スピン依存する暗黒物質検出のための液化CF4スペクトロメーターの開発

神戸大理 前田剛志 水越彗太 身内賢太朗 講演番号:16aSK-4 2020年9月16日日本物理学会 2020 秋季大会

暗黒物質

- 暗黒物質
 - 観測結果により存在は強く示唆されている
 - 未だ検出には至らず
- WIMPs (Weakly Interacting Massive Particles)
 - 暗黒物質の最有力候補
 - 稀に原子核と相互作用し、原子核反跳を起こす
 - ・ スピン依存する(Spin dependent, SD) 散乱
 - スピン依存しない(Spin independent, SI)散乱
- SD散乱
 - 散乱断面積がスピンに依存する

$$\sigma \propto \lambda^2 J (J+1)$$

λ:ランデ因子J:標的原子核のスピンの大きさσ:SD散乱の際のWIMPと原子核との散乱断面積

標的原子核ごとのλ²J(J + 1)

元素		J	$\lambda^2 J(J+1)$
	F	1/2	0.647
	Na	3/2	0.041
	Ι	5/2	0.007
	Xe	1/2	0.124
	Xe	3/2	0.055

J. Ellis et al. PLB263(1991) 259 - 26

今回の実験

- PICO実験
 - フッ素化合物を用いた泡箱検出器
 - 検出器内部の圧力や温度を変化させて energy thresholdを設定することが出来る
 - 対象粒子のenergy thresholdを定められる
 - SD散乱観測で最も強い制限をかけている

CF4ガスを用いてenergy spectrum を得られる検出器の確立を目指す

- ・今回の実験
 - CF4ガスに60 keVガンマ線を照射
 - ・励起したCF4からの発光を検出
 - 冷却(-10℃)により光量が上昇
 - 液化の前段階の実験

C. Amole et al.PRD100(jul, 2019) 02200

検出器の設計

- ・低温作動用PMTを使用
 - 浜松ホトニクス製R8520-406
 光電面: 20.5mm×20.5mm
- ・パルスチューブ冷凍機で約-10℃まで
 冷却
- Am-241線源
 - 5.4 MeVのアルファ線
 - 60 keVのガンマ線

検出器周り/外真空容器

外真空容器は1気圧のCF4で満たす ∵検出器からのリークがあったため

検出器

データ取得

• 測定時間

PMTのゲイン測定

光量(何 photoelectron(p.e.)分なのか)を 知るために1 p.e.当たりの電荷量を求め てPMTのゲインを調べる

2020/09/16

PMTのゲイン時間分布

vigiting 25 Light yield(p.e.) 先量分布(PMT1+PMT2)

- ・発光の強さ(光量)はガンマ線由来である
- 両PMTの間に光量の大きな偏りは見られない
- 光電面被覆率~20%

- •光量增加
 - 常温時:240 p.e.
 - 冷却時:330 p.e.
 - ・約40%の増加
 - ・常温時は時間経過と共に光量が減少
- 分解能の向上
 - ・ 冷却時の分解能は約45%まで向上
 - 常温時は光量減少に伴って分解能が 徐々に悪くなる

- ・常温で光量が下がる理由
 - out gass (特に水蒸気)の影響
- 冷却により光量が上がる理由
 - ・励起状態の緩和の際、発光の割合が増加
- PMTの量子効率
 - ・光量40%上昇は量子効率の上昇によるものではない

2020/09/16

まとめ

- 光量增加
 - -10℃への冷却によりCF4からの発光の強さが40%増加することが分かった
- 分解能向上
 - 冷却により光量、すなわちエネルギーに関して分解能が向上することが分かった
 - 冷却により、精度良いエネルギースペクトルを得られる
- 応用
 - 大規模化してより広範囲のエネルギーの測定を可能にする
 課題:ガス注入が検出器内部で済むように、より厳しくガスリークを抑えなくてはならない
- •液化
 - ・次の発表でCF4を液化した際の実験結果について発表される

Back up

PMTに関する情報

HAMAMATSU

FEATURES

●For low temperature operation down to -110 °C ●Low radioactivity 26 mm (1 Inch) square ●High UV sensitivity by synthetic silica window

APPLICATIONS

High energy physics
Astrophysics
Academic research

R8520-406

PHOTOMULTIPLIER TUBE

SPECIFICATIONS

GENERAL

Parameter		Description / Value	Unit
Spectral response		160 to 650	nm
Wavelength of maximum response		420	nm
Window material		Synthetic silica	_
Photocothodo	Material	Bialkali	_
Filotocathode	Minimum effective area	20.5 × 20.5	mm
Dypode	Structure	Metal channel	_
Dynode	Number of stages	10	_
Operating ambient temperature		-110 to +50	°C
Storage temperature		-110 to +50	°C
Weight		22.9	g

MAXIMUM RATINGS (Absolute maximum values)

Parameter		Value	Unit
Supply voltage	Between anode and cathode	900	V
Supply voltage	Between anode and last dynode	150	V
Average anode current		0.1	mA

CHARACTERISTICS (at 25 °C)

Parameter		Min.	Тур.	Max.	Unit
	Luminous (2856 K)	80	100	_	μA/lm
Cathodo consitivity	Blue sensitivity index (CS 5-58)	9.0	11.0	_	_
Cathode sensitivity	Radiant at 420 nm	_	100	_	mA/W
	Quantum efficiency at 175 nm	_	30	_	%
Anodo consitivity	Luminous (2856 K)	40	100	—	A/W
Anode sensitivity	Gain	_	1 × 10 ⁶	_	_
Anode dark current (After 30 minute storage in darkness)		_	2	20	nA
	Anode pulse rise time	_	1.8	—	ns
Time response	Electron transit time	_	12.4	_	ns
	Transit time annead (F14/LIAA)		0.0		

[ACCESSORIES] (Unit: mm)

会2020年

(1) (2)(3)(4) 陽極 陰極 陰極感度 陽極感度 暗電流 青感度 Serial Number (Sk) (Sp) (Idb)指数 (Skb) A/1m $\mu A/1m$ nA LV1732 108.0 489.0 1.00 11.80 LV1742 12.30 129.0 841.0 3.50 LV1743 134.8 1010.0 2.60 12.40

TACCA0356EA

17

1. 概 要

パルスチューブ冷凍機は、弊社がこれまでに培ってきた極低温小型冷凍機技術を基にして、 新たに開発した超低振動パルスチューブ冷凍機です。新開発のパルスチューブ冷凍機は冷凍 発生部に可動部品を全く持っていないため、これまでの機械式冷凍機で問題となっていた運転 振動をきわめて小さくする事に成功しました。

4. ユーティリティー

- 4. 1. 所要電源 AC100V (50/60Hz 単相)
- 4. 2. 消費電力 約1.1/1.3kW (50/60Hz)
- 4. 3. ブレーカー容量 20A以上
 - ※ コンプレッサーの設置場所から、電源コード(5m)が届く範囲にAC100V電源(アース付 コンセント)を御準備下さい。
 - ※ 出来るだけ単独電源で御使用下さい。

・冷凍機に関する情報

用いた冷凍機はアルバック・クライオ製のパルス チューブ冷凍機(PDC08+SA112型)である

PMTのゲイン時間分布(PMT2)

結果& 圧力分布

