Measurement of the electron drift velocity for directional Dark Matter detectors

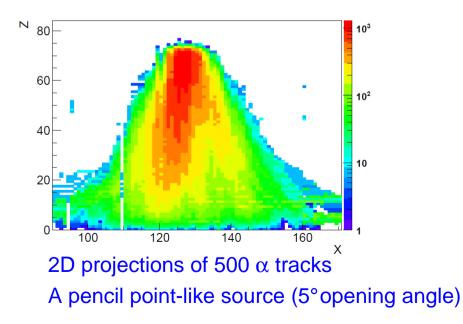
F. Mayet

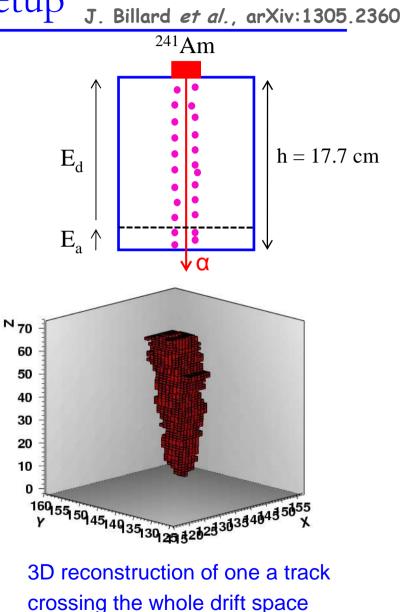
LPSC Université Joseph Fourier Grenoble, France

based on J. Billard et al., arXiv:1305.2360 and J. Billard PhD Thesis

Drift velocity: introduction

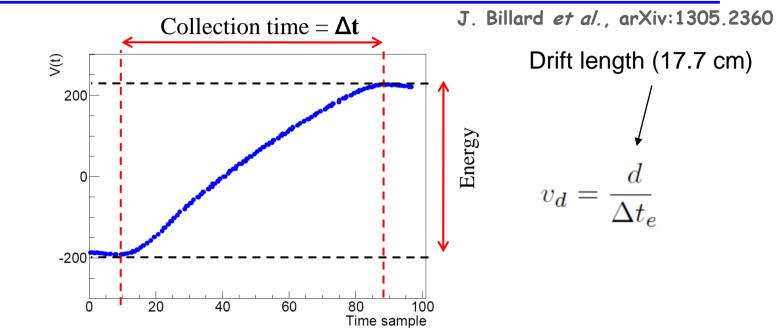
3D Track reconstruction requires a precise knowledge of the electron drift velocity 20 Ζ A 18 16 14 12 10 $\Delta Z = \Delta T \times V_d$ 2 n 55 60 70 50 65 Х


 \rightarrow Magboltz simulations give good result for pure CF₄


differences with real life gas mixture (impurities ?) ?

 \rightarrow Measure the electron drift velocity with our directional prototype

Drift velocity: Experimental setup


- Use of an 5.47 alpha source (²⁴¹Am)
- Alpha particles go through the entire drift chamber
- A starting and an ending point
- Measurement of the 3D tracks and charge profile

F. Mayet - Cygnus 2013, Toyama, Japan

Drift velocity : Straightforward analysis

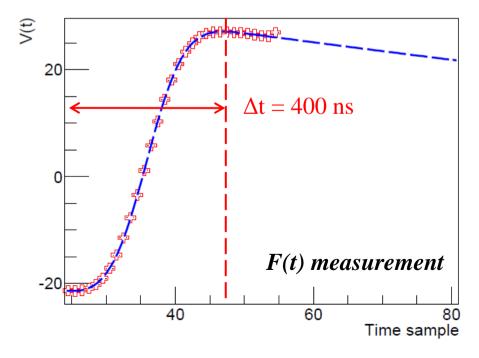
 Δt_e Time difference between α arrival time and last primary electrons

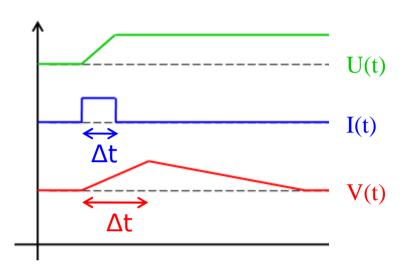
> depends on readout time constants \rightarrow understimation of the drift velocity

 Δt_{c} Time difference between first and last spatial coincidence

depends on amplification electric field (gain)

(Probability to have a spatial coincidence depends on the number of electrons)

