ Ĥec(xN)

)
ΨE(xN , {x}) = EA ΨE(xN , {x})

Is the Born-Oppenheimer approximation OK ?

〈
p̂2
N

2mN

〉
∼ me

mN

× Eec

Kinetic energy of the nucleus is negligible!

ĤAΨ
(rest)
EA

(xN , {x}) � EecΨ
(rest)
EA

(xN , {x}) .

Total Energy Eigenstate in the Born-Oppenheimer approximation of  
the total Atom at rest

p̂
N
ΦEc

ptx ´ xNuq “ ´
ÿ

i

p̂iΦEc
ptx ´ xNuq(                                                 )



Construction of the atomic plane wave

NN NN

Ψ
(rest)
EA

(xN , {x}) ≡ ΦEec({x− xN})

The electrons are not necessarily bounded by the nucleus coulomb force !

All the electrons are bounded by the 
Coulomb force of the nucleus.

Not all the electrons are bounded by 
the Coulomb force of the nucleus 
= Ionized atom

The EC wave function can be obtained by e.g. Hartree-Fock approximation !



Atom wave function 
at rest

ΨEA
(xN , {x}) � eipN ·xN ei

∑Ne
i=1 qe·xiΨ

(rest)
EA

(xN , {x})
pN = mNv qe = mev

EA � Eec +
1

2
mAv

2
mA = mN +Neme

ΨEA is not the eigenstates of the momentums of the nucleus and the electrons 
separately !

ΨEA is the eigenstate of the energy and the total atomic momentum !

(
p̂N +

Ne∑
i

p̂i

)
ΨEA

(xN , {x}) = (mAv)×ΨEA
(xN , {x})

Construction of the atomic plane wave

ΨEA describes the plane wave of the atom ! (  ∂xN ψEA
(rest)

 = - Σ ∂xi ψEA
(rest)

  ) 

The energy eigenstate of the moving atom with a velocity v can be obtained 
by the Galilei transformation !



“Atomic” Recoil Cross Section

Ĥ = Ĥ0 + V̂int ,

Ĥ0 =
p̂2
N

2mN

+
p̂2
DM

2mDM

+ V̂int ,

V̂int =
−M

4mNmDM

δ3(xN − xDM)

Nuclear Scattering is reproduced by the point-like interaction potential in QM.

Contact interaction :

Invariant amplitude2 : 

Cross section : 

DM-Nuclear Scattering without scattering in a field theoretical treatment.

ψI(xN ,xDM) =
√
2mN eip

I
N ·xN ×√

2mDM eip
I
DM ·xDM

ψF (xN ,xDM) =
√
2mN eip

F
N ·xN ×√

2mDM eip
F
DM ·xDM

Wave Function : [Nuclear Plane Wave] x [DM Plane Wave] 



“Atomic” Recoil Cross Section

Ĥ = Ĥ0 + V̂int ,

Ĥ0 =
p̂2
N

2mN

+
p̂2
DM

2mDM

+ V̂int ,

V̂int =
−M

4mNmDM

δ3(xN − xDM)

Nuclear Scattering is reproduced by the point-like interaction potential.

TFI = M× i(2π)4δ(EF
N + EF

DM − EI
N − EI

DM)δ3(pF
N + pF

DM − pI
N − pI

DM)→
(with the asymptotic Nucleus plane waves)

Contact interaction :

Invariant amplitude2 : 

Cross section : 

Born Approximation

DM-Nuclear Scattering without scattering in a field theoretical treatment.



Atomic Scattering via the contact DM-nuclear interaction term :

Ĥtot = ĤA +
p̂2
DM

2mDM

+ V̂int

ˆ

ΨI(xN , {x},xDM) =
√
2mNΨEI

A
(xN , {x})×

√
2mDMeip

I
DM ·xDM

ΨF (xN , {x},xDM) =
√
2mNΨEF

A
(xN , {x})×

√
2mDMeip

F
DM ·xDM

V̂int =
−M

4mNmDM

δ3(xN − xDM)

Initial:

Final:

(Atomic plane wave)

We assume that initial sate atom is at rest : pI
A = 0.

