MPGD R&D Activity in Japan

Kobe University Atsuhiko Ochi

10 June. 2013 Cygnus 2013 workshop at Toyama

What's MPGD ? MPGD: Micro Pattern Gaseous Detector • Micromegas

- GEM
- Thick-GEM, Hole-Type Detectors and RETGEM
- MPDG with CMOS pixel ASICs ("InGrid")

Drift plane

←____400 µ.tz **→**

• Micro-Pixel Chamber (µPIC)

2

Properties of MPGDs

- Gas multiplication and/or read out are performed by "micro pattern" instead of conventional wire chambers
- Fine patterning realized ...
 - Fine position resolution (< 100 micron)
 - Fine timing resolution (< 10nsec)
 - High operational capacity for intense irradiation (> 10⁷ counts/mm)

MPGD Technologies for Energy Frontier (sLHC, LC)

Ongoing R&D Projects using MPGDs in the framework of HEP Experiments

	Vertex	lnner Tracker	PID/ photo- det.	EM CALO	HAD CALO	MUON Track	MUON Trigger
ATLAS	GOSSIP /InGrid	GOSSIP /InGrid				Micromegas	Micromegas
CMS						GEM	GEM
ALICE		TPC (GEM)	VHPMID (CsI- Thgem)				
Linear Collider		TPC(MM, GEM, InGrid)			DHCAL (MM,GEM, THGEM)		

Growing Demand for the Micro-Pattern Gaseous Detectors

... MPGD are mostly used/proposed for high-rate tracking and photodetectors

- COMPASS Upgrade:
- > Micromegas and GEM detectors for high-rate tracking
- > Photon Detectors Using THGEM technology for RICH 1

KLOE2 Upgrade:

> Large-area cylindrical GEMs for Inner Tracker

• RHIC Upgrades:

- > GEM Tracking for STAR Experiment
- > GEM Tracking for PHENIX Experiment(+ drift micro-TPC); development of Ring Imaging version of HBD for particle ID

• Future JLAB Projects:

- > Thin-Curved Micromegas for JLAB/CLAS12
- > GEM Tracker for JLAB/Hall A High Luminosity (SBS) experiments

• Future FAIR Facility:

- > GEM Tracker and GEM TPC for the PANDA Experiment
- > GEM/Micromegas tracking in CBM Muon Chamber (MUCH)

• Future Electron - Ion Collider Facility:

2013/6/10 Tracking and particle ID detectors based on MPGD-technology 5 From M. Titov, 110th LHCC meeting

History of MPGD development in JAPAN

Europe MSGC (ILL, A. Oed) MicroMEGAS (CEA Saclay, Y. Giomataris) GEM (CERN, F. Sauli) **RD51** 000 Japan μ-PIC (A. Ochi, T. Tanimori) Capillary plate (Yamagata U., H. Sakurai) 2D-MSGC (Tokyo Inst. Tech., T. Tanimori) A. Ochi, Cygnus 2013 @ Toyama 2013/6/10

MPGD R&D in JAPAN

(Not even a complete list)

Structure studies

GEM (Gas electron multiplier)

- @Many institutes ... KEK, RIKEN, JAEA, U. Tokyo, Kyoto U., Saga U., TIT, Kinki U., TUAT
- THGEM, Capillary plate,

Yamagata U., TMU, U.Tokyo,

- MicroMEGAS
 - Saga U., Kobe U.
 - μ-PIC (Micro Pixel Chamber)
 - Kyoto U., Kobe U., ICRR,
- Material studies (Substrate (conventional, polyimide))
 - LCP (Liquid crystal polymer)
 - KEK, RIKEN, U.Tokyo, (SiEnergy co.)
 - Glass
 - U.Tokyo (+HOYA), Yamagata U. PTFE
 - Tokyo IRI, RIKEN

Resistive electrodes
Organic material
KEK
Carbon loaded polyimide
Kobe U., RIKEN
Sputtering carbon/metal
Kobe U.

Applications
Particle physics (Acc./ Non Acc.)

Kobe U. KEK, Kinki U. Saga U.

Neution imaging

Kyoto U., KEK

Nuclear physics

TIT, U.Tokyo., JAEA

Astrophysics

Kyoto U., RIKEN

Gas Photomultiplier

Yamagata U, TMU, ICRR

X/gamma ray imaging

Kyoto U., KEK,

A. Ochi, Cygnus 2013 @ Toyama 2013/6/10

µPIC Projects in Kyoto Univ.