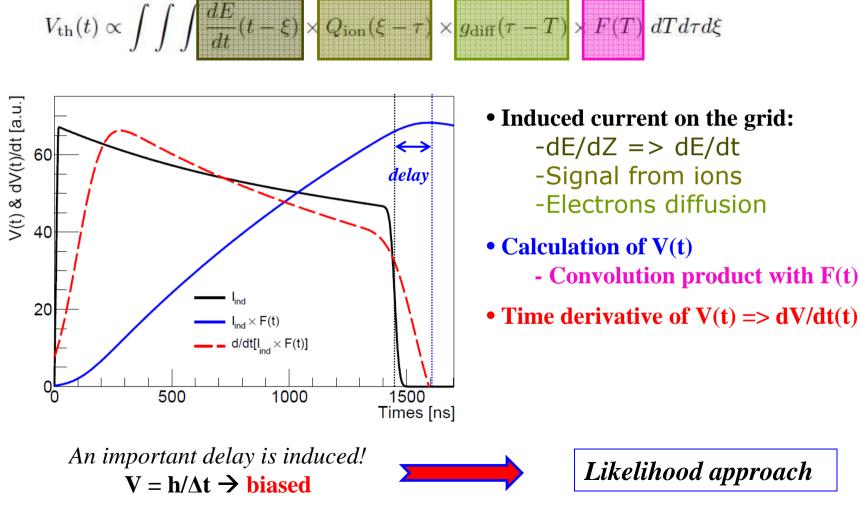

Drift velocity: Electronic signal modelisation (1)


Measurement of the transfer function F(t) of the charge preamp.

- Charge injection on the grid
- Voltage step injected through a capacitor C

$$I_{\rm ind}(t) = C \frac{dU(t)}{dt}$$

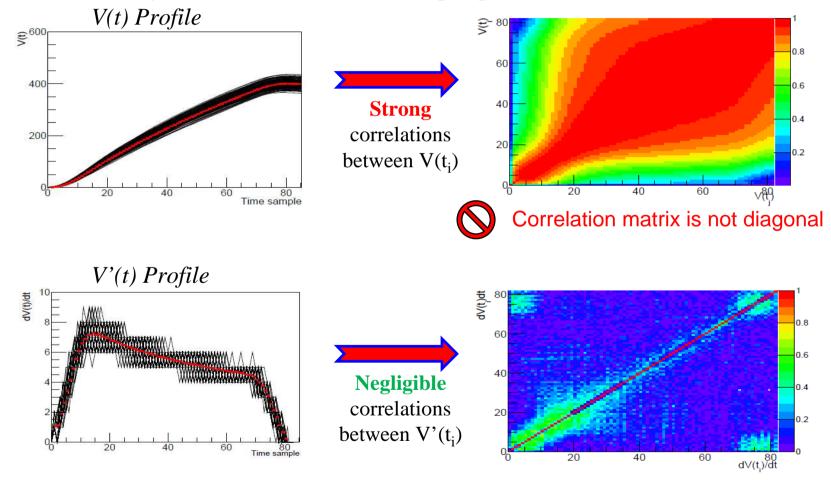
• When $I(t) \rightarrow \delta(t)$ then V(t) = F(t) (pulse response)


Possibility to measure the charge collection profile

F. Mayet - Cygnus 2013, Toyama, Japan

Drift velocity : Electronic signal modelisation (2)

J. Billard et al., arXiv:1305.2360


Modeling the signal output V(t):

Drift velocity: How to fit the data?

J. Billard et al., arXiv:1305.2360

For each configuration, we measure ~ 500 alpha particles

Mean profile V'(t) is being adjust by the signal model $V_{th}'(t; v_d, v_{ion}, D_l)$

F. Mayet - Cygnus 2013, Toyama, Japan

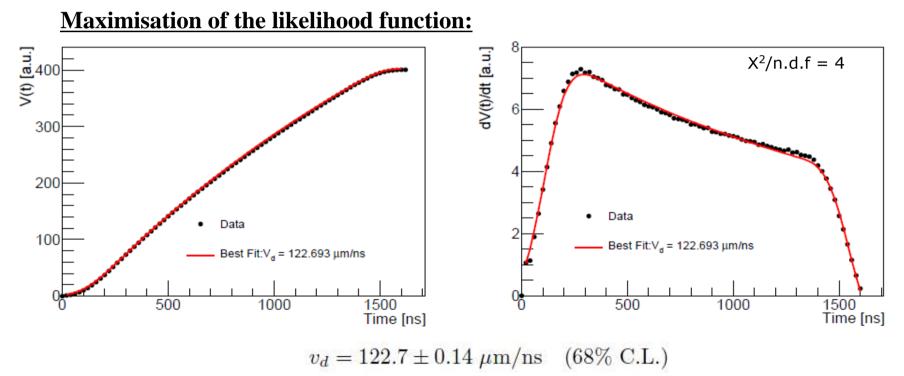
Drift velocity: The likelihood function

J. Billard et al., arXiv:1305.2360

• We fit the time derivative of the charge collection V'(t):

$$\mathscr{L}(v_d, v_{\text{ion}}, D_l, \delta t, A) = \exp\left(-\frac{1}{2} \sum_{i=1}^{N_t} \left[\frac{A \times V'_{\text{th}}(t_i - \delta t; v_d, v_{\text{ion}}, D_l) - \bar{V}'(t_i)}{\sigma_{\bar{V}'(t_i)}}\right]^2\right)$$

