
Measuring Dark Matter Distribution in Directional Direct Detection

Keiko I. Nagao (National Niihama College of Technology)

Collaboration with

Tatsuhiro Naka (Nagoya Univ.) and Mihoko Nojiri (KEK & IPMU)

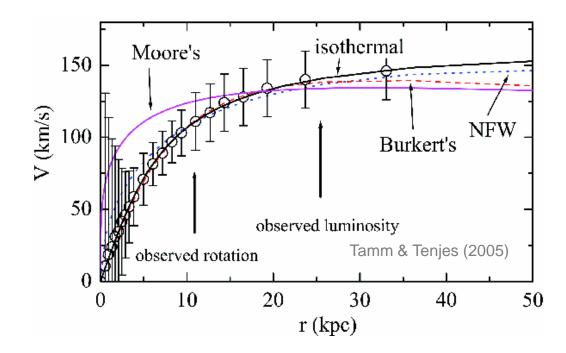
Dark matter distribution in the galaxy

✓ Is it Maxwell distribution?

- Many distribution models have been proposed.

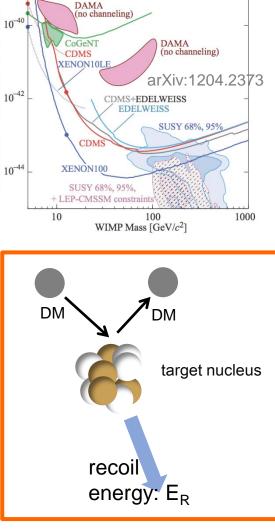
 \checkmark Is there a way to observe it?

- I will discuss the possibility with the directional detector in this talk (taking the nuclear emulsion for example).



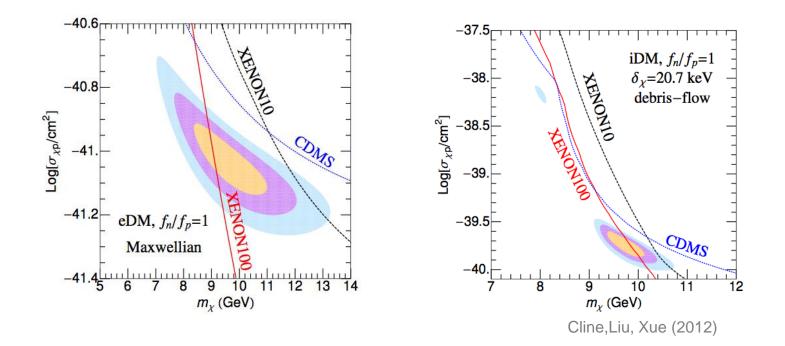
- 2. Why is the DM distribution important?
- 3. Non-standard distributions
- 4. Nuclear Emulsion Detector
- 5. Numerical results
- 6. Summary

Why is the DM distribution important for us?


1. Astronomical interest (Of course!)

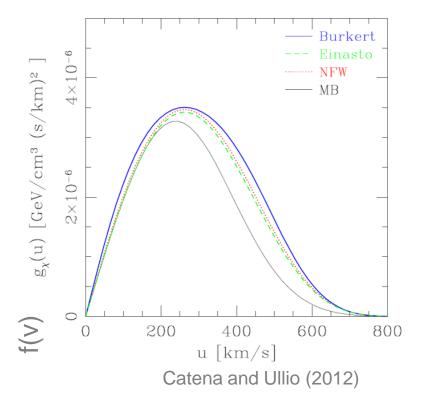
There are many distribution models, and which one agrees with the observation?

Why is the DM distribution important for us?


- 2. Interest from particle physics DAMA (no channeling) Cross-section [cm²] (normalised to nucleon) 10 Constraint from direct detections depends DAMA (no channeling) CoGeNT CDMS on DM distribution XENON10LE 10⁻⁴² CDMS+EDELWEISS **EDELWEISS** -Calculation of σ from event rate SUSY 68%, 95% CDM 10⁻⁴⁴ XENON100 $\cdot v_{\max}$ SUSY 68%, 95% $\sigma_A m_A$ dE_R $d^3v f(v)$ R =I FP_CMSSM 10 100 WIMP Mass [GeV/c2] $E_{R,\min}$ v_{\min} Particle Astronomy + nuclear DM DM phys.
 - We should know correct DM distribution to derive correct constraints for interaction of DM.

