XMASS

ダークマター懇談会2020(online) ma 2020年9月8日 日本大学理工学部 小川 洋 他XMASS collaboration

Dark Matter Search

S

SI

XMASS実験

- 1相式 (scintillation only) 液体キセノン検出器
- 神岡宇宙地下素粒子実験施設 Lab-C (~2700m.w.e.)に設置
- 世界初のton class暗黒物質探索実験
- 大光量~15pe/keV ➡低閾値 (~1keV)
- 液体キセノンを使った"極低バックグラウンド多目的検出器"
 - ➡暗黒物質探索だけでなく、低エネルギーの 色々な物理事象の研究が可能。
- 2019年2月に観測完了

XMASS collaboration

ICRR, University of Tokyo	K.Abe, K.Hiraide, N.Kato, S.Moriyama, M.Nakahata, K.Sato, H.Sekiya, T.Suzuki, Y.Suzuki, S.Tasaka, A.Takeda		
Kavli IPMU, University of Tokyo	K.Martens, A.Mason		
Kobe University	Y.Takeuchi, K.Miuchi		
Tokai University	K.Nishijima		
Yokohama National University	S.Nakamura	10 1 10 10 20 0 00 0 0 0 0 0 0	
Miyagi University of Education	Y.Fukuda		
Nihon University	H.Ogawa		
ISEE, Nagoya University	M.Yamashita, Y.Itow		
RCNS, Tohoku University	K.lchimura, Y.Kishimoto		
KRISS	M.K.Lee, K.B.Lee		
CUP, IBS	N.Y.Kim, Y.D.Kim, Y.H.Kir	n	
CAPPR, IBS	B.S.Yang		
Tsinghua University	B.D.Xu		
WRISE, Waseda University	K.Kobayashi		

XMASS-I 検出器

- 1 相式 (scintillation only) 液体キセノン検出器
- 神岡宇宙地下素粒子実験施設 Lab-C (~2700m.w.e.)
- muon veto用の10x10m 水タンク+70本20インチPMT
- 630 六角 & 12 円筒 光電子増倍管 (PMT): 28-39% Q.E.
- photocathode coverage: ~ 62%
- 検出器内部感度領域の液体キセノン量:832kg(直径~80cm)

XMASS-I これまでの成果

Possibility of SN neutrino detection Astropart. Phys. 89(2017)51

scaled energy (keV)

mass (eV

XMASS-Iによるsolar axion探索

- 太陽ニュートリノをXMASS-I実験等の現行暗黒物質探 索検出器で観測→1/100以上のバックグラウンド削減が 必要。
- 標準理論の拡張で、エキゾチックなニュートリノ相互 作用がある場合、低エネルギーでの事象の増加が期待 される。→低閾値を持つ暗黒物質探索検出器が有利。
- •太陽ニュートリノとキセノン電子による、以下を介した相互作用をXMASS-I検出器で探索:
 - ニュートリノ微弱荷電(millicharge)
 - ニュートリノ磁気能率(magnetic moment)
 - Dark photon (U(1)_{B-L})を介した相互作用

ニュートリノの微弱電荷 (millicharge)

- 素粒子の標準理論で、ニュートリノの電荷はゼロと仮定している。
- 電荷の量子化が証明されていないので、ニュートリノが微電荷をもつ可能性がある。
- これまでの直接探索:
 - 原子炉からの反電子ニュートリノを用いた、ニュートリノー電子電磁相互作用の探索(GEMMA's data, A.Studenikin, Europhys.Lett. 107 (2014)39901) δ e < 1.5 x 10⁻¹²e
 - ・真空中の複屈折からの探索 (PVLAS, F.Della Valle et al., Eur. Phys. J. C 76(2016)24) $\delta_{\rm e,\mu,\tau} < 3 \ {\rm x} \ 10^{-8} \ {\rm e} \ {\rm @m}_{\nu} < 10 {\rm meV}$
- XMASSでは..

• 太陽ニュートリノによる電磁相互作用の探索

$$\left(\frac{d\sigma}{dT_e}\right)_{EM} \cong \frac{2\pi\alpha}{m_e T_e^2} \delta^2$$

• ニュートリノ振動により含まれる v v v 成分に
より、各フレーバーごとに探索を実施する。

標準模型における微 電荷をもつニュートリノ と電子の反応

ニュートリノ磁気能率(magnetic moment)

ニュートリノの磁気能率:標準理論の少しの拡張によって予言:

$$\mu_{\nu} = \frac{3m_e G_F}{4\pi^2 \sqrt{2}} m_{\nu} \mu_B \approx 3.2 \times 10^{-19} \left(\frac{m_{\nu}}{1eV}\right) \mu_B$$

- 標準理論をさらに拡張すると、10^{-(10~12)} µ_Bの磁気能率を持つ可能性(PRL58.1807(1987))
 - ニュートリノがマヨラナである。
 - ※Diracニュートリノでは<10⁻¹⁴μ_Bの制限
- 磁気能率があったら、ニュートリノの相互作用に"電磁相互作用"の成分が加わる。

先行研究:

