NEWAGE実験における 低バックグラウンド化

島田 拓弥 神戸大学粒子物理研究室 M2 新学術領域「地下宇宙」合同研究会 パラレルセッション

INDEX

● INTRODUCTION (p.3)▶ NEWAGE実験

◎ ガンマ線事象除去能力 (p.4-9)

・中性子線とガンマ線の識別

● SF₆ガスを用いた陰イオンµ-TPCの開発 (p10-14) ●

- ▶ 有効体積カットによる表面a線バックグラウンドの除去
- ▶ 論文: Development of a Negative Ion Micro TPC Detector with SF6 Gas for the Directional Dark Matter Search (arXiv:2004.09706)

INRODUCTION -NEWAGE実験-

- NEWAGE:方向に感度を持つ暗黒探索実験
 - ・ µ-PICとµ-TPCを用いて

暗黒物質の**到来方向異方性**の観測を目指す

到来方向異方性は暗黒物質の強い証拠

場所:神岡地下研究施設 検出容量:31×31×41cm³ ガス:CF₄ 76Torr

2020.06.02 パラレルセッションB1

新学術領域「地下宇宙」合同研究会

ガンマ線事象除去能力 多変量解析

ガンマ線事象除去

- 暗黒物質(WIMP)探索 -> 原子核反跳(NR)を捉えたい
 - ガンマ線による電子反跳(ER)は見たくない
- 現在のNEWAGE実験におけるガンマ線バックグラウンドカット条件
 - Energy-Length cut: 飛跡の長さの違い
 - Energy-TOT cut : dE/dxの違い

NEWAGE実験の現状(ガンマ除去)

●検出効率とガンマ線事象除去能力はトレードオフ

ガスゲイン	原子核反跳 検出効率	電子反跳 検出効率	ガンマ線事象 除去能力
1100 (RUN22)	低い(0.35)	低い(~10 ⁻⁶)	高い
1500 (RUN23)	高い(~ <mark>0.5</mark>)	高い(~ <mark>10</mark> -4)	低い <-高くしたい

- TOT/Energy v.s. Energy分布で比較 (・ガンマ線・中性子線)
 - 下図の赤の点線内でカットをかける
 - RUN23では従来のカットでは50-60keV領域でガンマと中性子を見分けられない

TOTとLengthの2変数を用いた解析

- 新しいカットパラメータの導入
 - ・137Cs測定と252Cf測定を用いてカットを決定する
 - ・TOTとLengthの2つのパラメータを用いる
- 50-60keVのTOT v.s. Lengthの分布(右図)
 - ▶ Length = (TOT/β)^o 曲線でカット
- Figure Of Merit (FOM)の決定
 - ・ ROC curveを用いる (ROC : Receiver Operating Characteristic)
 - NR Local Efficiency : (カットで残った中性子事象)/(全中性子事象)
 - ER Local Efficiency : (カットで残ったガンマ事象)/(全ガンマ事象)
 - ・下図:あるaでのβを変化させたときのROC corve
 - FOM: ROC curveグラフでの(0,1)との近さ
 - 本測定では a = 2.4 に決定した (右下図より)
 - βに関しては次のスライドで決める

2020.06.02 パラレルセッションB1

TOT/Length^{1/o}分布によるカット

- Energy v.s. TOT/Length^{1/α}(=β)分布
 - ▶ p.7で決定した a = 2.4 を使用する
 - βをEnergyごとに決定 (図の点線内を選択)
 - ▶ 以下 TOT/Length^{1/}^aカットを追加する

ガンマ線事象除去能力の見積もり

◆ 目標のガンマ除去能力(1.5×10⁻⁶@50-60keV)とNR検出効率(0.51)を達成

新学術領域「地下宇宙」合同研究会

陰イオンガスµ-TPCの開発 表面背景事象除去

NEWAGE検出器感度への制限

- NEWAGE実験の主なバックグラウンド
 - ・ µ-PICなどの検出器表面からのアルファ線
- 陰イオンµ-TPCの導入
 - ・電子ではなく陰イオンが電場中をドリフトする
 - 低拡散 -> 高角度分解能
 - ・ドリフト速度の違うキャリアによるドリフト方向(z方向)の絶対位置の決定
 - z方向の有効体積カットによる表面事象の除去
 - 本研究ではSF₆ガスを用いる
 - ・ 先行研究にて3次元飛跡検出に成功 ->
 - z方向の絶対位置再構成の定量評価を行う