Why is the DM distribution important for us?

2'. Interest from particle physics


□ Supposing non-standard distribution (with other factors, like isospin violating, inelastic scattering...) improves the situation to explain the discrepancy between positive and negative results of direct searches.

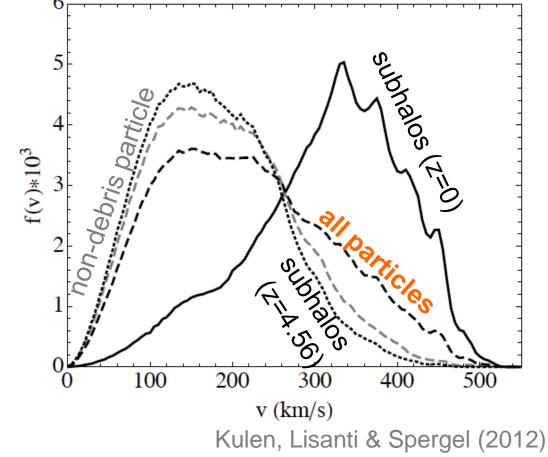
- 2. Why is the DM distribution important?
- 3. Non-standard distributions
- 4. Nuclear Emulsion Detector
- 5. Numerical results
- 6. Summary

DM Velocity Distribution - Standard Distribution-

• Maxwell distribution $f(v) = \frac{1}{(\pi v_0^2)^{3/2}} e^{-(v+v_E)^2/v_0^2}$

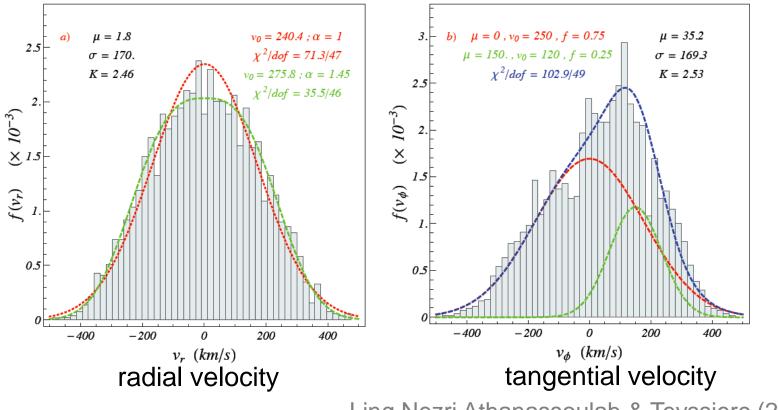
 v_0 : velocity of the Solar system v_E : Earth's velocity relative to DM

Isothermal profile


density distribution: $\rho \sim 1/r^2$

- Cored isothermal (Bahcall et.al, 1980)
- Burkert pofile (1995)
- Navaro-Frenk-White profile (1996)
- DM distribution is surely this kind of shape?
 -we don't know the answer yet...

. . .

