Search for neutrinoless quadruple β decay of ¹³⁶Xe in XMASS-I

2205.05231, submitted for PLB

Kentaro Miuchi (Kobe University)

for the XMASS collaboration 2022 July 21st

Contents

- Introduction
- Experiment
- Quadruple β decay search
- Summary

Introduction

Introduction: neutrinoless quadruple decay (0 v 4 β)

0

• Bunch of $0 v 2\beta$ searches.

Plenary Sessio	ns #8:
08:30 - 09:00	KamLAND-Zen 800
(25'+5')	Hideyoshi Ozaki (Tohoku University, Sendai)
09:00 - 09:30	The NEXT program for neutrinoless double beta searches
(25'+5')	Francesc Monrabal (Donostia International Physics Center, San Sebastian)
09:30 - 10:00	Status of the AMoRE experiment
(25'+5')	Seung Cheon Kim (Institute of Basic Science, Daejeon)
10:00 - 10:30 (Coffee Break
Plenary Sessio	ns #9:
10:30 - 11:00	Latest results from the CUORE experiment
(25'+5')	Chiara Capelli (LBNL, Berkeley)
11:00 - 11:30	The CUPID Project
(25'+5')	Mattia Beretta (University of California Berkeley)

 11:30 - 12:00
 Status of the high pressure Xe gas TPC 0vββ experiment AXEL

 (25'+5')
 Shinichi Akiyama (Tohoku University, Sendai)

09:00 - 09:30	nEXO, search for 0vββ beyond 10 ²⁸ years
(25'+5')	Julien Masbou (Subatech, Nantes)

9:30 - 10:00	The LEGEND experiment
25'+5')	Felix Hagemann (Max-Planck-Institut für Physik, Munich

10:00 - 10:30 Coffee Break

Plenary Session #11

- 10:30 11:00
(25'+5')Commissioning of the SuperNEMO Demonstrator
Malak Hoballah (IJCLab, Orsay)
- 11:00 11:30
 Revealing the nature of neutrinos with XENON direct dark matter detector

 (25'+5')
 and future perspectives

 Maxime Pierre (Subatech, Nantes)
- 11:30 12:00 **Status and perspectives of the DarkSide experimental program** (25'+5') Claudio Savarese (Princeton University)

KamLAND-Zen paper 2203.02139v1

• Discoveries may be around the corner, in case neutrinos are Majorana particles... • What is neutrinos are Dirac particles?

• Discoveries may be around the corner, in case neutrinos are Majorana particles... • What is neutrinos are Dirac particles?

lepton flavor violating

• 0 $v 2\beta$ doesn't happen, but 0 $v 4\beta$ still can.

Neutrinoless Quadruple Beta Decay Julian Heeck, Werner Rodejohann EPL 103 (2013) 32001, 1306.0580

• Discoveries may be around the corner, in case neutrinos are Majorana particles...

- diagrams, mass levels

 $0 v 4 \beta$ decay diagram

energy level example

• $\angle L = 4$ linked to

- EPL, 103 (2013) 32001
- Naturally light Dirac mass terms of neutrinos
 - Chen, Ratz, Staudt, Vaudrevange, Nucl. Phys. B 866 157 (2013)
- CP violation
 - Chuli, Srivastava, Valle, Phys.Lett.B 761,431 (2016)
- Dark Matter candidates
 - Chuli, Ma, Srivastava, Valle, Phys. Lett. B 767 209 (2017)
- Leptogenesis

