Recent Progress on D³ The Directional Dark Matter Detector

- **Motivation**
- **Detection Principle**
- Performance of prototypes
- Plans for future
- **Related** activities

Sven E. Vahsen, University of Hawaii

D³ - Directional Dark Matter Detector

- Investigating feasibility of directional DM search w/ micro-pattern gas detectors
- Technology also of interest for detecting neutrons and charged particles
- Small (1-10 cm³) prototypes built at LBNL and U. Hawaii
- Ongoing since ~Fall 2010

Team at U. Hawaii and Berkeley Lab

Igal Jaegle Postdoc

Jared Yamaoka Postdoc

Marc Rosen Mechanical Engineer

John Kadyk

Maurice Garcia-Sciveres

Michael Hedges Graduate Student

Ilsoo Seong Graduate Student

Steven Ross Graduate Student

Kamaluoawaiku Beamer Undergraduate Student

Thomas Thorpe Graduate Student

Sven E. Vahsen

Mayra Lopez-Thibodeaux (UC Berkeley Student)

Kelsey Oliver-Mallory (UC Berkeley Student)

UNIVERSITY

Motivation for Directional WIMP Search

Three possible signatures of direct DM detection:

1. Excess count rate over predicted BG

- Requires ultra-clean detectors & precise understanding of remaining backgrounds
- neutrons produce identical events

2. Annual modulation of count rate

- due to motion of earth around sun
- expect %-level effect → requires thousands of signal events & < %-level control of BGs
- 3. Daily oscillation in mean recoil direction
 - due to rotation of earth
 - expect large effect, only ~10 events required
 - no known background with this signature

- Detector with directional sensitivity could provide unambiguous evidence for WIMPs
- Post-WIMP-discovery, a (huge) directional detector could perform WIMP astronomy
- A small, m³-scale, directional detector with low energy threshold would be relevant today
 could investigate the recent hints for low-mass (~10-GeV) WIMPS

Directional Recoil Detection in Gas TPCs

- Several efforts based on lowpressure gas time projection chambers: DRIFT, DMTPC, MIMAC, NEWAGE, D³
- Benefits
 - Directional sensitivity
 - Can ID recoiling particle
 - Easy to change target nucleus
- Drawback
 - low target density → harder to reach large target mass required for relevant sensitivity
- D³
 - Charge amplified with Gas Electron Multipliers (GEMs)
 - Charge detected with pixel chip
 - Charge focusing potential for significant cost reduction of large detectors

Charge Amplification and Detection in D³

- Drift charge amplified with double layer of GEMs gain ~20k at 1 atm
- Detected with pixel electronics threshold ~2k e⁻, noise ~ 100 e⁻

Advantages of this approach

- Full 3D tracking w/ ionization measurement for each space-point (head/tail sensitivity)

 improved WIMP sensitivity and rejection of alpha particle backgrounds
- Pixels ultra-low noise (~100 electrons), self-triggering, and zero suppressed
 → virtually noise free at room temperature → low demands on DAQ
- High-single electron efficiency \rightarrow suitable for low-mass WIMP search

CYGNUS 2013

Advantage of 3D Tracking

Simulation of the range vs. energy profiles for alpha particles (red) and fluorine recoils (black) in 75 Torr CF_4 .

Left: With only 2D range reconstruction, a degeneracy exists between steepangle alphas and nuclear recoils of the same energy.

Right: With 3D tracking, the alpha and fluorine recoil bands separate. In this simulation, the angular resolution was 5°. The blue dashed lines represent a cut above 50 keV that achieves a 10^2 alpha rejection with an 86% fluorine recoil acceptance.

3D tracking: much improved rejection of alpha-particle backgrounds

Advantage of Low Track Energy Threshold

- Preliminary evaluation: 3-m³ detector could achieve *directional sensitivity* to (controversial) ~10 GeV WIMPS
- Golden scenario if DAMA/LIBRA were due to WIMPs:
 - observe ~1000s of nondirectional events (can observe yearly oscillation)
 - use subset (~100) of these to search for daily directional oscillation, to determine if BG or WIMPs

http://arxiv.org/abs/1110.3401

WIMP mass [GeV/c²] Estimated sensitivity to spin-independent WIMPnucleon scattering, $3-m^3$ directional dark matter detector, running for 3 years with 33 cm drift length and CF₄ gas, for four different track reconstruction thresholds and for non-directional analysis.

Track energy treshold as low as 10 keV crucial for detecting 10 GeV WIMPS!

CYGNUS 2013

Characterization of Current Prototype - $D^{3}\mu$

- Stable operation for >1 year, large datasets recorded
 - 1. commissioning w/ ArCO₂; muons, x-rays, α -particles ('11,'12)
 - 2. detailed calibration & directional neutron detection w/ HeCO₂ (Fall '12-now)
- Low-pressure operation w/ CF₄, WIMP search surface-run starting this summer

CYGNUS 2013

Gain and Gain Resolution of Double GEM

gain vs. GEM voltage

- Sufficient gain to achieve single-electron sensitivity if needed
- Good gain resolution for MeV-scale signals, adequate even for few-keV signals!

