

MIcro-tpc MAtrix of Chambers A Large TPC for directional non baryonic Dark Matter detection

Daniel Santos

Laboratoire de Physique Subatomique et de Cosmologie (LPSC-Grenoble) (UJF Grenoble 1 -CNRS/IN2P3-INPG)

MIMAC:

(MIcro-tpc MAtrix of Chambers)

LPSC (Grenoble) : J. Lamblin, F. Mayet, D. Santos

J. Billard (Ph.D) (left in July 2012), Q. Riffard (Ph.D) (started in October 2012)

- Technical Coordination :O. Guillaudin- Electronics :G. Bosson, O.Bourrion, J-P. Richer- Gas detector :O. Guillaudin, A. Pellisier- Data Acquisition:O. Bourrion- Mechanical Structure :Ch. Fourel, S. Roudier, M. Marton
- Ion source (quenching) : J-F.

J-F. Muraz, J. Médard (CDD-1year)

CCPM (Marseille): J. Busto, Ch. Tao, D. Fouchez, J. Brunner (Radon filtering)

Neutron facility (AMANDE) : IRSN (Cadarache): L. Lebreton, D. Maire (Ph. D.)

CYGNUS 2013 – Toyama (Japan) – June 10th 2013

The MIMAC project

A low pressure multi-chamber detector
Energy and 3D Track measurements
Matrix of chambers (correlation)
μTPC : Micromegas technology
CF₄, CHF₃, and ¹H : σ(A) dependency
Axial and scalar weak interaction

Directionnal detector

Bi-chamber module 2 x (10.8x 10.8x 25 cm³)

<u>Strategy:</u> (see Fréd Mayet's talk)
Directional direct detection
Energy (Ionization) AND 3D-Track of the recoil nuclei
Prove that the signal "comes from Cygnus "

Ionization Quenching Facility at LPSC-Grenoble

Low energy ion source
1 to 50 keV
Developped @LPSC

CYGNUS 2013 – Toyama (Japan) – June 10th 2013

Ionization Quenching Measurements: 5keV ¹⁹F Recoil in 60 mbar 40mbar CF₄+16.8mbar CHF₃+1.2 mbar Isobutane

MIMAC: Detection strategy

Scheme of a MIMAC µTPC

Evolution of the collected charges on the anode

Measurement of the ionization energy: Charge integrator connected to the grid

CYGNUS 2013 – Toyama (Japan) – June 10th 2013

MIMAC 100x100 mm²(v2) (designed by IRFU- Saclay (France))

CYGNUS 2013 – Toyama (Japan) – June 10th 2013

MIMAC electronics (512 channels)

Entirely developed (ASICs included) by the MIMAC team at the LPSC-Grenoble (France)

V1: 2007 (192 channels for the 3cm x3cm) ASIC-Mimac (16 channels)

V2: 2009 (512 channels for the 10cmx10cm) ASIC-Mimac (64 channels)

V3: 2011 (upgraged version) 512 channels

3D Tracks: Drift velocity

Magboltz Simulation

• New mixed gas MIMAC target : $CF_4 + x\% CHF_3$ (x=30)

CYGNUS 2013 – Toyama (Japan) – June 10th 2013

MIMAC validation with neutrons

Neutron monochromatic field:

AMANDE facility at IRSN of Cadarache

– Neutrons with a well defined energy from resonances of ⁷Li by a (p,n) reaction

Measurement of the ionization energy and the 3D track

« Gamma rejection » from the background of an in beam proton (2.5 MeV) reaction

D. Santos (LPSC Grenoble)

MIMAC bi-chamber module

- Two detectors with a common cathode (mylar 24um, 12um)
- Active volume = 2x(25x10.8x10.8) cm³ ~ 5.81
- Gas mixture 70% $CF_4 + 28\% CHF_3 + 2\% C_4H_{10}$ at 50 mbar
- Gas circulation system with a buffer volume, a pressure regulator and a

MIMAC: Performance at low energies

MIMAC (bi-chamber module)at Modane Underground Laboratory (France) since June 22nd 2012

-working at 50 mbar (CF₄+28% CHF₃+2% C₄H₁₀)

-in a permanent circulating mode-Remote controlled and commanded-Calibration control twice per week