Borexino μ_{vs}(Ev<1MeV)<2.8x10⁻¹¹μ_B (90% C.L.) [太陽ニュートリノ] 10.1103/PhysRevD.96.091103

GEMMA μ_v < 2.9×10⁻¹¹μ_B (90% C.L.) [原子炉ニュートリノ] Adv.High Energy Phys. 2012 (2012) 350150

"Dark photon"を介したニュート リノ-電子相互作用

S.Bilmis et al, Phys.Rev.D 92, 033009 (2015)

- Hidden sectorに含まれるdark photonは、ゲージボ ゾンしてニュートリノ-電子相互作用に影響を与え ることができるモデルがある。
- => $U(1)_{B-L (baryon number lepton number)}$

$$\left[\frac{d\sigma}{dT}(\nu e^- \to \nu e^-)\right]_{\rm DP} = \frac{g_{B-L}^4 m_e}{4\pi E_{\nu}^2 (M_{A'}^2 + 2m_e T)^2} \left(2E_{\nu}^2 + T^2 - 2TE_{\nu} - m_e T\right)$$

- MA': Dark photon 質量
- gB-L : coupling constant
- Muon g-2 anomaly を説明する候補の一つでもある。

Figure 3. Cross-section vs recoil for various $M_{A'}$ by normalizing neutrino flux to 1.

キーで急激に増加するが、大きい質量では、 $\frac{1}{7}$ エネルギー依存は少ない。 2. If Poto $\propto (\alpha - \frac{1}{7})^{4}/(\frac{1}{7})^{2} = 2m T^{2}$

Rate $\propto (g_{B-L})^4/(M_A'^2+2m_eT)^2$

Interference effect with weak interaction is assumed for dark photon analysis. Assuming atomic effects : Free electron approximation for neutrino magnetic moment and dark photon analyses. Relastivistic random phase approximation for neutrino millicharge analysis.

Event selection :

- データ:
 - 2013Nov-2016Mar livetime = 711 days
 - 解析エネルギー領域:
 - 2-15 keV for millicharge analysis
 - 2-200 keV for magnetic moment & dark photon analysis
 - Event selection :
 - Noise, Cherenkov 事象カット
 - 有効体積カット
 - Timing base reconstruction R(T)<38cm
 - PE base reconstruction R(PE)<20cm
 - 有効体積:97kg
- 予想される信号:
 - キセノンで期待されるエネルギー分布を XMASS MCで作り、データと同じevent selectionを実施
 - 系統誤差を評価: scintillation efficiency (~15% for the millicharge signal), event selectionの不定性など。

Background evaluation in XMASS-I

Gamma-ray of detector material origin.

BG in detector surface :

²¹⁰Ph

	8 				
RG components	Location of RI	RI	Activity [mBq/detector]		Activity [mBq/detector]
	_		initial value of the fi	t	the best fit value
in XMASS-I	LXe	222 Rn	- 1		8.53±0.16
		⁸⁵ Kr	_)		0.25 ± 0.04
		³⁹ Ar	57-1		0.65 ± 0.04
		¹⁴ C	<u> </u>		0.19 ± 0.01
	copper plate and ring	²¹⁰ Pb			$(6.0\pm1.0)\times10^2$
	copper surface	²¹⁰ Pb	Alpha counter & alpha e	vent	0.7±0.1
 ²²²Rn, ⁸⁵Kr : coincidence event analysis. ¹⁴C ³⁹Ar : D < 20 cm an astrum 	PMT quartz surface	²¹⁰ Pb			6.4 ± 0.1
	PMT	²³⁸ U	$(1.5 \pm 0.2) \times 10^3$		$(2.0\pm0.2)\times10^3$
fitting above 20keV	(except aluminum seal	²³² Th	$(1.2\pm0.2)\times10^3$		$(1.1 \pm 0.3) \times 10^3$
IIIIIIg above Jukev	and quartz surface)	⁶⁰ Co	$(1.9 \pm 0.1) \times 10^3$	т <mark>х</mark>	$(1.6\pm0.2)\times10^3$
 Z-ZOUKEV 解例 C は,IIIIIIg constraint/+ 除い<i>t</i>- 		⁴⁰ K	$(5.8 \pm 1.4) \times 10^3$	Deo	$(9.6 \pm 1.7) \times 10^3$
✓ Other Ris ·		²¹⁰ Pb	$(1.3 \pm 0.6) \times 10^5$	e	$(2.2\pm0.7)\times10^5$
\checkmark 2 V R R of 136Xp	PMT aluminum seal	²³⁸ U	$(1.5 \pm 0.4) \times 10^3$	Im	$(9.0\pm4.1)\times10^2$
✓ 1251 $125Xe \cdot thermal$		²³⁵ U	$(6.8 \pm 1.8) \times 10^{1}$	eer fit	$(4.1 \pm 1.8) \times 10^{1}$
neutron origin $\pm/-27$ %		²³² Th	$(9.6 \pm 1.8) \times 10^{1}$	nır	$(5.5\pm2.2)\times10^{1}$
error are applied in		²¹⁰ Pb	$(2.9 \pm 1.2) \times 10^3$	00 ()	$(3.4\pm1.2)\times10^3$
neutron flux	Detector vessel,	²³⁸ U	$(1.8 \pm 0.7) \times 10^3$	×	$(9.0\pm7.6)\times10^2$
\checkmark ¹³³ Xe ^{131m} Xe · fast neutron	holder and filler	²³² Th	$(6.4 \pm 0.7) \times 10^3$		$(6.4 \pm 3.2) \times 10^3$
origin		⁶⁰ Co	$(2.3\pm0.1)\times10^2$		$(3.0\pm1.9)\times10^2$
		²¹⁰ Pb		+	$(3.8\pm0.5)\times10^{45}$

