XENON NT EXPERIMENT

Masatoshi Kobayashi

Columbia University JSPS Postdoctoral research fellow

TABLE OF CONTENT

- Introduction: XENON experiment
- XENONnT experiment: What's new from XENON1T?
 - ► XENONnT TPC
 - External systems (Purification, Rn distillation, nVeto, Xe Storage)
- Expected performance
 - WIMPs sensitivity
 - ► BG
- Current status of construction

INTRODUCTION

INTRODUCTION: THE XENON PROJECT

~ 170 scientists • 26 institutions • 11 countries

INTRODUCTION: THE XENON PROJECT

INTRODUCTION: THE XENON PROJECT (AND DARWIN)

XENON10 XENON100 XENON1T

.

2005-2007	2008-2016	2012-2018
15 kg	161 kg	3200 kg
~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cm ²	~10 ⁻⁴⁷ cm ²

XENONnT

2019-2023

8200 kg

~10⁻⁴⁸ cm²

DARWIN

2020 +

50 tonnes

~10-49 cm²

INTRODUCTION: THE XENON PROJECT

- Located at Laboratori Nazionali del Gran Sasso (LNGS), Italy
- ► XENON1T water tank + building
 - ► Top: Cryogenics/Purification
 - Middle: DAQ/Slow Control
 - Bottom: Storage/Distillation

Being upgraded for XENONnT

XENON NT EXPERIMENT: WHAT'S NEW FROM XENON1T?

XENON NT EXPERIMENT: XENONNT TPC

► XENONnT TPC

- ► Diameter=1.3m, Height=1.5m
- ► LXe mass:
 - ► Full: 8.2 ton
 - Active: 5.9ton
 - ► Fiducial: 4 ton
 - ► 3 times larger than XENON1T
- ► Top/bottom PMTs : 253/241

.

XENON NT EXPERIMENT: XENONNT TPC

► XENONnT TPC

- ► Diameter=1.3m, Height=1.5m
- ► LXe mass:
 - ► Full: 8.2 ton
 - ► Active: 5.9ton
 - ► Fiducial: 4 ton
 - ► 3 times larger than XENON1T
- ► Top/bottom PMTs : 253/241

.

XENON NT EXPERIMENT: XENONNT TPC

Low energy ER Background: 1/6 from XENON1T

Reduction of Rn222 : 1uBq/kg

Expected event rate

 ~ -0.035 event/day/keV/ton

 \blacktriangleright ~0.2 in XENON1T

Purification

Neutron veto

Rn distillation

Xenon Storage

Purification

Neutron veto

Rn distillation

Xenon Storage

Two-phase Xe Time Projection Chamber as WIMP detector Signal generation in LXe: **S1 S2** ► S1: Scintillation photons GXe ► S2: Ionization electrons Impurities in Xe (ex: H2O, O2) LXe Edrift ► H2O: Reduce attenuation length ► O2: Absorb electron and reduce S2 particle

Purification

Getter

- Xenon1T purification system
 - Evaporate LXe and purify with Zr-Fe-V (+HRU) getter
 - Upgrade: Magnetic GXe pump
 - ► Low Rn emanation
 - Rn level reduced ~45% with test in 1T
 - ► Speed: ~100 SLPM

Purification

Getter

- Xenon1T purification system
 - Evaporate LXe and purify with Zr-Fe-V (+HRU) getter
 - Upgrade: Magnetic GXe pump
 - ► Low Rn emanation
 - Rn level reduced ~45% with test in 1T
 - ► Speed: ~100 SLPM

- Xenon1T purification system
 - Evaporate LXe and purify with Zr-Fe-V (+HRU) getter
 - Upgrade: Magnetic GXe pump
 - > Speed: ~ 100 SLPM
 - ► Low Rn emanation
 - \blacktriangleright Rn level reduced ~45% with test in 1T

Purification

Getter

- Xenon1T purification system
 - ► Speed: ~100 SLPM
 - ► Not enough for XENONnT...
- New system for XENONnT
 - ► LXe purification circuit
 - ► ~3 LPM= 1500 SLPM

Purification

- Direct liquid circulation
 - Barber-Nicols cryogenic pump
 - Besed on LAr technology (ICARUS experiment)
- Oxigen removal
 - ► Remove O2 by chemical reaction of Pure-Cu
- Purity measurement by purity monitor

Purification

Direct liquid circulation

Barber-Nicols cryogenic pump

Remove O2 by chemical reaction of Pure-Cu

Purity measurement by purity monitor

Purification

Neutron veto

Rn distillation

- "Inverse distillation" of Kr/Ar distillation
- Rn atom accumulates into LXe more than GXe
 - ► Kr/Ar distillation: **dirty** off-gas
 - ► Rn distillation: pure off-gas
- Rn atoms are kept in the column and decays
- Already tested in XENON100, XENON1T

Rn distillation

- Take Xe partially from LXePUR system, and back Rn-free Xe
- ► One of Rn source in Xenon1T:
 - Cryogenic/purification system
- Active circulation also with external systems
 - Suck Rn-rich Xe from external pipes, then send Rn-free Xe back to TPC
- ► Expected speed: ~200 SLPM

Purification

Neutron veto

Rn distillation

Xenon Storage

- Neutron Veto system
 - ► Gd-Water Cherenkov detector
- Neutrons from cryostat will be captured by Gd and produce 8MeV gamma
- Entire Cryostat will be surrounded by the ePTFE structure
- Collect photons as much as possible

Neutron veto

- ► Tagging efficiency: ~80-90% based on simulation
- > At 0.5% Gd₂(SO₄)₃ 8H₂O

systems are installed

- Upgrade for Gd-water purification Based on EGADS technology Purity/reflectivity measurement