EI = EI
ec +

pI
DM

2

2mDM

,

EF = EF
ec +

mA

2
vF

2 +
pF
DM

2

2mDM

,

Initial:

Final:

“Atomic” Recoil Cross Section

( The normalization is to conform with  < p’ | p > = (2E)1/2 (2π)3/2 δ3(p’-p) )



TFI = M× i(2π)δ(EF − EI)

∫
d3xNd

3xDM

∏
i

d3xi δ
3(xN − xDM)

×Φ∗
EF

ec
({x− xN})e−i

∑
i qe·xie−ipF

N ·xNΦEI
ec
({x− xN})e−i(pF

DM−pI
DM )·xDM

= M× i(2π)4δ(EF − EI)δ
3(mAvF + pF

DM − pI
DM)

×
∫ ∏

i

d3xi Φ
∗
EF

ec
({x})e−i

∑
i qe·xiΦEI

ec
({x}) .

(correct energy momentum  

conservation)

Migdal factor !

By taking the asymptotic states consist of the atomic plane waves, 
the Migdal factor appears automatically. 
The total energy momentum conservation is manifest !

“Atomic” Recoil Cross Section

Atomic Scattering via the contact DM-nuclear interaction term :

Ĥtot = ĤA +
p̂2
DM

2mDM

+ V̂int

ˆ
V̂int =

−M
4mNmDM

δ3(xN − xDM)



After phase space integration (center of mass frame): 

The process is not elastic for Eec
F  ≠  Eec

I  !

|pF |2 � |pI |2 − 2μN(E
F
ec − EI

ec)

Xe

DM DM

Xe *

v
(th)
DM =

√
2(EF

ec − EI
ec)

μN

Xe

DM DM

Xe
+

+ electron

Xe

DM DM

Xe

elastic excitation ionization 

“Atomic” Recoil Cross Section

In CM :

ZFI(qe) =

∫ ∏
i

d3xi Φ
∗
EF

ec
({x})e−i

∑
i qe·xiΦEI

ec
({x})

pI
DM = −pI

A = pI � μNv
I
DM

dσ

d cos θCM

�
∑
EF

ec

1

32π

|pF |
(pIA

0 + pIDM
0)2|pI | |FA(q

2
A)|2|M(q2A)|2|ZFI(qe)|2 .

(CM)



The dark matter event rate per unit detector mass

dR

dERdvDM

� 1

mA

ρDM

mDM

dσ

dER

vDM f̃DM(vDM) ,

�
∑
EF

ec

1

2

ρDM

mDM

1

μ2
N

|FA(q
2
A)|2σ̄N × |ZFI(qe)|2 × f̃(vDM)

vDM

∫
f̃DM(vDM) dvDM = 1

ER � q2A
2mA

� |pF |2 + |pI |2 − 2|pI ||pF | cos θCM

2mA

|pF |2 � |pI |2 − 2μN(E
F
ec − EI

ec)

pI
DM = −pI

A = pI � μNv
I
DM

Eec
F = Eec

I : nuclear recoil = atomic recoil (conventional dark matter event)

Eec
F ≠ Eec

I : nuclear recoil = atomic recoil + electric energy injection !

Migdal Effect converts some of the recoil energy into electronic energy !

Migdal factor

DM velocity distribution 



Single Electron Approximation

ΨEA
(xN , {x}) � eipN ·xN

∑
σ∈SNe

sgn(σ)√
Ne!

eiqe·x1φα1
oσ(1)

(x1 − xN)e
iqe·x2φα2

oσ(2)
(x2 − xN)

× · · · eiqe·xNeφαNe
oσ(Ne)

(xNe − xN) ,

For numerical estimation, we use the Dirac-Hartree-Fock approximation to obtain 
the electron wave functions . 
                    Electron wave function ~ Slater determinant of single electrons

Accordingly, the “atomic plane wave” is also given by a Slater determinant  

ec = {o1, o2, · · · oNe} oi = (Ei, κi,mi) κ = ∓(j + 1/2) for j = �± 1/2.

