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Cosmic ray track (~7mm) 
detected with µD3 prototype 

• Motivation 
• Detection Principle 
• Performance of prototypes 
• Plans for future 
• Related activities 



D3  - Directional Dark Matter Detector 
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Berkeley Lab Hawaii 
LBNL                              Hawaii 

• Investigating feasibility of directional DM search w/ micro-pattern gas detectors 
• Technology also of interest for detecting neutrons and charged particles 
• Small (1-10 cm3) prototypes built at LBNL and U. Hawaii 
• Ongoing since ~Fall 2010 

D3 - micro 
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Motivation for Directional WIMP Search 
Three possible signatures of direct DM 
detection: 
 
1. Excess count rate over predicted BG 

• Requires ultra-clean detectors & precise 
understanding of remaining backgrounds 

• neutrons produce identical events 
2. Annual modulation of count rate  

• due to motion of earth around sun 
• expect %-level effect  requires thousands of 

signal events & < %-level control of BGs  
3. Daily oscillation in mean recoil direction  

• due to rotation of earth 
• expect large effect, only ~10 events required 
• no known background with this signature  
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detector 

Xenon100 

DAMA/LIBRA 

• Detector with directional sensitivity could provide unambiguous evidence for WIMPs 
• Post-WIMP-discovery, a (huge) directional detector could perform WIMP astronomy 
• A small, m3-scale, directional detector with low energy threshold would be relevant today 

-  could  investigate the recent hints for low-mass (~10-GeV) WIMPS 

DRIFT 

 



Directional Recoil Detection in Gas TPCs 

• Several efforts based on low-
pressure gas time projection 
chambers: DRIFT, DMTPC, MIMAC, 
NEWAGE, D3 

• Benefits 
– Directional sensitivity 
– Can ID recoiling particle 
– Easy to change target nucleus 

• Drawback 
– low target density  harder to reach 

large target mass required for relevant 
sensitivity 

• D3  
– Charge amplified with Gas Electron 

Multipliers (GEMs) 
– Charge detected with pixel chip 
– Charge focusing -  potential for 

significant cost reduction of large 
detectors 
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Advantages of this approach 
• Full 3D tracking w/ ionization measurement for each space-point (head/tail sensitivity) 
 improved WIMP sensitivity and rejection of alpha particle backgrounds 

• Pixels ultra-low noise (~100 electrons), self-triggering, and zero suppressed   
 virtually noise free at room temperature  low demands on DAQ  

• High-single electron efficiency  suitable for low-mass WIMP search 

Charge Amplification and Detection in D3 

• Drift charge amplified with double layer of GEMs - gain ~20k at 1 atm 
• Detected with pixel electronics - threshold ~2k e-, noise ~ 100 e- 

Gas 
Electron 
Multiplier 
(GEM) 

Pixel Electronics 

50 μm 

• ATLAS FE-I3 
• 50x400 μm pixels  
• Sampling at 40 MHz 

+ = 

Cosmic ray track (~7mm) 
detected with Hawaii prototype 

size of each bubble shows 
amount of ionization measured 

Note absence  
of noise hits 

~2keV 
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Advantage of 3D Tracking 

Simulation of the range vs. energy profiles for alpha particles (red) and fluorine 
recoils (black) in 75 Torr CF4.   
Left:  With only 2D range reconstruction, a degeneracy exists between steep-
angle alphas and nuclear recoils of the same energy.   
Right:  With 3D tracking, the alpha and fluorine recoil bands separate. In this 
simulation, the angular resolution was 5◦.  The blue dashed lines represent a 
cut above 50 keV that achieves a 102 alpha rejection with an 86% fluorine 
recoil acceptance.  
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3D tracking: much improved rejection of alpha-particle backgrounds  



Advantage of Low Track Energy Threshold 

• Preliminary evaluation: 3-m3 

detector could achieve 
directional sensitivity to 
(controversial) ~10 GeV 
WIMPS 

• Golden scenario - if 
DAMA/LIBRA were due to 
WIMPs:  

– observe ~1000s of non-
directional events (can observe 
yearly oscillation) 

– use subset (~100) of these to 
search for daily directional 
oscillation, to determine if BG 
or WIMPs 

 
http://arxiv.org/abs/1110.3401 

Estimated sensitivity to spin-independent WIMP-
nucleon scattering, 3-m3 directional dark matter 
detector, running for 3 years with 33 cm drift 
length and CF4 gas, for four different track 
reconstruction thresholds and for non-directional 
analysis. 
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Track energy treshold as low as 10 keV crucial for detecting 10 GeV WIMPS! 