Neutron veto

- ► Tagging efficiency: ~80-90% based on simulation
 - > At 0.5% Gd₂(SO₄)₃ 8H₂O
- ► Upgrade for Gd-water purification Based on EGADS technology
- Purity/reflectivity measurement systems are installed

Purification

Neutron veto

Rn distillation

Xenon Storage

Xenon Storage

RestoX2

RestoX1

t of Xenon for the

 $\therefore \sim 3 \text{ ton}$

 $E \sim 8 \text{ ton}$

lenon Strage + ecuperation

GXe + LXe, 7.5ton

► ReStoX2: GXe + SXe, 9ton

Xenon Storage

- ► RSX1: upgrade from 1T
 - ► Quick LXe recuperation with new line
 - Common liquid line with purification
- ► RSX2: new system for nT
 - Quick GXe recuperation by freezing Xe gas
 - ► Keep all Xe gas in room temperature
- ► All GXe lines are connected to GXePUR too

Xenon Storage

- ► RSX1: upgrade from 1T
 - ► Quick LXe recuperation with new line
 - Common liquid line with purification
- ► RSX2: new system for nT
 - Quick GXe recuperation by freezing Xe gas
 - ► Keep all Xe gas in room temperature
- ► All GXe lines are connected to GXePUR too

EXPECTED SENSITIVITY (BASED ON ARXIV:2007.08796)

BACKGROUND:ER

Source	Rate $[(ty)^{-1}]$
ER background	
Detector radioactivity	25 ± 3
222 Rn	66 ± 7
⁸⁵ Kr	13 ± 1
$^{136}\mathrm{Xe}$	16 ± 2
$^{124}\mathrm{Xe}$	4 ± 1
Solar neutrinos	34 ± 1
Total	158 ± 8

- Largest background: from Rn222 and its daughter
 - ► Here, target value is 1 uBq/kg
- Detector radioactivity: single Compton scattering
 - ► Gammas from Cryostat and PMTs

BACKGROUND:NR

Source	Rate $[(ty)^{-1}]$
NR background	
Neutrons	$(4.1 \pm 2.1) \times 10^{-2}$
$CE\nu NS$ (Solar ν)	$(6.3 \pm 0.3) \times 10^{-3}$
$CE\nu NS$ (Atm+DSN)	$(5.4 \pm 1.1) \times 10^{-2}$
Total	$(1.0 \pm 0.2) \times 10^{-1}$

- Radiogenic neutron and high energy neutrino would have similar level of BG
 - ► nVeto efficiency: ~87%
- Main neutron source: Cryostat, PMTs, PTFE

.

EXPECTED SENSITIVITY (SI WIMP)

Expected sensitivity under BGs in previous pages in 20 ty
At 50GeV, even first few month of data could beat Xenon1T best limit by factor 3-4

. . . .

SENSITIVITY VS TRITIUM

- On the other hand, recent study of XENON1T shows excess at low energy ER
- \blacktriangleright If the excess is due to the tritium: $6x10^{-25}$ mol/mol (middle dashed line)
- ► If we have more than $7x10^{-25}$ mol/mol, it will be the same with the summation of all other ER backgrounds
- Because of the spectrum shape, lighter the WIMPs mass is, smaller the effect is.

SENSITIVITY VS TRITIUM

- On the other hand, recent study of XENON1T shows excess at low energy ER
- > If the excess is due to the tritium: $6x10^{-25}$ mol/mol (middle dashed line)
- ► If we have more than $7x10^{-25}$ mol/mol, it will be the same with the summation of all other ER backgrounds
- Because of the spectrum shape, lighter the WIMPs mass is, smaller the effect is.

EXPECTED SENSITIVITY: TRITIUM VS ER SIGNAL (AXION) ?

- So far, the sensitivity for WIMPs has been discussed...
- How about the sensitivity for Low energy excess?

- Axion spectrum is continuous, but also have some peak-like shape
- Tritium: smooth beta-decay, Q=18keV
- Distinguish tritium and axion based on the difference of spectrum?

EXPECTED SENSITIVITY: TRITIUM VS ER SIGNAL (AXION) ?

- Discrimination power between axion and tritium
 - ► Note: BGs are based on 1T best fit
- ► If Rn BG level is enough low, axion/tritium could be distinguished with few month of data
 - \blacktriangleright Ex. ~4 sigma with 1-3 uBq/kg

CURRENT STATUS

STATUS OF XENONNT: TPC CONSTRUCTION

► TPC construction: Feb. 2020

Constructed in the CR above ground, then brought to UG

STATUS OF XENONNT: TPC CONSTRUCTION

► TPC construction: Feb. 2020

Constructed in the CR above ground, then brought to UG

STATUS OF XENONNT: TPC CONSTRUCTION

► TPC construction: Feb. 2020

Mounted to the cryostat, and the closed on March 2020

STATUS OF XENONNT: TPC COMMISSIONING

- ► Because of the corona virus, the activity at LNGS was limited...
 - However: Detector commissioning in vacuum
 - > PMT, LED, DAQ, Data analysis tool, etc etc...
- After the lock down: commissioning with GXe
- "First S1 light" in GXe have been observed already

STATUS OF XENONNT: NVETO CONSTRUCTION

Also nVeto construction has already started:

STATUS OF XENONNT: NVETO CONSTRUCTION

Also nVeto construction has already started:

STATUS OF XENONNT: CRYOSTAT FILLING

- ► I myself also entered to Italy on July:
 - Cryogenics upgrade
 - ► Rn column installation
 - ► GXe purification
 - Cryostat cool down
- Recent news: Cryostat LXe filling started!

Also a lot of other works are ongoing!

LNGS Cryo-team at the moment of LXe filling