A review on the discovery reach of directional detection

F. Mayet

LPSC Université Joseph Fourier Grenoble, France

Outline

Review of the discovery reach of directional detection

 Exclusion
 Discovery
 Identification

 Interplay with latest LHC results

 Heavy squarks
 monophoton/monojet

Directional detection : expected signal

F. Mayet - Cygnus 2013, Toyama, Japan

1. Review of the discovery reach of directional detection

Can we exclude a Dark Matter signal ?

J. Billard et al., PRD 2010

Exclusion

Discovery

Identification

S. Henderson *et al.*, PRD 2008

0 WIMP + 300 Bckg

F. Mayet - Cygnus 2013, Toyama, Japan

Exclusion

devoted to Spin-dependent interaction (on proton)

Isotropy rejection

A. M. Green & B. Morgan, Astropart. Phys. 2007

The exposure required to reject isotropy (and hence detect a WIMP signal) at 95% CL in 95% of exp.

6

F. Mayet - Cygnus 2013, Toyama, Japan

1. Review of the discovery reach of directional detection

Exclusion Discovery

Identification

100 WIMPs + 100 Bckg

Can we claim a Dark Matter discovery ?

J. Billard et al., PLB 2010, PRD 2012

A.M. Green & B. Morgan, PRD 2010

Discovery

J. Billard et al., PLB 2010, PRD 2012

Directional detection may be used to discover Dark Matter

Discovery

Estimation of the discovery potential considering astrophysical uncertainties => Profile likelihood method

 \rightarrow A discovery (>3 σ @90%CL) with BKG is possible down to 10⁻³-10⁻⁴ pb

J. Billard et al., PLB 2010, PRD 2012

Discovery

required at low masses

Estimation of the discovery potential considering astrophysical uncertainties => *Profile likelihood method*

10

J. Billard et al., PLB 2010, PRD 2012

D. Albornoz-Vasquez et al., PRD 2012

 \rightarrow A discovery (>3 σ @90%CL) with BKG is possible down to 10⁻³-10⁻⁴ pb

WIMP mass (GeV/ c^2)

1đ

Directional reach in SUSY space

- (N)MSSM with 11(12) parameters defined at the weak scale
- Cosmology and Colliders constraints included (before Higgs discovery)

→ low μ and M₁ models would not escape a discovery with a large directional detector (30 kg.year).

Discovery : beyond the standard halo

J. Billard et al., PLB 2013

N-body simulations favor a co-rotating Dark Disk (10%-50% of local DM density)

 \rightarrow for a nul lag velocity, Dark Disk Wimps have an isotropic velocity distribution

 \rightarrow only extreme Dark Disk parameters may affect the directional signal

 \rightarrow not a threat for directional detection

Review of the discovery reach of directional detection Exclusion Discovery

Identification

Can we infer Dark Matter properties from directional detection ?

J. Billard et al., PRD 2011

F. Mayet - Cygnus 2013, Toyama, Japan

Dark Matter identification

J. Billard et al., PRD 2011

Directional detection may be used to *identify* Dark Matter

i.e. measure WIMP and halo properties

A Markov Chain Monte Carlo analysis dedicated to directional detection (10-3 pb)

- Multivariate gaussian (triaxial halo)
- Simulated data : CF4 detector (30 kg.year) + 35% background

• Eight free parameters constrain with the same set of directional data

- The WIMP mass m_X • The WIMP-nucleon cross section σ_n • The main direction of the signal (l_0, b_0) • The three velocity dispersions σ_x , σ_y et σ_z • The three velocity dispersions σ_x , σ_y et σ_z • The three velocity dispersions σ_x , σ_y et σ_z
- The background rate R_b

Dark Matter identification

- $\sigma_x = \sigma_y = \sigma_z = 155$ 50
- Cross section The eight fitting parameters are simultaneously and pb • Bransistentlyicontrained according to the input values

 σ_{π}

7 [km/s]

R_b

[kg⁻¹.year

[km/s]

200 250

250

12

E.

150

Dark Matter identification

J. Billard et al., PRD 2011

The eight parameters are strongly constrained with only one directional data set.

Going further : Dark Matter 3D

D. S. M. Alves et al., arXiv1204.5487

Post-discovery era : the WIMP mass and cross section are supposed to be <u>known</u> *Hence, after LHC discovery and/or other DM exp.*

- A generic parametrization of DM distribution
- 3 integrals of motion decomposed on the basis of special functions

$$f_{1}(\mathcal{E}) = \sum_{\ell} c_{P_{\ell}} \tilde{P}_{\ell} \left(\frac{\mathcal{E}}{\mathcal{E}_{\lim}}\right),$$

$$f_{2}(L_{t}) = \sum_{n} c_{F_{n}}^{t} \cos\left(n\pi \frac{L_{t}}{L_{\max}}\right),$$

$$f_{3}(L_{z}) = \sum_{m} c_{F_{m}}^{z} \cos\left(m\pi \frac{L_{z}}{L_{\max}}\right).$$

~1000 events are required for a good measurement of the underlying DM distribution

F. Mayet - Cygnus 2013, Toyama, Japan

2. Interplay with latest LHC results Heavy squarks monophoton/monojet

Is Xenon100 a threat to directional detection?

A priori : no ! SD-neutron versus SD-proton, **but...**

D. Albornoz-Vasquez et al., PRD 2012

Is LHC a threat to directional detection ?

G. Bélanger et al., in preparation

SD interaction

D. R. Tovey et al., PLB 2010

F. Mayet - Cygnus 2013, Toyama, Japan

Recent results from LHC

ATLAS-CONF-2013-047

- Squark exchang diagramm : suppressed
- SD cross section :
- →does not depend on quark flavor
- \rightarrow only on the Z-neutralino coupling

SD cross section should be close (and should not depend on SUSY parameters)

simplified phenomenological MSSM

Consequences for Dark Matter

SD cross-section on p and n can no longer be considered as independent
 →All SD results apply to directional detection

e.g. large exposure experiments (Xenon, SuperCDMS, ...)

SD interaction on Nucleon

• All SI experiments have a not so small odd-nuclei fraction (^{129,131}Xe, ⁷³Ge, ²⁹Si)

3% in Si, 7% in Ge, 50% in Xe

• Upcoming SI results may close the directionnal window

F. Mayet - Cygnus 2013, Toyama, Japan

Other searches : monophoton/monojet @LHC

ATLAS
$$\sqrt{s}=7$$
 TeV, $\int L dt = 4.6$ fb⁻¹

ATLAS Col., JHEP 2013, PRL 2013

• Effective theory

4-fermion interaction *a la Fermi* Point like interaction = heavy propagator

Question:

Is it really model independent?

Conclusion

1) A large directional detector (30 kg.year) could lead either to a :

- constraint on DM properties (halo and particle), ~10-3 pb
- conclusive discovery (with a high significance), 10⁻⁴-10⁻⁵ pb
- competitive exclusion, *10⁻⁵-10⁻⁶ pb*

cannot be achieved by non-directional detectors

2) Most other Dark Matter searches seem to be relevant to the SD-neutron space

- Large exposure SI detectors
- LHC
- Neutrino telescope