PICO-LON DARK MATTER SEARCH

KamLAND-PICO Collaboration

K.Fushimi, K.Harada, S.Nakayama, R.Orito, R.Sugawara, H.Ejiri, T.Shima, R.Hazama, S.Umehara, S.Yoshida, K.Imagawa, K.Yasuda, K.Inoue, H.Ikeda

- 1. Aim of PICO-LON
- 2. PICO-LON Concept
- 3. Performance of PICO-LON Module
- 4. KamLAND-PICO Project

WIMPs search by NaI(TI)

- Annual modulation
- Complementary work for directional measurement
- Limited work using Nal(TI)
- DAMA, DM-Ice and PICO-LON
- PICO-LON in northern hemisphere
- However ...
- Highly radiopure Nal(TI) is needed.
- Who makes the best NaI(TI) in the world?
- In Japan, we restarted to make the best NaI(TI)

Previous result by Japanese Nal(TI) maker

	DAMA	DM-Ice	Horiba	Goal of PICO-LON
natK	<20ppb	500ppb	<200ppb	<20ppb
²³² Th	0.5-0.7ppt	50ppt	0.6ppt	<1ppt
238	0.7-10ppt	7.5ppt	1.07ppt	<1ppt
²¹⁰ Pb	5-30µBq/kg	2mBq/kg	6mBq/kg	<100µBq/kg

- U-chain: 1ppt= 12.3µBq/kg
- Th-chain: 1ppt= 4.0µBq/kg
- ²¹⁰Pb: 1ppt=2.5kBq/kg

PICO-LON for WIMPs search

- Planar
- Inorganic
- Crystal
- Observatory for
- LOwbackground
 Neutr(al)ino

- High selectivity
- Background reduction
- Sensitive to
- Elastic scattering (SI+SD)
- Inelastic scattering (SD)
- Study the interaction type of WIMPs

Concept of PICO-LON detector

Background reduction

Segmented detector \rightarrow Remove Compton scattering

Design of PICO-LON

- Requirements
- Coincidence measurement of ¹²⁷I gamma ray
 - Thin Nal(TI) crystal 0.1cm
- Low energy threshold
 - Low energy WIMPs signal $E_{ee} < 5 \mathrm{keV}$
- Good energy resolution
 - Background by ²¹⁰Pb at 46.5keV $\Delta E_{ee} = 12 \mathrm{keV}$
- Large acceptance
 - Wide area crystal 10cm square ~ 18cm square
 - Pile up modular detectors

PICO-LON single layer module

R&D for pure Nal(TI) production

- Crucible selection
- Raw material of Nal selection
- Surroundings of a plant
- 3.0" \$\\$X3.0" Nal(TI)
- Three different conditions

Pulse shape discrimination for alpha/beta selection

Small difference of pulse shape

Nal(TI) ingot #20 Live time 28 days

Preliminary Result (µBq/kg)

a source		Ingot 16	Ingot 18	Ingot 20 (Preliminary)
U chain	²¹⁰ Po	9600±100	1825± 45	306±23
	²²⁶ Ra	4510±60	308± 26	126±15
	²³⁴ U + ²³⁰ Th	520±73	1161±38	243±20
Th chain	²²⁸ Th	243± 11	255± 12	67±6

Contamination depends on the purity of crucible.

Low density for 210 Pb = 300μ Bq/kg

Results for performance

Good energy threshold
Lower than 2keV electron equivalent.

Nal purification
 R&D in progress
 ²¹⁰Pb was effectively reduced

KamLAND-PICO

- Install PICO-LON detector into KamLAND
- KamLAND is an ideal active shield.

Low energy region ²¹⁴Bi in Nal(TI)

Energy threshold of KamLAND

100keV 180keV 400keV

6.Estimated background (Preliminary!!)

events/kg/day/keV				
⁴⁰ K PMT glass	5.3x10 ⁻⁵			
²³² Th PMT glass	2.7×10 ⁻⁴			
⁴⁰ K PMTcase	2.7×10 ⁻⁴			
²¹⁰ Pb NaI(TI)	6x10 ⁻²	_		
²¹² Pb NaI(TI)	1x10 ⁻⁴			
⁴⁰ K NaI(TI)	3x10 ⁻¹			
⁴⁰ K light guide	9x10 ⁻²			
²³² Th light guide	2.7x10 ⁻⁷			
⁴⁰ K reinforcement	5×10^{-2}			
²³² Th reinforcement	5.5x10 ⁻⁷			

BG~1/kg/day/keV

KamLAND-PICO (E_{th}=100keV) BG ~ 0.5/kg/day/keV

Summary

- PICO-LON for WIMPs search
- High sensitivity to all the types of interaction.
 - Elastic scattering for SD+SI
 - Inelastic scattering for SD
- Good performance for WIMPs search
- KamLAND-PICO has been funded.
 - 15Myen/4year
 - Low background study for NaI(TI) with 4π active shield.

