Columnar Recombination: a tool for nuclear recoil directional sensitivity in dense xenon gas

David Nygren Lawrence Berkeley National Laboratory

Cygnus 2013 Toyama

Topics

- How <u>Columnar Recombination</u> may display a sensitivity to the angle between nuclear recoil direction and drift field <u>E</u> in a gaseous TPC
- How Fluorescent Penning Molecules may optimize Columnar Recombination sensitivity
- How to extrapolate this idea to ton-scale
- How this idea can also serve $0-v \beta\beta$ search

Excellent energy resolution in Xenon Gas

For ρ <0.55 g/cm³, energy resolution from ionization is "intrinsic"

New result: Energy resolution $\delta E/E = 1\%$ FWHM for ¹³⁷Cs 662 keV γ -rays in xenon!

This result shows that fluctuations are "normal" in HPXe

What is **Columnar Recombination?**

- <u>Columnar Recombination (CR) occurs when:</u>
 - A drift electric field *E* exists;
 - Tracks are highly ionizing;
 - Tracks display an approximately linear character;
 - The angle α between *E* and track is small:
 - **Recombination** ≈ dot-product of vectors E and "track"

CR Exists!

Evidence for columnar recombination in **α-particle** tracks in dense xenon gas.

FWHM depends on E-field and density!

Bolotnikov & Ramsey NIM **A 428** (1999) pp 391-402

G. C. Jaffe: Annalen der Physik, **42,** p 303, (1913)

Fig. 5. FWHM of the peaks in pulse-height spectra of the amplitude of the light signals versus the electric field strength measured at 0.08 g/cm³ (diamonds), 0.18 g/cm³ (squares), 0.33 g/cm³ (circles), and 0.74 g/cm³ (triangles).

Sidereal variation of directionality signal

Two Vectors:

1. Nuclear recoil Galactic flux direction is "fixed"

2. TPC electric field: Sidereal rotation

No signal if flux is aligned with polar axis of rotation!

Nuclear recoils: Vector or... ??

SRIM: 200 Xenon 30 keV nuclear recoil events in HPXe Xenon – unweighted by energy loss

Cygnus 2013 Toyama

What is the optimum Xe density?

- Define (*electrostatic*) Columnarity "C"
- $C = \mathcal{R}/r_0$ - \mathcal{R} = the nuclear recoil track *range*
 - r_0 = Onsager radius r_0 = $e^2/\epsilon \mathcal{E}$, where \mathcal{E} is electron energy (usually taken as kT)
 - in xenon gas for $\rho \approx 0.05$ g/ cm³:
 - r₀ ~ 70 nm
 - $\mathcal{R} \sim 2100 \text{ nm}$ for 30 keV nuclear recoil (SRIM result)
 - *C* ≈ *30* in this example

Columnarity "C" is key

But: Onsager spheres overlap at this density, so we should consider an "Onsager tube" of larger radius:
 r ≈ (3 - 5) x r₀

We want C to be fairly large, i.e. C > 10

- This condition is probably met for KE ≥ 20 keV in xenon gas for ρ ≈ 0.05 g/ cm³, or less
 - ~2% of LXe density
 - Hopeless for LXe density: $\rho = 3.1 \text{ g/ cm}^3 \rightarrow \text{C}<1$

Recombination Signal: R

- The signal **R** is fluorescence (scintillation)
 - Observed in noble gases and some molecules
 - Noble gas: VUV (85 173 nm) difficult,...
 - Desired: Recombination signal is UV, not VUV
 - Molecular fluorescence: 280 500 nm
 - Very few gaseous molecular candidates:
 - Trimethylamine (TMA)
 - Triethylamine (TEA)
 - Tetrakis-dimethylamino-ethylene (TMAE)
 - Others?

Nuclear Recoils: extracting directionality

- Rapidly falling energy spectrum of recoils
 - Kinetic Energies < 40 keV for xenon
 - But, Head-on collisions have more energy
- Substantial scattering along trajectory
 - But, where directionality is retained, energy loss high
 - Majority of energy lost to "heat" quench factor ~5
- Ambipolar diffusion holds most of the electron population
 - A few primary electrons wander off and are lost
- Excitations outnumber ionizations by large factor
- Primary excitations contain no directional information!
 What to do! ?

Exploit Atomic/Molecular Dynamics

- Primary Xe excitations: these must be converted to ionization – to serve as recombination sites!
 - Use Penning effect: excitations \rightarrow ionization
 - Xenon: TMA (and maybe TEA) are candidates
- Primary Xe ions: Xe⁺ are rapidly neutralized by charge exchange with Penning molecules
 - Ionization potential of TMA ≤ first excited state of Xe*
 - Ionic image transformed to TMA⁺ molecular image
- Columnar recombination occurs on TMA⁺ ions

Atomic/Molecular Gymnastics

$$Xe_{nr} + Xe \rightarrow Xe + heat$$

 $\rightarrow Xe^{*}$
 $\rightarrow Xe^{+} + e^{-}$

Xe^{*} + TMA \rightarrow Xe + TMA⁺ + e⁻ (Penning effect) Xe⁺ + TMA \rightarrow Xe^{*} + TMA⁺ (Charge exchange)

 $TMA^+ + e^- \rightarrow TMA^* \rightarrow TMA + photon (~300nm)$

Fluorescence spectrum of tertiary amines

Fig. 4. Vapour-phase fluorescence spectra of TMA, TEA and TPA at excitation wavelengths indicated.

