

CYGNUS 2013

4th International Workshop on Directional Dark Matter Detection Jun 10 – 12, 2013

KamLAND-Zen Experiment for Zero Neutrino Double Beta Decay Search

Daisuke Motoki for the KamLAND-Zen Collaboration RCNS, Tohoku University, Japan

KamLAND-Zen Collaboration

KamLAND: Kamioka Liquid scintillator Anti-Neutrino DetectorZen:Zero neutrino double beta decay search

Research Center for Neutrino Science, Tohoku University

A. Gando, Y. Gando, H. Hanakago, H. Ikeda, K. Inoue, K. Ishidoshiro, R. Kato, M. Koga, S. Matsuda, T. Mitsui, D. Motoki, T. Nakada, K. Nakamura, A. Obata, A. Oki, Y. Ono, M. Otani, I. Shimizu, J. Shirai, A. Suzuki, Y. Takemoto, K. Tamae, K. Ueshima, H. Watanabe, B.D. Xu, S. Yamada, H. Yoshida

Kavli IPMU, University of Tokyo A. Kozlov

Osaka University S. Yoshida

University of California Berkeley and LBNL

T.I. Banks, S.J. Freedman, B.K. Fujikawa, K. Han, T. O'Donnell

- Colorado State University B.E. Berger
- University of Tennessee Y. Efremenco
- **TUNL** H.J. Karwowski, D.M. Markoff, W. Tornow

University of Washington J.A. Detwiler, S. Enomoto

NIKHEF and University of Amsterdam M.P. Decowski

A total of 42 members

(as at 7 February 2013)

6/11/2013

Contents

Introduction

- KamLAND Experiment
- KamLAND-Zen Experiment
- Current Activities for Improving Sensitivity

Future Plans

Summary

Current Situation in the World

Experiment	Nucleus	Exposure [kg-yr]	T ^{0ν} [yr] 90% C.L.	<m<sub>ββ> [eV]</m<sub>	
KamLAND-Zen	136 Xe \rightarrow 136 Ba	89.5	$>1.9 \times 10^{25}$	<0.12-0.25*	Combined with EXO-200
EXO-200	136 Xe \rightarrow 136 Ba	32.5	$> 1.6 \times 10^{25}$	<0.14-0.38	
CUORICINO	130 Te \rightarrow 130 Xa	19.75	$>2.8 \times 10^{24}$	<0.30-0.71	
Heidelberg-Moscow	$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	35.5	$> 1.9 \times 10^{25}$	<0.35	
NEMO-3	$^{82}\text{Se} \rightarrow ^{82}\text{Kr}$	6.3	$> 1.5 \times 10^{22}$	<1.5-3.1	
	$^{96}\mathrm{Zr} ightarrow ^{96}\mathrm{Mo}$	0.031	$>9.2\times10^{21}$	<7.2-19.5	
	100 Mo \rightarrow 100 Rn	6.3	$>2.7\times10^{22}$	<0.8-1.2	
	150 Nd \rightarrow 150 Sm	0.093	$> 1.8 \times 10^{22}$	<4.0-6.3	

Part of the Heidelberg-Moscow group claimed signal (KKDC claim)

 $T^{0\nu}_{1/2} = 2.33^{+0.44}_{-0.31} \times 10^{25}$ yr,
 <

Some experiments are running near the claim. ->GERDA(⁷⁶Ge), CUORE(¹³⁰Te), EXO and KamLAND-Zen (¹³⁶Xe)

KamLAND Experiment

1,000t Liquid Scintillator

Dodecan(80%), Pseudocumene(20%), PPO(1.36g/ℓ) ²³⁸U 3.8 × 10⁻¹⁸g/g, ²³²Th 5.2 × 10⁻¹⁷g/g

Mineral Oil

1,325 tubes of 17inch + 554 tubes of 20inch PMT

34% photo coverage

Water Cerenkov Outer Detector

225 tubes of 20inch PMT in pure water Muon veto, Water shield

Wide energy range, ultra-low BG

Many physics results

solar neutrinos, geo neutrinos, reactor neutrinos, supernova neutrinos etc...