Time Resolved X-ray Imaging

Electron tracking Compton Camera

A.Takada et al. NIM-A 546, 2005 p258 A.Takada et al., *J. of the Phys. Soci. of Japan, 78 (2009) Suppl. A, pp. 161-164*

K.Hattori et al. Journal of Synch. Rad. Vol. 16, Part 2, (2009) p231-236.

Gamma Astronomy

Neutron Imaging for J-PARC

Tanimori et al. NIM-A 529, 2004 p373 ID=264(Gaseous detector 11/06 TIPP)

Ochi Cygnus 2013 @ Toyama

Dark Matter Wind Detector(Newage) with Kobe Univ.

H.Nishimura et al., Astropart. Phys., Vol.31, 3, (2009), Pages 185-191

Neutron radiography with GEM (KEK)

2013/6/10

The advantage of the gaseous PMT:

It can achieve a very large effective area with moderate position and timing resolutions.

✓ It can be easily operated under a very high magnetic field. ^{2013/6/10} A. Ochi, Cygnus 2013 @ Toyama

R&D requirements and status

- Now, MPGD has already been used for many applications
- However, there are many requirements for future experiments
 - Protecting from sparks
 - New micro processing technology
 - Large size, mass production
- R&D Approach from ...
 - Material studies on substrate
 - Spark protection using resistive electrodes

MPGD R&D in JAPAN

(Not even a complete list)

Structure studies

GEM (Gas electron multiplier)

- @Many institutes ... KEK, RIKEN, JAEA, U. Tokyo, Kyoto U., Saga U., TIT, Kinki U., TUAT
- THGEM, Capillary plate,

Yamagata U., TMU, U.Tokyo,

- MicroMEGAS
 - Saga U., Kobe U.
 - μ-PIC (Micro Pixel Chamber)
 - Kyoto U., Kobe U., ICRR,
- Material studies (Substrate (conventional, polyimide))
 - LCP (Liquid crystal polymer)
 - KEK DIKEN, U Tokyo, (SiEnergy co.)
 - Glass
 - U.Tokyo (+HOYA), Yamagata U. PTFE
 - Tokyo IRI, RIKEN

Resistive electrodes
Organic material

KEK

Carbon loaded polyimide

Kobe U., RIKEN

Sputtering carbon/metal

Kobe U.

Applications
Particle physics (Acc./ Non Acc.)

Kobe U. KEK, Kinki U. Saga U.

Neutron imaging

Kyoto U., KEK

Nuclear physics

TIT, U.Tokyo., JAEA

Astrophysics

Kyoto U., RIKEN

Gas Photomultiplier

Yamagata U, TMU, ICRR

X/gamma ray imaging

Kyoto U., KEK,

Medical imaging

Kyoto U.

A. Ochi, Cygnus 2013 @ Toyama 2013/6/10

The Glass GEM Univ. Tokyo, Fujiwara group 😚 THE UNIVERSITY OF TOKYO

HOYA

HOYA corporation Innovative Glass Material Developer in Japan

Photo Etchable Glass 3 : PEG3

GEM fabricated with photo-etchable glass

- No outgas
- Stable material

- Substrate:PEG3
- Thickness: 680μm
- Hole diachi, 1удорина Тоуата

Summary of Glass GEM Univ. Tokyo, Fujiwara group

- Succeed in fabricating GEM with new material
 - photo etchable glass
- Effective size: 100 * 100mm²
- Fabricated with PEG3 substrate (HOYA corp.)
- ▶ High Gas gain : 3 × 10⁴ @Ar/CH4 (90:10, 1bar)
- ▶ High Gas gain : 9 × 10⁴ @Ne/CF4 (90:10, 1bar)
- Energy resolution: 15 to 18%
- Glass GEM is a outgas free material : suitable for sealed gas application

A. Ochi, Cygnus 2013 @ Toyama

PTFE-GEM foil

Tokyo IRI, RIKEN Group

PTFE-GEM foil

Tokyo IRI, RIKEN Group

Development of Glass GEM

- Possible applications
 - Neutron counter: no hydrogen -> small background
 - Gaseous PMT: clean material
- <u>Photosensitive Etching Glass: HOYA PEG3C</u>
- Pitch 140 μ m & hole size 70 μ m & thickness 100 μ m
- Reasonable gain & resolution with Ne/CF₄ (90/10) & Ne/ CO2(80/20)

