Updates from the Dark Matter Time Projection Chamber Group (DMTPC)

Cygnus 2013 Workshop on Directional Dark Matter Detection Toyama, Japan 2013 June 10

> James Battat (Wellesley College) for the DMTPC collaboration

DMTPC Collaboration

Brandeis University A. Dushkin, H. Wellenstein*

Bryn Mawr/Wellesley T. Ananna, E. Barbosa de Souza, J. Battat*, V. Gregoric, K. Recine,, L. Schaefer

University of Hawaii I. Jaegle, S. Ross, S. Vahsen*

MIT H. Choi, C. Deaconu, P. Fisher*, S. Henderson, W. Koch, J. Lopez, H. Tomita

Royal Holloway (UK) G. Druitt, R. Eggleston, P. Giampa, J. Monroe* *=PI, postdoc, grad student, undergrad

Gallery of DMTPC Detectors

10L

4Shooter (20L)

Underground at WIPP

DMTPCino (m³)

Under development

Gallery of DMTPC Detectors

10L

Underground at WIPP

4Shooter (20L)

At MIT

DMTPCino (m³)

Under development

4Shooter Overview

- 20L (4.5g F)
- Higher vacuum (10⁻⁵ torr) between fills
- Material selection (OFHC copper, acetal, stainless steel, G-10)
- 4 CCD cameras, 3 PMTs,
 3 charge readout channels

4Shooter Construction

Improved Field Cage (spacers), and amplification region fabrication scheme \rightarrow More gain, lower spark rate. Repeatable amplification region construction technique in a clean-room environment.

VS.

10L

Lower alpha background rate & better tagging capability

4sh gas gain measurements

Lesson 1: gain degradation vs. time

Gain degradation over time is well-known

---> 20 % gain drop within 200 min.

Initial gain decay is well-known and seen in many detectors. For example: Kadyk 1998 (SLAC Detector Techniques Lectures) http://www-group.slac.stanford.edu/sluo/lectures/Detector-Lectures.html

High rate behavior and discharge limits in micro-pattern detectors

A. Bressan^a, M. Hoch^a, P. Pagano^a, L. Ropelewski^a, F. Sauli^{a,*}, S. Biagi^b, A. Buzulutskov^c,
 M. Gruwé^d, G. De Lentdecker^e, D. Moermann^f, A. Sharma^g

Nuclear Instruments and Methods in Physics Research A 424 (1999) 321-342

Gain limited by streamer discharges

Sparking and Raether limit

- "Raether's criterion: a spontaneous transition from avalanche to streamer, followed by a discharge, when the avalanche size reaches a value of a few 10⁷."
- "In multiple structures, where the gain is shared between two devices in cascade, the maximum overall gain under irradiation is increased by at least one order of magnitude; we speculate this to be a consequence of a voltage dependence of Raether's limit, larger for low operating potentials."

A. Bressan et al., Nuclear Instruments and Methods in Physics Research A 424 (1999) 321-342

Lesson 3: Recoils can trigger sparks

If electron density is too high, the avalanche becomes a streamer, rendering the detector insensitive. In practice, compact (low-drift) tracks preferentially generate streamers/sparks. The lower part of the TPC is not "active" anymore! Also this can lead to an angular dependence as well (vertical tracks lead to sparks)

Electron Gain in the amplification region measured with $^{241}Am \alpha$ tracks in 40 torr CF₄ gas

• 406 um • 508 um • 610 um • 711 um • 813 um • 1016 um electron gain (x 1,000) н H H anode voltage (V)

Diffusion vs. amplification gap size

CCD Energy Calibration

CCD Energy Calibration

Tune electron diffusion and "gain" (ADU/keVee) until MC matches data (for transverse and longitudinal projections).

CCD Energy Calibration

As expected, the energy calibration depends on amplification region voltage (gas gain), but not on alpha source height (diffusion)

20

Spatial variation in detector response

Track reconstruction in mosaic image

Make use of the known profile of a NR (from the Bragg curve) to (1) fit for the Head/Tail and (2) assign a confidence in the H/T determination

convolved with gaussian

Transverse Fit

600

400

300

200

100

Longitudinal Fit tran Entries 150 500 401 Mean 3.724 RMS 400 300

(CCD image is just to illustrate point)

Track fitting with confidence: next steps

- Evaluate benefits of restricting DM analysis to "high confidence" tracks only?
- Extend the track fitting to 2D

Charge readout: going beyond energy reconstruction

28

x-y position information from charge alone (useful in ccd/charge matching)

Event discrimination based on mesh pulse shape

4sh data looks even better (though analysis ongoing)

Charge background spectra

See MIPs in high rise-time events

Data expected to be wider due to detector resolution, angular distribution, and possible multi-particle events. Simulation is vertical only.

Nuclear recoil directional sensitivity analysis underway (with AmBe source)

An Assessment of the Sensitivity of a Low Pressure Time Projection Chamber to the Direction of WIMP-Induced Nuclear Recoils

> by Shawn Wesley Henderson

(MIT Ph. D. thesis to be submitted inAugust)

Direction reconstruction at low energy

All tracks drift full length

Smaller dE/dx than NR

Only the tail end of the alpha track makes it into the active region \rightarrow low energy recoils.

Directionality with low-energy alpha tracks

Amplification region = triple-mesh One camera images two TPCs

Detector will fit in existing underground laboratory at WIPP

Triple mesh prototype built and under test now. Vessel fabrication expected in the Fall.

DMTPCino (1 m³)

Spin-dependent (proton) limits vs. time

Thank you