4∑
α=1

∫
d3xφo(x)

α∗φα
o′(x) =

⎧⎪⎨
⎪⎩
δnn′δκκ′δmm′ (bounded)

(2π)δ(E − E ′)δκκ′δmm′ (unbounded)

ZFI(qe) =
∑

σ∈SNe

sgn(σ)
Ne∏
i=1

4∑
αi=1

∫
d3xi φ

αi∗
oF
σ(i)

(xi)e
−iqe·xiφαi

oIi
(xi)

In this approximation, the Migdal factor is given by the transition late between  
the single electron orbitals 

αi = 1- 4 : Dirac Spinor index 



qe = me qA/mA  < 10-3 me (qA/100MeV)                (qA = μA vDM )

→  qe xe << qe x ( Bhor Radius )  < 1

For a DM-nucleus scattering,

At the leading order of qe , only one electron can be excited/ionized.

For a given set of the initial orbitals, only one orbital can be different  
in the final state.

ZFI(qe) = zqe(E
′
k, κ

′
k,m

′
k|Ek, κk,mk) = −i

4∑
αk=1

∫
d3xk φ

αk∗
o′k

(xk)(qe · xk)φ
αk
ok
(xk)

∑
F

|ZFI |2 = |ZII |2 +
∑

n,�,n′,�′
pdqe(n� → n′�′) +

∑
n,�

∫
dEe

2π

d

dEe

pcqe(n� → Ee)

ionization ∝ q2
eexcitation ∝ q2

e

excitation/ionization rates can be obtained via the wave functions  

of the single electron orbitals

elastic

Single Electron Approximation

~1

ec “ to1, ¨ ¨ ¨ , ok, ¨ ¨ ¨ u Ñ ec1 “ to1, ¨ ¨ ¨ , o1
k, ¨ ¨ ¨ u



Numerical Transition Rate (by using Flexible Atomic Code)

Xe (qe = me × 10−3)

(n, �) P→4f P→5d P→6s P→6p En� [eV] 1
2π

∫
dEe

dpc

dEe

1s – – – 7.3× 10−10 3.5× 104 4.6× 10−6

2s – – – 1.8× 10−8 5.4× 103 2.9× 10−5

2p – 3.0× 10−8 6.5× 10−9 – 4.9× 103 1.3× 10−4

3s – – – 2.7× 10−7 1.1× 103 8.7× 10−5

3p – 3.4× 10−7 4.0× 10−7 – 9.3× 102 5.2× 10−4

3d 2.3× 10−9 – – 4.3× 10−7 6.6× 102 3.5× 10−3

4s – – – 3.1× 10−6 2.0× 102 3.4× 10−4

4p – 4.1× 10−8 3.0× 10−5 – 1.4× 102 1.4× 10−3

4d 7.0× 10−7 – – 1.5× 10−4 6.1× 10 3.4× 10−2

5s – – – 1.2× 10−4 2.1× 10 4.1× 10−4

5p – 3.6× 10−2 2.1× 10−2 – 9.8 1.0× 10−1

(n, �) 4f 5d 6s 6p

En�[eV] 0.85 1.6 3.3 2.2initial state

ionization spectrum ∝ q2
e

The ionization rate from n = 3 state can be of O(10-(3-2)). 
→ leading to O(1)keV electronic energy deposition !

The rates for the excitation to the higher shells are smaller. 