 \sim 1000m depth

2700 m.w.e

R6.5m ballon

125 uthickness

R9m

ran

6/11/2013

KamLAND-Zen Experiment

<u>Xe advantage</u>

- 1. Isotopic enrichment is available
- 2. Purification method is established
- Solubility to LS >3 wt%
- 4. Slow 2ν rate so good separation with 0ν

+ Large scale and Low BG of KamLAND

Mini-Balloon

 25μ m thickness nylon film, 17m³ volume

Xe loaded LS

PC(18%,) Decan(82%), PPO(2.7g/ℓ)

+ Xe gas(2.44wt%) 136Xe 91% enriched

 $\langle m_{
m v}
angle = 150$ meV, Xe:400kg

Detector Construction

Quick and smooth construction and installation.
 KamLAND-Zen 1st phase started since Sep. 24, 2011

Mini-Balloon Production

Class 1 clean room at Sendai, Tohoku University's facility

Ultra-sonic cleaning using ultra-pure water

A roll for bringing

Material Characters

Transparency at	99.1%	
Breaking stre	>20 [N/cm]	
Xe leakage	<0.26 [kg/year]	
Radioactive Impurities	²³⁸ U	1.9×10^{-12} g/g
	²³² Th	4.9×10^{-12} g/g
	⁴⁰ K	5.6×10^{-12} g/g

To Kamioka Underground

test wit

<mark>at</mark>er in water

Preparetion of Xe Loaded LS

6/11/2013

Installation

Class 10 -Clean room

MIB with XeLS in the KamLAND

214Bi (β + γ)

Fiducial Volume

	DS1	DS2
Live time [day]	112.3	101.1
Fiducial Xe-LS mass [ton]	8.04	5.55
Xe concentration [wt%]	2.44	2.48
¹³⁶ Xe mass [kg]	179	125
¹³⁶ Xe exposure [kg-yr]	54.9	34.6

Systematic Uncertainties

Fiducial Volume	4.0 %
Enrichment of ¹³⁶ Xe	0.05 %
Xe amount	0.36 %
Energy scale	0.3 %
Detection efficiency	0.2%
Total	3.9%

DS2 has inlet pipe in MIB for several activities.

Fiducial Volume is estimated with ²¹⁴Bi rate of inside balloon.

Systematic Error of F.V. is dominant.

After Xe Extraction

Extraction Xe from MIB

- Check $2\nu\beta\beta$ disappear
- B.G. remains in MIB
- Confirm not 0ν

Extracted Xe was collected into botlle

Replacement with new LS

- To remove ^{110m}Ag from MIB

Reduction factor was 1/4. ^{110m}Ag on balloon surface remains and diffused into LS

> Need to more reduction Target->1/100

Purification for Xe

Condenser Off-gas Liquifier Heat exchanger 177K **Original Xe** Distillation Getter tower $(0_2, H_2, O, etc)$ Processed Xe Highe 185K **Re-boiler**

New item for KamLAND-Zen The System is provided by XMASS group K.Abe *et. al*, Astropart. Phys. 31,290-296(2009)

Developed for Kr removal from Xe. Number of theoretical column: 6 Process speed: 0.6 kg Xe/h Higher boiling point materials than Xe can be removed.

411.5kg distilled Xe was already prepared for next Xe-LS.
Distilled Xe gas will be passed into Getter before filling.

Zr alloy

 H_2O , N_2 , O_2 , CH_4 , CO, CO_2 , and Metallic atoms are adsorbed.

Circular Purification

Repeat LS distillation and replacement for MIB LS containing ^{110m}Ag

Schedule & Expected Sensitivity

Future Plans

Exclude KKDC claim (97.5% C.L.) Current (KamLAND-Zen + EXO-200 conbined) After purification (\sim March, 2014) New mini-balloon (600kg~¹³⁶Xe) start preparation in this year KamLAND2-Zen 4m 2m BIRD CAGE BALLOON NECK Expansion of opening section ~1000kg ¹³⁶Xe balloon New brighter LS Light collection cone to improve energy resolution.

6/11/2013

Summary

- KamLAND-Zen recent results
 - $T_{1/2}^{2\nu} = 2.30 \pm 0.02(stat.) \pm 0.14(sys.) \times 10^{21}$ yr
 - $T_{1/2}^{0\nu} > 1.9 imes 10^{25}$ yr 90% C.L
 - Exporsure 89.5 kg-yr
- Combined with EXO-200
 - <**m**_{ββ}> : <120-250 meV

Exclude KKDC claim (97.5% C.L.)

- Current activities of KamLAND-Zen
 - LS purification for reducing ^{110m}Ag B.G.
 - After purification run will start from Sep. 2013.
 - KamLAND-Zen will achieve <80meV effective mass limit by the early of next year.
- KamLAND-Zen next phase is funded from this year.
- KamLAND2-Zen has great potential to search below inverted hierarchy.