Free parameters :


- Electron drift velocity v_d
- Ion drift velocity $v_{d_{ion}}$
- Longitudinal diffusion coefficient D_l
- 2 additional parameters : A (amplitude) and δt (delay)

Drift velocity: Illustration

J. Billard et al., arXiv:1305.2360

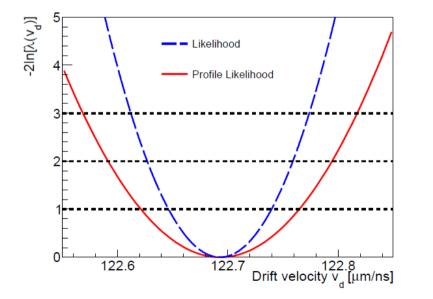
Consider the following case:

Pure CF₄ @ 50 mbar, $E_d = 138$ V/cm and $E_a = 14.5$ kV/cm

•Good agreement between the data and the model!

• Robust estimation of V_d

•Small deviations on V'(t) -> estimation of the falling time of F(t) F. Mayet - Cygnus 2013, Toyama, Japan

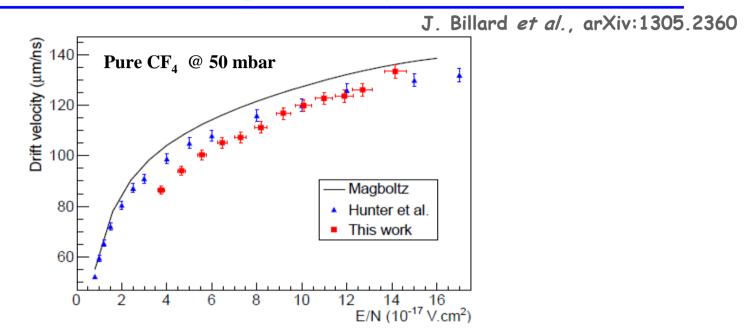

Drift velocity: Error bars and constraints

Estimation of the error bars using a **profile likelihood** We used the profile likelihood ratio test statistic:

$$\lambda(v_d) = \frac{\mathscr{L}(v_d, \hat{\hat{v}}_{d_{\text{ion}}}, \hat{\hat{D}}_l, \hat{\delta t}, \hat{\hat{A}})}{\mathscr{L}(\hat{v}_d, \hat{v}_{d_{\text{ion}}}, \hat{D}_l, \hat{\delta t}, \hat{A})}$$

@ 68% C.L., we solve: $-2 \ln[\lambda(\hat{v}_d \pm \sigma_{v_d}^{\pm})] = 1$

(follows a X^2 distribution with 1 d.o.f)



Precise measurement of V_d (0.1% error)

$$v_d = 122.7 \pm 0.14 \ \mu \text{m/ns}$$
 (68% C.L.)

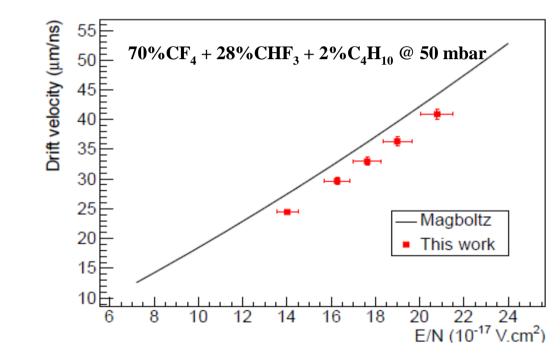
J. Billard *et al.*, arXiv:1305.2360

Drift velocity: result for pure CF₄

• Fair agreement (up to 10%) with the Magboltz simulation

 \rightarrow Validation of the charge collection all along the drift chamber

• Discrepancy highlights the need to measure the electron drift velocity with our own detector.


 \rightarrow to account for impurities in the gas mixture, electric field inhomogeneities...

→ Effective velocity

Drift velocity: result for CF_4 + CHF_3

J. Billard et al., arXiv:1305.2360

The addition of CHF_3 lowers the electron drift velocity while keeping a large Fluorine content

Good agreement with Magboltz

Conclusion

• A new measurement method of the electron drift velocity

- α source
- profile Likelihood analysis
- full modeling of the signal on the grid

->avoid bias due to electron diffusion, ion collection time and elec. readout

- In situ measurement of the effective electron drift velocity, accounting for
 - Large drift distances
 - Field inhomgeneities
 - -Impurities
- A golden gas mixture for MIMAC

70%CF₄ + 28%CHF₃ + 2%C₄H₁₀ @ 50 mbar

-> low electron drift velocity & large Fluorine fraction