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Topics

How Columnar Recombination may display a
sensitivity to the angle between nuclear recoil
direction and drift field E in a gaseous TPC

How Fluorescent Penning Molecules may
optimize Columnar Recombination sensitivity

How to extrapolate this idea to ton-scale
How this idea can also serve 0-v 3[3 search
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Excellent energy resolution in Xenon Gas

Here, t he A. Bolomikov, B. Ramsey | Nucl. Instr. and Meth. in Phys. Res. A 396 (1997) 360-37 Very la rge
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For p <0.55 g/cm?, energy resolution from ionization is “intrinsic”
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New result: Energy resolution dE/E = 1% FWHM
for 137Cs 662 keV y-rays in xenon!
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This result shows that fluctuations are “normal” in HPXe

Cygnus 2013 Toyama

Data from
LBNL-TAMU
HPXe TPC

This result is
important for
both 0-vBB &
WIMP searches



What is Columnar Recombination?

Columnar Recombination (CR) occurs when:
e A drift electric field E exists;
Tracks are highly ionizing;
Tracks display an approximately linear character;
The angle a between E and track is small:
Recombination = dot-product of vectors E and “track”

| g track E

_ track

Substantial CR ~No CR
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CR Exists!

Evidence for
columnar
recombination in
a-particle tracks in
dense xenon gas.

FWHM depends on
E-field and density!

Bolotnikov & Ramsey
NIM A 428 (1999)
pp 391-402

G. C. Jaffe:
Annalen der Physik,
42, p 303, (1913)

28 May 2013
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Fig. 5. FWHM of the peaks in pulse-height spectra of the
amplitude of the light signals versus the electric field strength
measured at 0.08 g/cm® (diamonds), 0.18 g/cm® (squares),
0.33 g/cm? (circles), and 0.74 g/cm? (triangles).



Sidereal variation of directionality signal

t=0h

t=12h
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Two Vectors:

1. Nuclear recoill
Galactic flux
direction is “fixed”

2. TPC electric field:
Sidereal rotation

No signal if flux is
aligned with polar
axis of rotation!



Nuclear recoils:
Vector or... 27

lon Trajectories Transtrg;e View

4 un 0 4 um
4 um

SRIM: 200 Xenon 30 keV nuclear recoil events
in HPXe Xenon — unweighted by energy loss
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Target lonization

Total lonization = 6.2 keV / lon

—

Directional sense
Is largely retained

Total Phonons = 21.9 keV / lo
Total Target Damage = 1.91 k¢
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SRIM results —

not guaranteed
Plot Window goes from 0 A to 4 um; cell width =400 A

for gas phase Press PAUSE TRIM to speed plots. Rotate plot with Mouse.
lon = Xe (30. keV)

Cygnus 2013 Toyama



What is the optimum Xe density?

e Define (electrostatic) Columnarity “C”
* C= R/r,
— R = the nuclear recoil track range
— ry = Onsager radius r, = e%/e &, where T is
electron energy (usually taken as kT)
— in xenon gas for p = 0.05 g/ cm3:
*ry~ 70 nm
e R ~ 2100 nm for 30 keV nuclear recoil (SRIM result)
* C=30in this example
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Columnarity “C” is key

* But: Onsager spheres overlap at this density, so we
should consider an “Onsager tube” of larger radius:

r=(3-5)xr,
We want C to be fairly large, i.e. C > 10

* This condition is probably met for KE > 20 keV in
xenon gas for p = 0.05 g/ cm3, or less

— ~2% of LXe density
— Hopeless for LXe density: p=3.1 g/ cm3 2 C<1

28 May 2013 Cygnus — 2013 13



Recombination Signal: R

 The signal Ris fluorescence (scintillation)
— Observed in noble gases and some molecules
— Noble gas: VUV (85 - 173 nm) — difficulg,...
— Desired: Recombination signal is UV, not VUV
— Molecular fluorescence: 280 - 500 nm

— Very few gaseous molecular candidates:
* Trimethylamine (TMA)
» Triethylamine (TEA)
e Tetrakis-dimethylamino-ethylene (TMAE)
e Others?

Cygnus 2013 Toyama
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Nuclear Recoils: extracting directionality

— Rapidly falling energy spectrum of recoils
* Kinetic Energies < 40 keV for xenon
e But, Head-on collisions have more energy

— Substantial scattering along trajectory

* But, where directionality is retained, energy loss high
* Majority of energy lost to “heat” — quench factor ~5

— Ambipolar diffusion holds most of the electron population
* A few primary electrons wander off and are lost

— Excitations outnumber ionizations by large factor
— Primary excitations contain no directional information!
What to do! ?
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Exploit Atomic/Molecular Dynamics

— Primary Xe excitations: these must be converted
to ionization — to serve as recombination sites!