(transition is possible only for | Δℓ | = 1)

Excitation Ionization



Numerical Transition Rate (by using Flexible Atomic Code)

Xe (qe = me × 10−3)

(n, �) P→4f P→5d P→6s P→6p En� [eV] 1
2π

∫
dEe

dpc

dEe

1s – – – 7.3× 10−10 3.5× 104 4.6× 10−6

2s – – – 1.8× 10−8 5.4× 103 2.9× 10−5

2p – 3.0× 10−8 6.5× 10−9 – 4.9× 103 1.3× 10−4

3s – – – 2.7× 10−7 1.1× 103 8.7× 10−5

3p – 3.4× 10−7 4.0× 10−7 – 9.3× 102 5.2× 10−4

3d 2.3× 10−9 – – 4.3× 10−7 6.6× 102 3.5× 10−3

4s – – – 3.1× 10−6 2.0× 102 3.4× 10−4

4p – 4.1× 10−8 3.0× 10−5 – 1.4× 102 1.4× 10−3

4d 7.0× 10−7 – – 1.5× 10−4 6.1× 10 3.4× 10−2

5s – – – 1.2× 10−4 2.1× 10 4.1× 10−4

5p – 3.6× 10−2 2.1× 10−2 – 9.8 1.0× 10−1

(n, �) 4f 5d 6s 6p

En�[eV] 0.85 1.6 3.3 2.2initial state

Ee spectrum is purely determined the structure of the electron cloud ! 
Ee spectrum is independent of the dark matter velocity vDM and mDM . 

Rate is proportional to qe
2

(transition is possible only for | Δℓ | = 1)

Excitation Ionization
ionization spectrum ∝ q2

e



dR

dER dEe dvDM

� dR0

dER dvDM

× 1

2π

∑
n,�

d

dEe

pcqe(n� → Ee) ,

dR0

dER dvDM

� 1

2

ρDM

mDM

1

μ2
N

|FA(q
2
A)|2σ̄N × f̃(vDM)

vDM

,

(Ee : free electron kinetic energy)

When the core-hole (the vacancy in the inner shell) is created by ionization,   
the states are de-excited immediately in O(10)fs.

EEM = Ee + Edex

The electron energy and the de-excitation 
energy are measured simultaneously.

New J.Phys. 15 (2013) 083040

dR

dER dEEM dvDM

� dR0

dER dvDM

× 1

2π

∑
n,�

d

dEe

pcqe(n� → (EEM − En�))Edex

Ionization = free electron + ion with a core hole

Differential Ionization Event Rate for an Isolated Atom

» ΔE

Differential Event Rate with respect to the measurable electric energy

(EF
ec − EI

ec)=



Kinematical Constraint 

ER, max (ER, ΔE) 

ER � q2A
2mA

� |pF |2 + |pI |2 − 2|pI ||pF | cos θCM

2mA

pI
DM = −pI

A = pI � μNv
I
DM |pF |2 � |pI |2 − 2μN(E

F
ec − EI

ec)ΔE

ΔE = Eec
F - Eec I > 0 : |pF| < |pI| in CM

dotted outer circle : |pI|

dotted inner circle : |pF|

For ΔE > 0 : |pN| > 0

 |pN| MIN ~  ΔE

pI

pF qA

The maximum ΔE

 ΔE = 0

 ΔE = 0

ΔEmax “
mA

μN

ER ´
a
2mAERvDM



mDM  = 1TeV,  σN = 10-45cm2 

dR/dER [ 1/kg/day/keV]

dR/dERdΔE [ 1/kg/day/keV/keV ]

Nuclear Recoil

ΔE > Eion

Ionization rate from an outer orbit is higher !

Differential Event Rate for an Isolated Atom



mDM  = 2GeV,  σN = 10-40cm2 

dR/dER [ 1/kg/day/keV]

dR/dERdΔE [ 1/kg/day/keV/keV ] ΔE > Eion

Typical ΔE is independent of the DM mass 

ER, MAX is suppressed for a smaller DM

Nuclear Recoil

Differential Event Rate for an Isolated Atom



The wave function of the valence (the outermost) electrons are affected by the 
electrons of the neighbor atoms.