有効体積内のバックグラウンドの評価

- Background MCは、 XMASS MCによって、それ ぞれの部材・RIごとに発生 させている。
- データと同じ統計量で、同じevent reductionを行う。
- 液体キセノンのoptical parameterのdataset期間に おける変化を追う。
 - 定期的なCo57・Co60 calibrationを実施している。
 - これによりキセノンの経時変 化による系統誤差をキャンセ ルしている。

- <30keV:主に、検出器表面起源の事象
 - PMT死角部分で起こった事象の光量分布が有効体積 内事象と似てしまう。
- >30keV:液体キセノン中の事象
 - Rn222, Kr85, Ar39, C14
 - 中性子起源のキセノン同位体
 - 一様に分布するため、有効体積カットで除くことができない。

- 最も大きいのは、
 <10keVにある検出器
 表面構造の不定性。
- Dead PMTにより発生 する有効体積内とされ た事象がXMASS MCで 再現されない分を独立 に評価し、その補正と、 系統誤差を見積もった。

データ、予想される信号及びバックグラウンドMCのエネルギー分布を χ^2 フィットすることで、信号を探索した。

微弱電荷(Millicharge)の結果 (2-15keV)

- 有意な微電荷信号は見られず。
- Upper limit 90% C.L. : 5.4x10⁻¹²e

各フレーバーごとの上限値を求め、
 正ニュートリノに関しては、最も
 強い制限を与えた。

Data BG+signal (best fit) BG+signal (1sigma err) Signal (90% upper limit)

- 共に有意な信号は観測されず。
- ニュートリノ磁気能率:
 - Best fit : $\mu_v = 1.3 \times 10^{-10} \mu_B (\chi^2/\text{d.o.f} = 85.9/98)$
 - Null signal : $\chi^2/d.o.f = 88.2/98$
 - 90% CL upper limit : $\mu_{v} = 1.8 \times 10^{-10} \, \mu_{B}$
- dark photon :
- $M_{A'} = 1 \times 10^{-3} MeV/c^2$
 - Best fit : $g_{B-L}=1.1 \times 10^{-6} (\chi^2/d.o.f=85.3/98)$
 - 90% CL upper limit : $g_{B-L}=1.3 \times 10^{-6}$
- $M_{A'} = 10 MeV/c^2$
 - Best fit : $g_{B-L} = NuII (\chi^2/d.o.f = 88.2/98)$
 - 90% CL upper limit : $g_{B-L}=8.8 \times 10^{-5}$

Dark photon (U(1)ゲージボゾン)の排除領域:

- 他実験、観測による排除領域:
 S.Bilmis et al, Phys.Rev.D 92, 033009 (2015)
- XMASSの結果は、他ニュート リノ実験におけるニュートリノ -電子散乱からの見積もり(点 線)と同程度
- (g-2) anomaly をdark photon で説明する領域をほぼ排除した。

"search for exotic neutrino-electron interactions using solar neutrinos in XMASS-I" K. Abe et al. (XMASS collaboration), Published to PLB 809 (2020) 135741

Comparison with the result of XENON1T (magnetic moment analysis)

Conclusion :

- XMASS:~1トンの液体キセノンによる極低バックグラウンド多目的検出器。2019年2月に観測完了。
- ニュートリノの微弱電荷、磁気能率及びdark photonを介した相互作用の探索を、 XMASS検出器で実施した。=> published newly: PLB 809 (2020) 135741
- 2-15keV, 2-200keVのエネルギー領域において、データ、予想される信号及びバックグ ラウンドMCのエネルギー分布を χ 2フィットすることで、信号を探索した。
- 探索の結果、有意な信号は観測されなかったことから、上限を示した。
 - ニュートリノ微弱電荷: δ_v < 5.4x10⁻¹²e
 - 正ニュートリノでの微弱電荷探索としては、最高感度を達成
 - ニュートリノ磁気能率: µ_v <1.8×10⁻¹⁰ µ_B
 - dark photon :
 - $g_{B-L} < 1.3 \times 10^{-6} (M_{A'} = 1 \times 10^{-3} MeV/c^2), g_{B-L} < 8.8 \times 10^{-5} (M_{A'} = 10 MeV/c^2),$
 - (g-2) anomaly をdark photon で説明する領域をほぼ排除した。
- XENON1Tとの比較: low energyでのrateとsignal efficiency の違いで説明できる。