Heeck, Phys.Rev.D 88, 076004 (2013)
 18th Recontres du Vietnam

• ∠L=4 candidates

	, natura	al		
	$Q_{0\nu4\beta}$	Other decays	abund	lance
$^{96}_{40}\mathrm{Zr} \rightarrow ^{96}_{44}\mathrm{Ru}$	0.629	$\tau_{1/2}^{2\nu2\beta}\simeq 2\times 10^{19}$	2.8	
$^{136}_{54}{\rm Xe} \rightarrow {}^{136}_{58}{\rm Ce}$	0.044	$\tau_{1/2}^{2\nu 2\beta} \simeq 2 \times 10^{21}$	8.9	
$^{150}_{60}\mathrm{Nd} \rightarrow ^{150}_{64}\mathrm{Gd}$	2.079	$\tau_{1/2}^{2\nu 2\beta}\simeq 7\times 10^{18}$	5.6	
	$Q_{0\nu4\mathrm{EC}}$			
$^{124}_{54}\mathrm{Xe} \rightarrow ^{124}_{50}\mathrm{Sn}$	0.577		0.095	
$^{130}_{56}{\rm Ba} \to {}^{130}_{52}{\rm Te}$	0.090	$\tau_{1/2}^{2\nu 2\rm EC} \sim 10^{21}$	0.106	
$^{148}_{64}\mathrm{Gd} \rightarrow ^{148}_{60}\mathrm{Nd}$	1.138	$\tau^{\alpha}_{1/2}\simeq 75$		
$^{154}_{66}\mathrm{Dy} \rightarrow ^{154}_{62}\mathrm{Sm}$	2.063	$\tau^{\alpha}_{1/2}\simeq 3\times 10^6$		
	$Q_{0\nu 3 \mathrm{EC}\beta^+}$			
$^{148}_{64}\mathrm{Gd} \rightarrow ^{148}_{60}\mathrm{Nd}$	0.116	$\tau^{\alpha}_{1/2}\simeq 75$		
$^{154}_{66}\mathrm{Dy} \rightarrow ^{154}_{62}\mathrm{Sm}$	1.041	$\tau^{\alpha}_{1/2}\simeq 3\times 10^6$		
	$Q_{0\nu 2 \mathrm{EC} 2\beta^+}$			
$^{154}_{66}\mathrm{Dy} \to ^{154}_{62}\mathrm{Sm}$	0.019	$\tau^{\alpha}_{1/2}\simeq 3\times 10^6$		res du
		EPL, 103 (2013)	32001	05 00

res du Vietnam

• ∠L=4 candidates

	natural				
	$Q_{0\nu4\beta}$	Other decays	abundar	ice	
$^{96}_{40}\mathrm{Zr} \rightarrow ^{96}_{44}\mathrm{Ru}$	0.629	$\tau_{1/2}^{2\nu2\beta}\simeq 2\times 10^{19}$	2.8		
$^{136}_{54}{\rm Xe} \rightarrow ^{136}_{58}{\rm Ce}$	0.044	$\tau_{1/2}^{2\nu 2\beta} \simeq 2 \times 10^{21}$	8.9		
$^{150}_{60}\mathrm{Nd} \rightarrow ^{150}_{64}\mathrm{Gd}$	2.079	$\tau_{1/2}^{2\nu2\beta}\simeq 7\times 10^{18}$	5.6		
150Nd: T	_{1/2} > (1.1–3 /IO-3 (PRL	3.2) × 10 ²¹ 119,041801 (20	17))		
$^{130}_{56}{\rm Ba} \to {}^{130}_{52}{\rm Te}$	0.090	$ au_{1/2}^{2 u2EC} \sim 10^{21}$	0.106		
$^{148}_{64}\mathrm{Gd} \rightarrow ^{148}_{60}\mathrm{Nd}$	1.138	$\tau^{\alpha}_{1/2}\simeq 75$			
$^{154}_{66}\rm{Dy} \rightarrow ^{154}_{62}\rm{Sm}$	2.063	$\tau^{\alpha}_{1/2}\simeq 3\times 10^6$			
	$Q_{0\nu 3 \mathrm{EC}\beta^+}$				
$^{148}_{64}\mathrm{Gd} \rightarrow ^{148}_{60}\mathrm{Nd}$	0.116	$\tau^{\alpha}_{1/2} \simeq 75$			
$^{154}_{66}\rm{Dy} \rightarrow {}^{154}_{62}\rm{Sm}$	1.041	$\tau^{\alpha}_{1/2}\simeq 3\times 10^6$			
	$Q_{0\nu 2 \mathrm{EC} 2\beta^+}$				
$^{154}_{66}\rm{Dy} \rightarrow ^{154}_{62}\rm{Sm}$	0.019	$\tau^{\alpha}_{1/2}\simeq 3\times 10^6$		as du Vietnam	
EPL, 103 (2013) 32001					