In the detector, the atoms are not isolated .

e.g.) Typical separation in the liquid Xe ground state ~ 2 x 10-8
 cm

3meV

Xe

2x10-8 cm ~ 4 x Bohr radius

Xe
R

R

van der Waals force  

= deformation of the electron cloud

V(R)

Ionization energies are slightly reduced by about O(1)eV

→ the transition rates from the valence electrons for the isolated atom 
are not reliable

→ the transition rate from the valence 
electrons for the isolated atom is not reliable

Implication on Dark Matter Direct Detection Experiments

potential of the valence quark

~ 2x10-8 cm 



Electron Orbits

1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p

Na 2 2 6 1 0 0 0 0 0 0 0 0

Ar 2 2 6 2 6 0 0 0 0 0 0 0

Ge 2 2 6 2 6 10 2 2 0 0 0 0

I 2 2 6 2 6 10 2 6 10 0 2 5

Xe 2 2 6 2 6 10 2 6 10 0 2 6

The number of electrons in a shell for the ground state configurations.

Implication on Dark Matter Direct Detection Experiments

We cannot use our results based on the isolated atoms for the valence 
electrons.

11111

22222 66666

2222222222

5555522222

For the inner electrons, the effects from the environments are not significant. 

6666622222



WIMP Limit Plotter

Migdal Effect single-phase Liquid Xe detectors 

A few events with Edet = O(1)keV are  expected for 105 kg days !

Edet  = (0.1-0.2) ER  + EEM EEM = Ee + Edex ~ Ee - En 

The atom recoil energy is lower than threshold  ER < MDM
2 /MA  x vDM

2 
  < O(1)keV

X
M

A
S

S
 th

re
sh

o
ld

Neutrino Background

Implication on Dark Matter Direct Detection Experiments

[ Single phase Experiment  = only scintillation energy :  
Only 10-20 % of ER is measured ]



WIMP Limit Plotter

A few hundred events with Edet = O(1)keV are  expected for 105 kg days !

Edet  = (0.1-0.2) ER  + EEM EEM = Ee + Edex ~ Ee - En 

The atom recoil energy is much lower than threshold  ER < MDM
2 /MA  x vDM

2 
  = O(1)eV

X
M

A
S

S
 th

re
sh

o
ld

Neutrino Background

Implication on Dark Matter Direct Detection Experiments

Migdal Effect single-phase Liquid Xe detectors 

[ Single phase Experiment  = only scintillation energy :  
Only 10-20 % of ER is measured ]



For heavier dark matter, the atom recoil energy is much lower than threshold   

                                                ER < MA
2 x vDM

2 
  = O(10-100)keV

The  Migdal effect is submerged below the conventional nuclear recoil spectrum.

Edet  = (0.1-0.2) ER  + EEM EEM = Ee + Edex ~ Ee - En 

Implication on Dark Matter Direct Detection Experiments

Migdal Effect single-phase Liquid Xe detectors 



SUMMARY

In the conventional analysis of dark matter direct detection experiments 
through the nuclear scattering, the whole atom is assumed to be recoiled.

In reality, the electrons take some time to catch up with the recoiled nucleus 
leading to electronic energy injection in addition to the atomic recoil → Migdal Effect 

We reformulated the Migdal effect, where we can manifestly see the energy-
momentum conservation and the probability conservation. 

The emitted electronic energy can be in the keV range even for a rather light dark 
matter (MDM < 10GeV) where the atomic recoil energy is lower than energy 
threshold, i.e. O(1)keV.

Migdal Effects has advantages to look for small “q” with a large cross section 

dark matter →  Lower Mass dark matter such as SIDM/Asymmeteric Dark matter

Experimental confirmation is important !!!