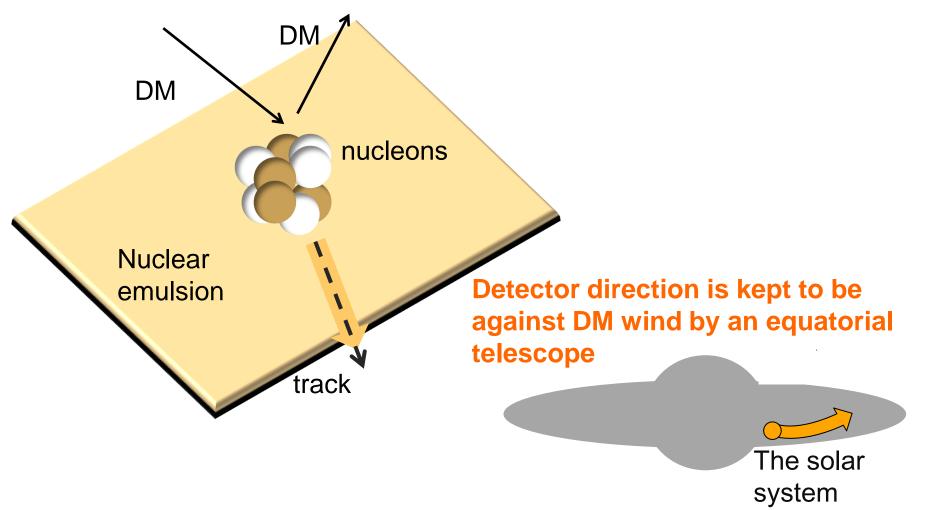

N-body simulation in which subhalos falling into the Milky Way

• Smaller velocity than that for Maxwell distribution

Debris Flow

- N-body simulation with baryons and gas
 - DM rotates following baryons
 - Distribution is not isotropic

Ling Nezri Athanassoulab & Teyssierc (2009)


2. Why is the DM distribution important?

3. Non-standard distributions

- 4. Nuclear Emulsion Detector
- 5. Numerical results
- 6. Summary

Concept of DM detection with nuclear emulsion

Detection of recoiled nucleus from DM-nucleon scattering

Direct detection with nuclear emulsion

- Sensitivity
 - Targets: Ag, Br, C, N, O
 - Energy threshold : depends on target

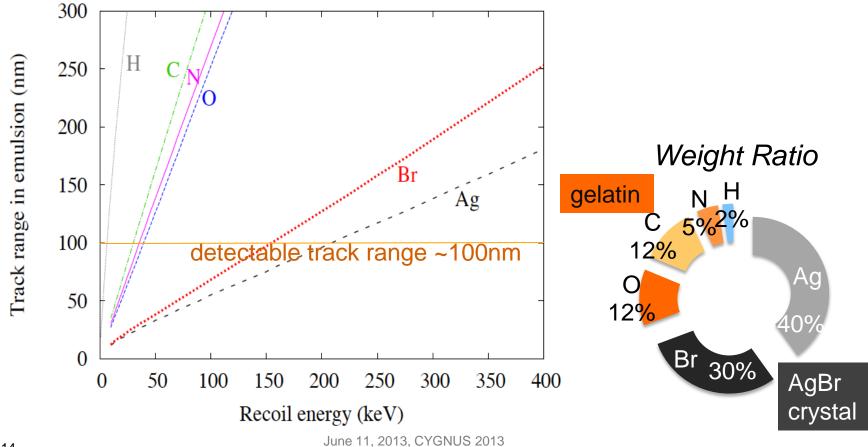
(~33 keV for C, N, O and ~150 keV for Ag, Br)

- Advantage
 - Directional sensitivity with high resolution

Angular resolution: 15-20°

Spatial resolution: 100 nm

- Large mass: O(100) 1000 kg
- Status


– R&D

See Takayoshi's (10P3) and Takashi's (11A6) talks for details

Energy threshold?

- O(10)-O(1000)GeV mass DM
 - Typical recoil energy :O(1)-O(100)keV
 - Required resolution is submicron (~O(100)nm) track length

OK, we understand the distribution is important for our physics!

2. Why is the DM distribution important?

3. Non-standard distributions

4. Nuclear Emulsion De Non-standard distributions are suggested by N-body simulation...

- 5. Numerical results
- 6. Summary

OK, we understand the distribution is important for our physics!

2. Why is the DM distribution important?

3. Non-standard distributions

4. Nuclear Emulsion De Non-standard distributions are suggested by N-body simulation...

- **5. Numerical results**
- 6. Summary

Can we distinguish the distribution?

Can we distinguish the distribution?

- No. (in the ordinary direct search)
- How about in the directional direct search? Then we can see both the scattering angle and the recoil energy.

- Monte Carlo simulation
- □ Simple elastic scattering
- □ Scattering angle– Recoil energy (track length) distribution

- I discussed the possibility to distinguish the distribution models of dark matter in the direct detection, focusing on the nuclear emulsions.
- Distribution of the scattering angle and the energy density is surely affected by the distribution model.
- Since we do not include the detector efficiency, the tendency of the angle-track distribution would be similar for gas detector case.