• ∠L=4 candidates

		; natura			
		$Q_{0\nu4\beta}$	Other decays	abund	ance
	$^{96}_{40}\mathrm{Zr} ightarrow ^{96}_{44}\mathrm{Ru}$	0.629	$\tau_{1/2}^{2\nu 2\beta} \simeq 2 \times 10^{19}$	2.8	
	$^{136}_{54}{\rm Xe} \rightarrow {}^{136}_{58}{\rm Ce}$	0.044	$\tau_{1/2}^{2\nu 2\beta} \simeq 2 \times 10^{21}$	8.9	
	$^{150}_{60}\mathrm{Nd} \to {}^{150}_{64}\mathrm{Gd}$	2.079	$\tau_{1/2}^{2\nu 2\beta}\simeq 7\times 10^{18}$	5.6	
1	.50Nd: T _{1/2} > (1. by NEMO-3 (P	1–3.2) × 1 RL 119, 04	.0 ²¹ 1801 (2017))		
	$^{130}_{56}{ m Ba} ightarrow ^{130}_{52}{ m Te}$	0.090	$ au_{1/2}^{2\nu 2 \mathrm{EC}} \sim 10^{21}$	0.106	
	$^{148}_{64}\mathrm{Gd} \rightarrow ^{148}_{60}\mathrm{Nd}$	1.138	$\tau^{\alpha}_{1/2} \simeq 75$		L
	$^{154}_{66}\rm{Dy} \rightarrow {}^{154}_{62}\rm{Sm}$	2.063	$\tau^{\alpha}_{1/2}\simeq 3\times 10^6$		
		$Q_{0\nu 3 \mathrm{EC}\beta^+}$			
	${}^{148}_{64}\mathrm{Gd} \rightarrow {}^{148}_{60}\mathrm{Nd}$	0.116	$\tau^{\alpha}_{1/2} \simeq 75$		
	$^{154}_{66}\rm{Dy} \rightarrow {}^{154}_{62}\rm{Sm}$	1.041	$\tau^{\alpha}_{1/2}\simeq 3\times 10^6$		
		$Q_{0\nu 2 \mathrm{EC} 2\beta^+}$			
	$^{154}_{66}\mathrm{Dy} \rightarrow ^{154}_{62}\mathrm{Sm}$	0.019	$\tau^{\alpha}_{1/2}\simeq 3\times 10^6$		
			FPL, 103 (2013)	32001	es di

136Xe:

Q value was updated in

Chinese Physics C 41 (3) (2017) 030003, 41 (3)

Α	Elt.	Ζ	S(n)		<i>S</i> (p)		$Q(4\beta^-)$	
136	In Sn Sb Te	49 50 51 52	2050# 3340# 2888 4767.8	570# 300# 6 2.9	* 16660# 11164 12024	500# 7 3	39040# 30530# 21832 14461.7	400# 300# 6 2.3
	I Xe	55 54	3837 8087	14 4	9105 9939.0	2.1	79.2	0.4
	Cs Ba La Ce Pr Nd Pm Sm Eu Gd	55 56 57 58 59 60 61 62 63 64	6828.4 9107.74 7470 9964 8476 11057 9190 12020 10170# 12770# 11380#	2.1 0.04 50 10 16 22 100 160 280# 500#	7215 8594.2 5480 7154 4013 5552 2250 4050 680# 2230#	4 1.0 50 9 15 17 70 80 250# 360#	-4998 -9688 -14870 -19697 -25100# -30110# * *	12 12 90 13 200# 300# 510#
	Tb	65	11380#	640#	-970#	640#	*	

 \Rightarrow search for a 79keV peak

res du Vietnam

- 136Xe 0 v 4 β signal
 - Energy of each electron was calculated by Decay0/GENBB for

NEMO note 3.04.2016

New possibilities in the DECAY0/GENBB code: $4\beta 0\nu$ decay and $2\beta 2\nu$ decay with Lorentz violation

Vladimir I. Tretyak Institute for Nuclear Research, MSP 03680 Kyiv, Ukraine

can handle: 96Zr, 136Xe and 150Nd (4 β) 124Xe, 130Ba (4EC)