Univ. Tokyo, CNS group

COBRA T-GEM

Univ. Tokyo, CNS group

- Purpose: small ion back flow (IBF~0.25%) for continuous operation of TPC without gating grid at LHC ALICE experiment
- COBRA patterned Thick-GEM
 - 400 μmT / 300 $\mu m\phi$ / 1mm pitch
 - 200 μmT / 150 $\mu m \phi$ / 500 mm pitch
- ANSYS + Garfield simulation
 - Effective ion absorption on the top side for large ΔV_{gap}
- Tests with a X-ray source
- Encouraging result
 - Up to 10 times reduction of lon Back Flow with genergeo ater electrode) < (Voltage of outer electrode) < (Voltage of outer

MPGD R&D in JAPAN

(Not even a complete list)

Structure studies

GEM (Gas electron multiplier)

- @Many institutes ... KEK, RIKEN, JAEA, U. Tokyo, Kyoto U., Saga U., TIT, Kinki U., TUAT
- THGEM, Capillary plate,

Yamagata U., TMU, U.Tokyo,

- MicroMEGAS
 - Saga U., Kobe U.
 - μ-PIC (Micro Pixel Chamber)
 - Kyoto U., Kobe U., ICRR,
- Material studies (Substrate (conventional, polyimide))
 - LCP (Liquid crystal polymer)
 - KEK, RIKEN, U.Tokyo, (SiEnergy co.)
 - Glass
 - U.Tokyo (+HOYA), Yamagata U. PTFE
 - Tokyo IRI, RIKEN

Resistive electrodes

Organic material
KEK
Carbon loaded polyimide
Kobe U., RIKEN
Sputtering carbon/metal
Kobe U.

Applications
Particle physics (Acc./ Non Acc.)

Kobe U. KEK, Kinki U. Saga U.

Neutron imaging

Kyoto U., KEK

Nuclear physics

TIT, U.Tokyo., JAEA

Astrophysics

Kyoto U., RIKEN

Gas Photomultiplier

Yamagata U, TMU, ICRR

X/gamma ray imaging

Kyoto U., KEK,

Medical imaging

Kyoto U.

A. Ochi, Cygnus 2013 @ Toyama 2013/6/10

- GEM readout with resistive foil cover
 - Readout electrodes design is independent from resistive layer.

#	Resistive Material	(MΩ/□)	Insulator	Bond	memo	
1	None				Nothing Attached	
2	Dupont XC100*	2		Silicon		
3	Mitsubishi Material's**	10	Mylar Tape	Spray Glue		
4	Dupont XC100*	2	W-sided Mylar Tape	W-sided Mylar Tape	Mylar: 15µm Thick	

Industrial Technology and Innovation Tokyo University of Agriculture and Technology KEK, TUAT

21

Resistive Electrode GEM (RE-GEM), RIKEN

- Replacing copper electrodes of our <u>LCP-GEM</u> with resistive electrodes.
- Processed by Scienergy
- Resistive kapton foils (Dupont XC series) are
- Holes are drilled by laser

The Gain and Spectrum of RE-GEM (RIKEN)

- The slope of gain curves of RE-GEM is almost the same of LCP-GEM.
- The maximum gain is about 650 due to the discharges.
- The energy resolution is about 20%.

Our RE-GEM is the first GEM with fine pitch and relative high gain.

A. Ochi, Cygnus 2013 @ Toyama

akifumi@crab.riken.jp

Resistive µ-PIC (Kobe Univ.)

MicroMEGAS with sputtering resistive anode (Kobe Univ, ICEPP)

2013/6/10

A. Ochi, Cygnus 2013 @ Toyama

25

Summary

- High activities and variety of MPGD developments in JAPAN
 - GEM, THGEM, MicroMEGAS, μ-PIC
 - Both application developments and basic detector studies are very active.
 - There are many R&D on MPGD structure, material studies
- There are many other activities on MPGD in Japan
 - Electronics, simulation, production tech. etc.
- The MPGD is common technology in particle physics (in a broad sense).
- We should bring our experiments to a successful conclusion by exchanging our knowledge, experience and know-how

Thank You