Applications of the μ -PIC

Neutron Detector
 Double Beta
 Dark Matter

May 16, 2003 Kentaro Miuchi Kyoto University

Neutron Imaging Detector with µ -PIC

of a Li-ion battery

from KEK homepage "kids scientist"

3. Neutron Detectors + neutron capture reactions

reaction		Q value [M	eV] [barr	n]
³ He + n	p + ³ H	0.764	5330	
⁶ Li + n	+ ³ H	4.78	940	
¹⁰ B + n	+ ⁷ Li	2.31	3840	
¹⁵⁷ Gd + n	¹⁵⁸ Gd + S	194	26000	
 Gd: -ray I BF₃, ³He gas imaging: no wall effect high pressu 	³ He spec	Read pro full wall effect" continuum 191 573 Deposited en	ction duct energy eak 3 764 keV hergy E	

4. µ-PIC for a Neutron PSD

"Performance of a micro-TPC for a time-resolved neutron PSD" K. Miuchi et. al. submitted for NIM A

- Paper contents
 - Simulation
 - Proton (several hundred keV) tracking
 - Background -ray discrimination
- Merit of the µ-PIC based detector
 - high rate operation
 - Iarge area
 - Background -ray discrimination
 - TPC depth information

Proton tracking experiment

- Ar + C_2H_6 (10%) at 1atm
- R. I. source : ²⁵²Cf (3.8 n + 9.7)
- n(500keV~1MeV) proton scattering
- Trigger (t=0 for the TPC) : YAP

5. Future Works

Scintillating micro-TPC
 for self-triggering
 with PMT?
 Measurement with ³He

5. Conclusions Neutron PSD requirements high-rate operation large area -ray discrimination → Neutron PSD with µ - PIC tracking, proton/triton distinguishable -ray discrimination: >95% • spatial resolution: sub-millimeter (simulation)

with micro-TPC

. ¹³⁶Xe experiment

Caltech-Neuchatel experiment Phys. Rev. D <u>48</u> 3 (1993) 1009

- Xe TPC (5atm 180 liters)
- ¹³⁶Xe enriched (62.5%)
- search for "double-ends tracks"

Results of the Caltech exp.

Spectrum of the two electron events

 $T_{1/2}(0) > 3.4 \times 10^{23} yr$

exp. with μ -PIC

→ Merit?

2.

if scintillating TPC is realized t=0 determination absolute z values

WIMP-Wind Measurement with Micro-TPC

all results are preliminary

1. Performance of the µ -PIC → Tracking performance

Iength >5mm (several points, direction)

- recoil direction
- -ray discrimination
- fine pitch (400 µ m) DRIFT(2mm)
- dedicated electronics (100MHz near future)
- Demerit
 - Iow mass (gas detector)
- Strategy
 - quantity oriented (track >1mm)
 - quality oriented (track >5mm)

Target gas
 WIMP mass

 target mass
 Spin-dependent :
 large spin factor
 Spin-independent :
 large atomic number

Isotope	%	J(J+1)
¹⁹ F	100	0.647
²³ Na	100	0.041
⁷³ Ge	7.8	0.065
¹²⁹ Xe	26.4	0.124

Spin factors

WIMP mass	Light (50GeV)	Heavy (100GeV)
SPIN- DEPENDEMT	CF ₄	Xe
SPIN- INDEPENDENT	Ar	Xe

Gas pressure, target mass

- threshold: 40keV
- track : 5mm

gas	Pressure [Torr]	Density [g/m ³]		dE/dx [keV/cm]			
CF ₄	20		90			85	
Ar	20		47			85	
Хе	5		38			120	

~ 10 × 1m³ detector OK

(µ - PIC threshold : 50keV/cm)

pressure

→ Scaling-up • prototype : 30 × 30 × 30cm³ × 8 = 60 × 60 × 60cm³ • large area µ - PIC : 50 × 50 × 50cm³ × 8=1m³

• 1m³ x n

Expected rate

- threshold: 40keV
- WIMP mass: 50 GeV for F, Ar 100GeV for Xe
- WIMP-p cross section : 0.1 pb for SD 10⁻⁶ pb for SI

gas	pressure [torr]	density [g/m ³]	rate [cpd/kg]	Event (10m ³ × 1yr)
CF ₄	20	90	0.21	260
Ar	20	47	0.034	4.1
Xe(SD)	5	10	0.011	1.4
Xe (SI)	5	38	0.079	9.6

Detection Confidence Level
 Background: fast neutron 2 × 10⁻⁵cm⁻²s⁻¹
 0.1cpd/kg/keV for CF₄ (no shield)
 1600 BG events / 10m³ × 1yr

• WIMP : 260 events

S/N calculation

- threshold: 40keV
- WIMP mass: 50 GeV for F, Ar 100GeV for Xe
- WIMP-p cross section : 0.1 pb for SD 10⁻⁶ pb for SI

gas	Event (30m ³ × 3yr)	F/B ratio	Modulation ()	n BG × 1/100
CF ₄	2340	14	20	40
Ar	37	11	0.4	3
Xe(SD)	13	5	0.1	1
Xe (SI)	86	5	0.4	5

4. Future works

Event rate study (Ar, Xe) gas pressure, track length, threshold Gas study CF₄ properties Background study -ray discrimination Energy Calibration track length v.s. energy

5. Conclusions

- WIMP-wind measurement
 - idea : NOT NEW
 - μ -PIC fine pitch
- - sensitive to SD and SI, light and heavy
 - factor 10 forward/backward asymmetry
 - CF₄ 5 detection possibility
 - precise studies to do