Experiment

XMASS-I experiment

- Unique experiment
 - Single phase (use scintillation photon only) liquid xenon detector.
 - Long stable observation period, 5 years
 - 2013/11~2019/2
 - large light yield \sim 14pe/keV and low threshold \sim 1keVee
- Variety of rare events search with large amount of xenon (~1 ton)
 - Dark matter, modulation, low mass, inelastic, hidden photon
 - solar axion, 2vECEC, GW, exotic neutrino interaction
- Wide variety results are quite important for present dark matter search

XMASS detector NIM A 716 (2012) 78

- Kamioka Observatory (~2700m.w.e.), Japan.
- 832kg ($\Phi \sim 80$ cm) liquid xenon for active volume.
- \sim 2inch PMT (hex and round shape) \times 642 : 62% photo-coverage
- 10x10m water tank for muon veto with 20 inch $PMT \times 70.$

XMASS pioneered...

- water-tank style veto
- many physics channels

Search for solar Kaluza–Klein axions by annual modulation with the XMASS-I detector

 XMASS Collaboration*
 PTEP(2017) 103C01

 N. Oka⁷, K. Abe^{1,5}, K. Hiraide^{1,5}, K. Ichimura^{1,5}, I. Концист, К. Концузын, .

Search for exotic neutrino-electron interactions using solar neutrinos in XMASS-I PLB 809 (2020) 135741

XMASS Collaboration*

neutrino magnetic moment < 1.8 $\,\times\,10^{\text{--}10}\,\mu$ $_{\rm B}$

dark photon coupling (U(1)B-L symmetry)

PTEP

Prog. Theor. Exp. Phys. **2018**, 053D03 (15 pages) DOI: 10.1093/ptep/pty053

Improved search for two-neutrino double electron capture on ¹²⁴Xe and ¹²⁶Xe using particle identification in XMASS-I

 $T_{1/2}$ >2.1×10²² years (90%C.L.)

Observation of two-neutrino double electron capture in $^{124}\rm Xe$ with XENON1T

XENON Collaboration*

532 | NATURE | VOL 568 | 25 APRIL 2019

Quadruple β decay search

- Data set
 - Data acquisition: November 2013 to July 2016
 - first half of the "full data"
 - 4 periods
 - Fiducial volume: r<30cm
 - Exposure: 327kg(LXe) ×800days (136Xe, 29kg)

• Event selection

selection flow

- PID (4 β selection by " β CL")
 - Decay time depends on the electron energy
 - \Rightarrow discriminate β (one electron) and γ (multiple electrons of lower energies)

by "βCL"

• "Samples"

Selected events and signal shape

expected signal (MC)

- results
 - data(black): count rate $\sim 10^{-4}$ counts/day/kg/keVee
 - BG(color): will be discussed in the following slides.

• signal+BG fitting

i:sample ID (β -depleted, β -enriched, 214Bi) j: period (1-4) k: energy bin (1-85)

parameter uncertainties

	Fractional uncertainty
Item	for each item
238 U γ -rays BG from PMTs	±9.4%
232 Th γ -rays BG from PMTs	±24%
⁶⁰ Co γ -rays BG from PMTs	±11%
40 K γ -rays BG from PMTs	±17%
⁸⁵ Kr abundance in LXe	±23%
Thermal neutron flux	±27%
Isotopic abundance of ¹³⁶ Xe	±1.3%
Fiducial volume	±4.5%
Energy scale for β -depleted sample	$\pm 2.0\%$
Energy scale for β -enriched sample	$\pm 2.0\%$
γ acceptance	±30%
Event increase due to dead PMT	
for $30 \le E \le 35 \text{ keV}_{ee}$	$(7 \pm 14 \%)$
for $35 \le E \le 40 \text{ keV}_{ee}$	$(19 \pm 16 \%)$
β mis-ID	Energy dependent
	as shown in Fig.2

• results best fit for null signal of 136Xe 0 v 4 β

• Summary

- First experimental search for $4 v 0 \beta$ of 136Xe
- 327kg × 800days XMASS data
- consistent with null signal
- $T_{1/2} > 3.7 \times 10^{24}$ years (90% CL) first 136Xe limit
- submitted for PLB (arXiv: 2205.05231)

Thank you, and see you in Japan...