* Use Penning effect: excitations = ionization
e Xenon: TMA (and maybe TEA) are candidates

— Primary Xe ions: Xe™ are rapidly neutralized by
charge exchange with Penning molecules

* lonization potential of TMA < first excited state of Xe*
* lonic image transformed to TMA™ molecular image

— Columnar recombination occurs on TMA™ ions

Cygnus 2013 Toyama
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Atomic/Molecular Gymnastics

Xe,  + Xe = Xe + heat
- Xe*
> Xe"+¢e

Xe* + TMA = Xe + TMA™ + e” (Penning effect)
Xe" + TMA = Xe* + TMA" (Charge exchange)

TMA™ + e = TMA* = TMA + photon (~300nm)
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Fluorescence spectrum of tertiary amines

TMA A =240 nm

TEA — — - = 250 om TMA in xenon retains
TR\ —e—8-A5248 nu same fluorescence
spectrum up to at least
10 bars

INTENSITY
(ARBITRARY UNITS)

260 280 300 320 340
WAVELENGTH, Anm

Fig. 4. Vapour-phase fluorescence spectra of TMA, TEA
and TPA at excitation waveiengths indicated.
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Detecting Directionality

— Columnar Recombination with TMA leads to UV
* TMA, TEA, fluoresce strongly in 280 — 330 nm band

— The Directionality signal is contained in the ratio
of recombination/ionization = R/I

* More recombination implies less ionization & vice versa
— R signal is intrinsically optical
e Convert | signal to scintillation by electroluminescence

— All signals detected optically
* | signal is separated in time by drift interval

Cygnus 2013 Toyama 19



Conceptual Advantage

— No track visualization required !
* R/l determined before drift

* Simplified readout plane possible

* TPC scale can be arbitrarily large

Figure of Merit: M =V_,/V

track

M ~ 10m3/10um3 ~ 10'® for CR-based system
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Efficient detection of the R signal

« Gas-phase TPC is very large...
« Use wavelength-shifting (WLS) plastic

— Cover the TPC interior completely with WLS
— Maximum efficiency of WLS occurs at 300 nm
— TMA UV matches WLS optimum wavelength!

— More than 50% is internally captured in gas interface

— Pipe light to small # of PMTs, shielded by copper

Cygnus 2013 Toyama
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PMTs shielded
by copper ring

WLS plate
behind anode




Arisaka et al

Xe 40AI’
70 ton
20 ton
(10 ton) (90 ton) 4

3" QUPID x 595 (Top)
8" QUPID x 825 (Side/Bottom)

arXiv1107.1295v3
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the “TEA-pot”

Basic responses
measurements:

A parallel-plate
lonization chamber
with optical sensing,
using 4 PMTs that
look at the gap from
the sides

We measure both
light and charge as
functions of density,
electric field, and
fraction of TMA/TEA,

25
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OSPREY: “Opportunities for Superior Performance in Rare Event Yields”

S2/S1 responses fierods |

\vessel_cylinder

WLS plate,
cathode

barrel

WLS

plates
Wis Plate, . . "
anode “WIMP directionality”
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l0g40(Sy/S5)

Simulation: electron recoils in pure HPXe,
F = 0.15, 10% optical efficiency
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Uncertainties

WIMPs exist with mass 50 — 300 GeV? Not sure...
Head-tail effect? Not sure...

Penning efficiency? Not sure...
Reduction of Fano factor? Not sure...
How much drift field? Not sure...
How much TMA? Not sure...

Do transfers happen quickly enough? Not sure...
Behavior of TMA in large system? Not sure...

Optimal conditions:
— |ldentical for both WIMP and 0-v BB? Not sure...




Summary

The exploitation of columnar recombination and atomic/
molecular processes in xenon-TMA may permit a
substantial directionality signal in a massive TPC

No visualization of nuclear recoils is necessary

Superb energy resolution for electron recoils
* Unsurpassed electron/nuclear recoil discrimination?
* Intrinsic resolution at 13%Xe Qgg: 0.28% FWHM?

Simultaneous searches may be possible!
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Photo-Luminescence of PMMA

Different WLS nature observed for two PMMA Samples
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S2 = Primary ionization signal Xenon10 WIMP search - data
S1 = Primary scintillation signal
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Gaussian behavior persists at x10 number of events
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Enemy: TMA Geminate Recombination

Xe,  + Xe = Xe + heat
9 Xe* @ruunm— :

Xe* + TMA = Xe + TMA™ + e” (Penning effect)
Xe" + TMA = Xe* + TMA" (Charge exchange)

TMA™ + e = TMA* = TMA + photon (~300nm)
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0- v BB3: Energy resolution is critical!

|deal case: 0-v signal appears as a narrow peak

Rate

0 (X electron energy) Q-value

OE/E <1% FWHM is needed for separation from 2- v background,
and to avoid nearby 7 -ray lines such as from 214Bi
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ADC Value

Complex topologies are common:

multiple Compton scatters, followed by a photoelectric event
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The x-ray peaks around ~30 keV
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