hey guys it's over here!

DM-ICE update from the south pole!

DM-Ice Collaboration

University of Wisconsin – Madison

Reina Maruyama, Francis Halzen, Karsten Heeger, Albrecht Karle, Carlos Pobes, Walter Pettus, Zachary Pierpoint, Antonia Hubbard, Bethany Reilly, Matthew Kauer

University of Sheffield

Neil Spooner, Vitaly Kudryavtsev, Dan Walker, Matt Robinson, L. Thompson, Sam Telfer, Calum McDonald

University of Alberta Darren Grant

University of Illinois at Urbana-Champaign Liang Yang

Fermilab Lauren Hsu <u>Shanghai Jiao Tang University</u> Xiangdong Ji, Changbo Fu

<u>Penn State</u> Doug Cowen, Ken Clark

NIST-Gaithersburg Pieter Mumm

<u>University of Stockholm</u> Chad Finley, Per Olof Hulth, Klas Hultqvist, Christian Walach

DigiPen Charles Duba, Eric Mohrmann

Boulby Underground Science Facility Sean Paling

SNOLAB Bruce Cleveland

J. Cherwinka et al. A Search for the dark matter annual modulation in south pole ice, (2011) arXiv:1106.1156

DM-Ice (250 kg Nal) Concept

Use Nal(Tl)

- Eliminate uncertainties due to detector effects and dark matter models
- Crystal Array for sophisticated event tagging

Detection (5o) or exclusion

- 500 kg*yr Nal (same scale as DAMA)
- Threshold < 2 keV_{ee}
- Background < 5 cpd/kg/keV

Go to the South Pole

- Seasonal effects have opposite phase
- 2200 mwe overburden
- Ice < 1 ppt U/Th (radon ~0)
- Ice < 1 ppb K
- Ice == great neutron moderator

DM-Ice Sensitivity 500 kg•yr Nal

(2 - 4 keV) with 1, 2, and 5 dru bkg

Muons and Seasonal Modulation

- Overburden 2500 m depth (2200 m.w.e.)
- ~85 muons/m²/day at bottom of IceCube, IceCube/DeepCore veto reduces rate by ~1-2 orders of magnitude, Ice is a good neutron moderator

Original NAIAD Crystals at Boulby

- NAIAD was an array of encapsulated and unencapsulated NaI(Tl) with high light yield used for early dark matter searches from ~1998-2004
- NAIAD was used to set upper limits on the WIMP-nucleon spin-independent and WIMP-proton spin-dependent cross-sections
- Pulse shape analysis used to discriminate between nuclear recoils, as may be caused by WIMP interactions, and electron recoils due to gamma background

DM-ICE Prototype Tests at Boulby

• Boulby Palmer Lab tests at 1.1km depth

- Both crystals and PMTs tested and found to be in excellent condition
- Packed and shipped to Madison....

Transfer to South Pole, Installation

- Transfer by plane to South Pole in Dec 2010
- Installed below last ICECUBE strings
- ~9 months from idea to deployment in the ice!!!

Scintillation Events

- DAQ using slightly modified IceCube motherboardsEach PMT set to trigger ~ 0.3 spe
 - Waveform recorded only when coincidence between both PMTs w/in 800 ns on a single crystal
 - Waveform from each PMT digitized separately in the ice by IceCube mainboards and sent to hub
 - Time stamp synchronized to IceCube GPS and calibrated for transit time
- Signal comes from scintillation in the crystal.
- At high energies, signal has the characteristic scintillation pulse shape.
- At low energies, increasingly events are just a series of single photo-electrons.

Energy Spectrum: Gammas

Energy Calibration

Energy (keV)

Energy (keV)

Calibration at Boulby

Calibration at Madison

• Low energy fit (< 100 keV) deviates from linearity Calibration Fit - DM0-1

Nal Light Yield

- Obtain 1pe-ped separation from dark noise runs (ie no coincidence requirement)
- Normalize the energy to keV using the energy calibration

xtal-1 = 6.1 +/- 0.07 pe/keV xtal-2 = 4.9 +/- 0.05 pe/keV

Consistent with:

- DAMA = 5.5 7.5 pe/keV
- NaiAD = 5 8 pe/keV

Detector Stability

□ Detector calibration is stable to 1.3% over 18 months.

- 1.3% decrease over 18 months in light collection (peak position) observed at 600 and 1460 keV
- No observable change in calibration at 45 keV
- We have not had to change our calibration with time
 - Any changes at higher energies are smaller than our resolution

Cosmogenic ¹²⁵I (in the Nal crystal)

Cuts: e.g. "Thin Pulse" Events (Madison)

- Interactions within the light guides and/or PMTs can also trigger the detector.
- These events are referred to as thin events due to their characteristic pulse shape.
- Current cut variable :
 - Pulse Integral / Pulse Maximum
- Current cut value chosen to preserve 75% of signal with a signal to noise ratio > 10 in cut region.
- Current Energy Threshold : 4 keV

Cuts: e.g. Steppiness Cut (Sheffield)

- Steppiness in essence requires multiple SPEs to occur in quick succession in at least one PMT.
- This is achieved by requiring a smoothed waveform to break a threshold.
- Steppiness is not a good cut of thin pulses so a series of cuts is required to remove them.
 - Energy symmetry between the two PMTs
 - Mean time symmetry between the two PMTs
 - Mean time
 - Tail energy fraction

3 keV ⁴⁰K Peak

Two Geant4 Simulations

Madison

Sheffield

e.g. events from ice

Crystal

• ²³⁸U, ²³²Th, ⁴⁰K, ¹²⁹I

Quartz Light Guide

• ²³⁸U, ²³²Th, ⁴⁰K

PMTs

- ²³⁸U, ²³²Th, ⁴⁰K
- **Pressure Vessel**
- ²³⁸U, ²³²Th, ⁴⁰K, ⁶⁰Co, ²³⁵U

Drill Ice

• ²³⁸U, ²³²Th, ⁴⁰K, ²³⁵U

Antarctic Ice

• ²³⁸U, ²³²Th, ⁴⁰K

Background Model

All components measured/ estimated and simulated

Region of Interest

- Good agreement with simulation above 20 keV
 - Surface event simulation at 12 keV in progress
- We understand our detector to 4 keV
 - NAIAD published to 4 keV; we are pushing lower
- We model our 3 keV peak to within a factor of 2 of simulation
 - Understanding efficiencies

Looking ahead:

- Backgrounds in ROI 5x higher than simulated for full scale DM-Ice
- Multi-crystal veto will suppress 3 keV events

Analysis Result

- 24 months data analysed for modulations
- Results coming soon!

 Remember this is for 17 kg Nal, with background ~x7 DAMA in low enery region

Conclusions

- successfully deployed two detectors 2450 meters in the ice
- incredibly stable environment
- calibration from internal/external backgrounds (no calib sources)

DM-Ice (250 kg)

- Geant4 background model in agreement with data
- good understanding down to 4 keV (~7 cpd/kg/keV)
- pushing our energy threshold < 2 keV