 



Cf-252 
neutron  
source 

Vacuum vessel with pre-prototype detector inside 

Characterization of Current Prototype - D3µ 
Tiny! - 1 cm3 
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• Stable operation for >1 year, large datasets recorded 
1. commissioning w/ ArC02; muons, x-rays, α-particles (‘11,’12)  
2. detailed calibration & directional neutron detection w/ HeC02 (Fall ’12-now) 

• Low-pressure operation w/ CF4, WIMP search surface-run starting this summer 

Inside vacuum vessel 



Gain and Gain Resolution of Double GEM 
• ArC02 at p=1atm 
• (HeC02 results, not 

shown, are slight better) 
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σgain<8% at 5.9 keV 

σgain<5% at ~ 5 MeV  

• Sufficient gain to achieve single-electron sensitivity if needed 
• Good gain resolution for MeV-scale signals, adequate even for few-keV signals! 

Po-210;  
5.3 MeV  
alphas 

high gain (>104), 
stable operation 
(w/o sparking) for 
weeks at a time 

Fe-55 x-rays 

σgain<11%  at 3 keV 



Excellent gain stability without flowing gas 

Gain Stability 

• Measured gain continuously for 5 
days, to test for possible gain 
degradation due to decreasing 
gas purity   

• Not observed (=good!) 
• Instead observed +/- 2% gain 

variation tightly correlated with 
lab temperature; guessing this is 
due to NIM electronics 
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Gain Resolution w/ CF4 @ Berkeley Lab 

• Fe-55 x-rays 
 

• Detectors work well 
with CF4 

• May need 3rd GEM to 
get gain > 1000 at low 
pressure 

• Figures 
– Fe-55 x-rays 
– 12 cm drift in field cage 
– Pulseheight analyzer 
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σgain=20% at 5.9 keV 

200 torr 
 gain = 2059 
 

760 torr 
Gain =2381 
σgain=21% at 5.9 keV 
 
 



3D Point resolution 

Based on measured point resolution, expect angular 
resolution on nuclear recoils  ~1 degree 

• > 10k cosmic events recorded.  
• Use such events to measure detector 

point resolution (<=200 μm) 
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ArC02 at p=1atm 



Angular and Energy Resolution, nuclear recoils 

Red: selected as good events 

• Selected events clearly point back to a single source 
• No BG after good-track selection 
• consistent with σφ,θ detector <=1◦ 
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Po-210 α-source inside vaccum vessel. How well can we locate it? 
HeC02 at p=1atm 



Energy Resolution - Surprises  

• Energy resolution 
significantly worse than gain 
resolution when measured 
over entire pixel chip area 

• Surprising, as both GEM gain 
and pixel chip calibration 
measured independently to 
be uniform (<5%) and stable 
in time (<2%) 

• If we restrict only to small 
region of chip, energy 
resolution approaches ~10% 
as expected (not shown) 
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Energy VS Time and Position 

• …More detailed investigation 
revealed: even though GEM 
gain and pixel calibration are 
stable & uniform, effective 
gain is time and position 
dependent 

• Hypothesis: charge-up of pixel 
chip surface distorting E-fields 
and affecting charge collection 
efficiency 

• Supporting evidence:  
– Higher gain  faster gain 

reduction 
– Gain recovers when E-field 

turned off 
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Studying Time /Position Dependence I 
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ATLAS FE-I4 Wafer 
ATLAS FE-I3 

rectangular aluminum pads 
deposited on top of chip,  
grounded during operation 

SiOxide between pad is insulating. Charging up at high gains & rates? 
 may explain both position and time-dependence  

FE-I4: depositing a variety of metal 
pad shapes to study effect on effective gain 
(see backup slides)  



Studying Time /Position Dependence II 
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• Undergrad student 
designed 2D-motion stage 
for scanning collimated Fe-
55 calibration source 
across chip 

• Will allow us to measure 
position and time 
dependence of energy 
scale versus metal pad 
shape 

CAD design 

3D-printed model 

machined, final 
aluminum parts 

 



Directional Neutron Detection 

• Cf-252 neutron source pointed at 
vacuum vessel. Can we locate it? 