Many thanks to LSM staff

Calibration – Chamber2 (at Modane) fluorescence of Cd-(Cr-Fe)-Cu

D. Santos (LPSC Grenoble)

MIMAC Calibration at Modane (by fluorescence + X-ray generator)

Gain stability (Peak_channel vs. time(days))

D. Santos (LPSC Grenoble)

An alpha particle crossing the detector (as an illustration of the MIMAC observables)

CYGNUS 2013 - Toyama (Japan) - June 10th 2013

An other alpha particle crossing the detector

D. Santos (LPSC Grenoble)

« MIMAC – observables »

- Ionization energy (+ quenching factor)
- Track length and 3D track
- NIS (Normalized Integrated Straggling)

Low energy electron/recoil discrimination for directional Dark Matter detection, J.Billard et al. (JCAP 07(2012) 020

- Delta T= (Flash-ADC time Time slots) [20ns] = f(drift)
- dE/dx asymmetry as a function of t
- Track topology (number of holes)

MIMAC observables

- Ionization Energy: E_{ioni}
- flash ADC length: L_{ADC}
- Track length:

$$L_C = \sum_{i} \Delta L_i$$

- Normalized Integrated Straggling

$$NIS = \frac{1}{E_{ioni}} \sum_{i} \theta_i$$

Strong Correlation between

$$L_{ADC} \Leftrightarrow L_C$$

Normalized Integrated Straggling (NIS) (a new degree of freedom for e-recoil discrimination) (The adition of partial deflections along the measured track, normalized by its total (ionization) energy)

D. Santos (LPSC Grenoble)

Correlation between the 3D track lengths of events observed at Modane (to improve the electron-recoil discrimination)

D. Santos (LPSC Grenoble)

Electron track (18 keV)

CYGNUS 2013 – Toyama (Japan) – June 10th 2013

Event rate of alphas at Modane in Ch2 (validation of the source of alphas (²²²Rn))

D. Santos (LPSC Grenoble)

Rn progeny events

Spectrum of nuclear recoil tracks detected at Modane (coming from the ²²²Rn chain decay, surface events) and the alpha particles through the cathode...

D. Santos (LPSC Grenoble)

²²²Rn progeny events in ionization energy (MIMAC)

Recoil	Recoil Energy [keV]	Ionization Quenching factor (SRIM) [%]	Ionization Energy (SRIM) [keV]	Ionization Energy measured [keV]
²¹⁸ Po	100.79	37.93	38.23	32
²¹⁴ Pb	112.27	39.10	43.90	34
²¹⁰ Pb	146.52	40.12	58.78	45

A radon progeny "recoil event" (~34 keVee)

CYGNUS 2013 – Toyama (Japan) – June 10th 2013

A radon progeny "recoil" event (~28 keVee)

CYGNUS 2013 – Toyama (Japan) – June 10th 2013

A radon progeny "recoil" event (~ 40 keVee)

CYGNUS 2013 – Toyama (Japan) – June 10th 2013

$MIMAC - 1m^3 = 50 \text{ bi-chambers (} 20x20x25 \text{ cm}^3\text{)}$

- i) New technology anode 20cmx20cm (piggy-back) (already tested in 10cmx10cm)
- ii) New electronic card (1024 channels)
- iii) Only two big chambers (25 bi-chambers each)

New 20cmx20cm pixellized anode

CYGNUS 2013 – Toyama (Japan) – June 10th 2013

 \rightarrow A discovery (>3 σ @90%CL) with BKG is possible down to 10⁻³-10⁻⁴ pb CYGNUS 2013 – Toyama (Japan) – June 10th 2013

Conclusions

- i) A new directional detector of nuclear recoils at low energies has been developed giving a lot of flexibility on targets, pressure, energy range...
- ii) Ionization quenching factor measurements have determined experimentally the recoil energy threshold.
- iii) Phenomenology studies performed by the MIMAC team show the impact of this kind of detector (see F. Mayet's talk)
- iv) MIMAC bi-chamber module has been installed at Modane Underground Laboratory in June 2012.
- v) For the first time the 3D nuclear recoil tracks from the Rn progeny have been observed.
- vi) New degrees of freedom are available to discriminate electrons from nuclear recoils to improve the DM search for.
- vii) The 1 m³ will be the validation of a new generation of DM detector including directionality (the ultimate signature for DM)

CYGNUS 2013 – Toyama (Japan) – June 10th 2013