TMA in xenon retains same fluorescence spectrum up to at least 10 bars

Detecting Directionality

- Columnar Recombination with TMA leads to UV
 - TMA, TEA, fluoresce strongly in 280 330 nm band
- The Directionality signal is contained in the ratio of recombination/ionization = R/I
 - More recombination implies less ionization & vice versa
- R signal is intrinsically optical
 - Convert I signal to scintillation by electroluminescence
- All signals detected optically
 - I signal is separated in time by drift interval

Conceptual Advantage

– No track visualization required !

- **R/I** determined <u>before</u> drift
- Simplified readout plane possible
- TPC scale can be arbitrarily large

Figure of Merit: $\mathcal{M} = V_{det}/V_{track}$

 $M \sim 10m^3/10\mu m^3 \sim 10^{18}$ for CR-based system

Efficient detection of the R signal

- Gas-phase TPC is very large...
- Use wavelength-shifting (WLS) plastic
 - Cover the TPC interior <u>completely</u> with WLS
 - Maximum efficiency of WLS occurs at 300 nm
 - TMA UV matches WLS <u>optimum</u> wavelength!
 - More than 50% is internally captured in gas interface
 - Pipe light to small # of PMTs, shielded by copper

PMTs shielded by copper ring

WLS plate behind anode

Arisaka et al

the "TEA-pot"

Basic responses measurements:

A parallel-plate ionization chamber with optical sensing, using 4 PMTs that look at the gap from the sides

We measure both light and charge as functions of density, electric field, and fraction of TMA/TEA,

OSPREY: "Opportunities for Superior Performance in Rare Event Yields"

Simulation: electron recoils in pure HPXe, F = 0.15, 10% optical efficiency

Uncertainties

- WIMPs exist with mass 50 300 GeV? Not sure...
- Head-tail effect? Not sure...
- Penning efficiency? Not sure...
- Reduction of Fano factor? Not sure...
- How much drift field? Not sure...
- How much TMA? Not sure...
- Do transfers happen quickly enough? Not sure...
- Behavior of TMA in large system? Not sure...
- Optimal conditions:

– Identical for both WIMP and 0-v $\beta\beta$? Not sure...

Summary

- The exploitation of <u>columnar recombination</u> and <u>atomic/</u> molecular processes in xenon-TMA may permit a substantial directionality signal in a massive TPC
- No visualization of nuclear recoils is necessary
- Superb energy resolution for electron recoils
 - Unsurpassed electron/nuclear recoil discrimination?
 - Intrinsic resolution at ¹³⁶Xe $Q_{\beta\beta}$: 0.28% FWHM?
- Simultaneous searches may be possible!

Thanks to LBNL HP Xe TPC Group:

Vic Gehman (PD), Azriel Goldschmidt (NSD), Tom Miller (ME TECH), Carlos Oliveira (Post-doc), Josh Renner (GSRA), Derek Shuman (ME), Jim Siegrist (part-time – now at DOE) + Visitors & Undergrads

And many Colleagues in NEXT-100

Thanks to LBNL HP Xe TPC Group:

Vic Gehman (PD), Azriel Goldschmidt (NSD), Tom Miller (ME TECH), Carlos Oliveira (Post-doc), Josh Renner (GSRA), Derek Shuman (ME), Jim Siegrist (part-time – now at DOE) + Visitors & Undergrads

And many Colleagues in NEXT-100

Photo-Luminescence of PMMA

Different WLS nature observed for two PMMA Samples

Caltech Crystal Laboratory

S2 = Primary ionization signal S1 = Primary scintillation signal

Xenon10 WIMP search - data

Gaussian behavior persists at x10 number of events

Enemy: TMA Geminate Recombination

$$Xe_{nr} + Xe \rightarrow Xe + heat$$

 $\rightarrow Xe^{*}$
 $\rightarrow Xe^{+} + e^{-}$

Xe^{*} + TMA \rightarrow Xe + <u>TMA⁺ + e⁻</u> (Penning effect) Xe⁺ + TMA \rightarrow Xe^{*} + TMA⁺ (Charge exchange)

 $TMA^+ + e^- \rightarrow TMA^* \rightarrow TMA + photon (~300nm)$

0- ν ββ: Energy resolution is critical!

Ideal case: 0-v signal appears as a narrow peak

 δ E/E <1% FWHM is needed for separation from 2- ν background, and to avoid nearby γ-ray lines such as from ²¹⁴Bi

LBNL-TAMU TPC

11: 1mm

Complex topologies are common:

multiple Compton scatters, followed by a photoelectric event

The x-ray peaks around ~30 keV

Cygnus 2013 Toyama