• Rough agreement with simulation 
• Expect broad recoil-angle 

distribution 
• When source present, observe 

increased energy-flux in expected 
direction (ϴ=90, φ=20-30 
degrees)  

• Encouraging, but analysis still 
ongoing 

• We have already recorded a 
number of additional datasets 
with source at different angles, to 
see if we can track it. 
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HeC02 at p=1atm 



Next Generation Detectors 

µD3  (1cm3 ) 

Built, stable  
operation for > 1 year 

building this year planned 

mD3  (~10 liters) D3 (~1m3 ) 

Ingredient 
1. larger pixel chips  
2. electrostatic focusing of drift charge  
3. existing ATLAS DAQ  
4. negative ion drift 
 

1 pixel chip 4 pixel chips 
~400 pixel chips 
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Next Prototype, 2013: D3-milli 
• Prototype dedicated to studying next generation pixel electronics, 

trigger, charge focusing 
• 10x10 cm GEMs (CERN), 2x2cm Pixel Chip (ATLAS-FEI4),  

SEABAS DAQ System from KEK 

50 cm 
field cage 

pixel chip 

charge focusing 
copper pattern  

vacuum vessel 

GEM (two layers) 

 
               

Top-view of the 12-liter prototype, which implements four unit cells inside a 
common field cage. The shown geometry assumes a charge focusing factor 
of 1.2 before the GEMs, and a charge focusing factor of 5.0 between the 
GEMs and pixel chips. 
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Two possible ways to reduce # chips 

Larger pixel chips  
– ATLAS FE-I4: 10 x more 

pixels per dollar 
Focusing of drift charge  

– advantage: read out large 
volume with small 
readout plane 

– retains key advantage of 
pixels: small size  low 
capacitance  low noise  

– status: First experimental 
test promising, but more 
detailed analysis needed 
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ATLAS FE-I3 
50 x 400 µm pixels  
7.4 by 11.0 mm 

ATLAS FE-I4 
50 x 250 µm pixels  
20.3 by 19.2 mm 

active active 

 
S. Ross et al., “Charge-
Focusing Readout of 
Time Projection 
Chambers”, 
proceedings of IEEE 
NSS 2012  

 



Detectors with FE-I4 Pixel Chip 

• Field cage • FE-I4 TPC card 
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• FE-I4 single chip TPC card developed at Hawaii 
• LBNL currently attempting first operation with this chip in their TPC 
• Hawaii to operate larger mD3 detector this fall – components under production 



First events with larger pixel chip; FE-I4 
• Recorded at Berkeley Lab just last Friday - 6/7/2013 
• Theses are self-triggered raw data – no noise suppression! 
• Looks better than FE-I3 – no column dependence 
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Low gain 
Medium gain (=FIXME) 

5.9 keV 

5.9 keV 

Noise hit 

 



Broader Impacts: Neutrons at SuperKEKB 
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Fast neutrons are important beam background component at SuperKEKB e+e- collider 
 Will measure with eight neutron-TPCs; 25 cm drift lengths, 4 pixel chips each 

Commissioning Phase I – Jan 2015 

Commissioning Phase II – Summer 2015 

SuperKEKB beam lines 

One TPC 

Belle II 
detector 



Conclusion 

• m3-scale gas TPC w/ low energy 
threshold may be sufficient to  
investigate hints for low-mass 
WIMPs w/ directionality 
– GEM + pixel readout promising 

technology for this application 
– 3D tracking, single electron 

sensitivity 
• Characterization of 1-cm3 

prototype “D3-micro” nearly 
complete 
– Excellent performance at 1 atm 
– Some mysteries related to energy 

scale still under investigation 
• Moving on to low-pressure 

operation, larger detectors, and 
next generation pixel chip this 
year 
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He-recoil in HeC02 at p=1atm 
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