CYGNUS 2013

Gain Stability

- Measured gain continuously for 5 days, to test for possible gain degradation due to decreasing gas purity
- Not observed (=good!)
- Instead observed +/- 2% gain variation tightly correlated with lab temperature; guessing this is due to NIM electronics

Excellent gain stability without flowing gas

Gain Resolution w/ CF₄ @ Berkeley Lab

DM200 CF4 Fe55 over Chip, FC, 759 torr 2Pgd 4/30 G=50, LLD=500, Tint=5.0, Tdiff=2.0 [6000,3600,650,650]

- Detectors work well with CF₄
- May need 3rd GEM to get gain > 1000 at low pressure
- Figures
 - Fe-55 x-rays
 - 12 cm drift in field cage
 - Pulseheight analyzer

3D Point resolution

- > 10k cosmic events recorded.
- Use such events to measure detector point resolution (<=200 µm)

Based on measured point resolution, expect angular resolution on nuclear recoils ~1 degree

Angular and Energy Resolution, nuclear recoils

- Selected events clearly point back to a single source
- No BG after good-track selection
- consistent with $\sigma_{\phi,\theta}$ detector <=1°

Energy Resolution - Surprises

- Energy resolution significantly worse than gain resolution when measured over entire pixel chip area
- Surprising, as both GEM gain and pixel chip calibration measured independently to be uniform (<5%) and stable in time (<2%)
- If we restrict only to small region of chip, energy resolution approaches ~10% as expected (not shown)

Energy VS Time and Position

- ...More detailed investigation revealed: even though GEM gain and pixel calibration are stable & uniform, effective gain is time and position dependent
- Hypothesis: charge-up of pixel chip surface distorting E-fields and affecting charge collection efficiency
- Supporting evidence:
 - Higher gain → faster gain reduction
 - Gain recovers when E-field turned off

Studying Time / Position Dependence I

rectangular aluminum pads deposited on top of chip, grounded during operation

ATLAS FE-I3

Fig. 6. Microphotograph of the surface of the ATLAS FEI3 chip after deposition of gold. One of the 50 x 400-micron cells is or med. The entire chip, containing 2880 pixel cells, is 7.2 mm by 10.8 mm in surface dimensions and is 700 microns in thickness.

FE-I4: depositing a variety of metal pad shapes to study effect on effective gain (see backup slides)

ATLAS FE-I4 Wafer

SiOxide between pad is insulating. Charging up at high gains & rates? \rightarrow may explain both position and time-dependence

CYGNUS 2013

Studying Time / Position Dependence II

CAD design

3D-printed model

- Undergrad student designed 2D-motion stage for scanning collimated Fe-55 calibration source across chip
- Will allow us to measure position and time dependence of energy scale versus metal pad shape

machined, final aluminum parts

Directional Neutron Detection

HeC0₂ at p=1atm

- Cf-252 neutron source pointed at vacuum vessel. Can we locate it?
- Rough agreement with simulation
- Expect broad recoil-angle distribution
- When source present, observe increased energy-flux in expected direction (Θ=90, φ=20-30 degrees)
- Encouraging, but analysis still ongoing
- We have already recorded a number of additional datasets with source at different angles, see if we can track it.

Next Generation Detectors

Ingredient

- 1. larger pixel chips
- 2. electrostatic focusing of drift charge
- 3. existing ATLAS DAQ
- 4. negative ion drift

Next Prototype, 2013: D³-milli

- Prototype dedicated to studying next generation pixel electronics, trigger, charge focusing
- 10x10 cm GEMs (CERN), 2x2cm Pixel Chip (ATLAS-FEI4), SEABAS DAQ System from KEK

Top-view of the 12-liter prototype, which implements four unit cells inside a common field cage. The shown geometry assumes a charge focusing factor of 1.2 before the GEMs, and a charge focusing factor of 5.0 between the GEMs and pixel chips.

Two possible ways to reduce # chips

Larger pixel chips

 ATLAS FE-I4: 10 x more pixels per dollar

Focusing of drift charge

- advantage: read out large volume with small readout plane
- retains key advantage of pixels: small size → low capacitance → low noise
- status: First experimental test promising, but more detailed analysis needed

Detectors with FE-I4 Pixel Chip

- FE-I4 single chip TPC card developed at Hawaii
- LBNL currently attempting first operation with this chip in their TPC
- Hawaii to operate larger mD³ detector this fall components under production
 - Field cage

• FE-I4 TPC card

First events with larger pixel chip; FE-I4

- Recorded at Berkeley Lab just last Friday 6/7/2013
- Theses are self-triggered raw data no noise suppression!
- Looks better than FE-I3 no column dependence

Broader Impacts: Neutrons at SuperKEKB

Fast neutrons are important beam background component at SuperKEKB e^+e^- collider \rightarrow Will measure with eight neutron-TPCs; 25 cm drift lengths, 4 pixel chips each

CYGNUS 2013

Conclusion

- m³-scale gas TPC w/ low energy threshold may be sufficient to investigate hints for low-mass WIMPs w/ directionality
 - GEM + pixel readout promising technology for this application
 - 3D tracking, single electron sensitivity
- Characterization of 1-cm³ prototype "D³-micro" nearly complete
 - Excellent performance at 1 atm
 - Some mysteries related to energy scale still under investigation
- Moving on to low-pressure operation, larger detectors, and next generation pixel chip this year

He-recoil in $HeCO_2$ at p=1atm