✓ z方向の<u>絶対位置再構成の線形性</u>を確認する

新学術領域「地下宇宙」合同研究会

11

2020.06.02 パラレルセッションB1

ドリフト方向の絶対位置再構成の方法

- z方向絶対位置を再構成するまで
 - ・電離により飛跡上に電子が生成される
 - SF₆が電子捕獲 -> 主にSF₆(遅い)、まれにSF₅(早い)が生成
 - 到達時間の差からz方向の絶対位置を再構成する(右上式)

新学術領域「地下宇宙」合同研究会

2020.06.02 パラレルセッションB1

 $Z = (t_{SF_{\overline{6}}} - t_{SF_{\overline{5}}}) \frac{1}{(v_{SF_{\overline{5}}} - t_{SF_{\overline{5}}})}$

 $v_{SF_{\overline{6}}} \cdot v_{SF_{\overline{5}}}$

新学術領域「地下宇宙」合同研究会

zの絶対位置再構成の線形性

- ²⁴¹Am線源の位置を変化させてzを再構成する
 - ▶ 線源の位置によって再構成されるzの絶対位置に違いが出る
 - ・再構成される位置の線形性を確認

★ z = 40~140mmに対してzの絶対位置再構成が可能

- 課題点
 - ガンマ線事象除去能力
 - 低エネルギー側(20-50keV)のガンマ除去能力の向上
 - > もっと良いパラメータを目指す(他パラメータ・ニューラルネットワークなど)
 - ▶ SF₆陰イオンµ-TPC
 - zが大きいときのzの絶対位置の決定精度が悪い
 - > ガスの純化
 - > High Gain ampとLow Gain ampを用いた読み出し集積回路 <- 神戸大窪田発表

- 展望
 - ・検出効率の高いRUN23の暗黒物質探索の解析
 - ▶ SF₆を導入した大型検出器による暗黒物質探索

まとめ

- NEWAGEのバックグラウンドの現状
 - ・検出効率の高い測定での低エネルギーガンマ線
 - ▶ µ-PICなどの表面からのアルファ線
- 解決策
 - ガンマ: TOTとLengthのパラメータを用いた新しいカット条件
 - 表面アルファ:陰イオンガスµ-TPCの導入
- 結果
 - ・ガンマ: ER検出効率~10⁻⁷ & NR検出効率~0.52
 - ・表面アルファ:z方向の絶対位置再構成の線形性を確認
- 展望
 - ・RUN23の暗黒物質探索測定の解析
 - ・SF₆を用いた大型検出器による暗黒物質探索

BACK UP

252Cf測定と137Cs測定

- ¹³⁷Cs測定
 - ・ガンマ線の見積もりのための測定(電子反跳)
 - ・検出器上部に137Csを置いて測定
- ²⁵²Cf測定
 - ・中性子線の見積もりのための測定(原子核反跳)
 - ・ ガンマ線も放出する
 - ・検出器の6方向について線源を置く位置を変えて測定

GAP事象選別-Roundness cut-

- GAP事象: µ-PICとGEM間の事象
 - ・µ-PICからのa線バックグラウンドなどが含まれる
- Roundness (飛跡の非線形性)
 - ・Zが小さい(GAP事象など)とドリフト距離が短く、低拡散となる
 - 飛跡がきれいに見える
 - 線形性が保たれるため、Roundnessが小さくなる

SF₆-, SF₅-のドリフト速度の測定

- 2種類のキャリアのドリフト速度の測定方法
 - ・線源と反対側のz = 89mmにあるPIN-PDをトリガーとして使用する
 - ▶ PIN-PDでのトリガーとµ-PICでの検出の時間差を利用してドリフト速度を決める
- 2種類のキャリアのドリフト速度
 - ▶ SF_{6⁻} : 8.1 ± 0.2 cm/ms
 - SF_{5⁻}: 8.9 ± 0.2 cm/ms

2020.06.02 パラレルセッションB1