Axion dark matter detection with magnon

Kentaro Miuchi

(Kobe University, connecting from Gran Sasso, Italy)

QUP workshop toward project

2022 Nov 7th

based on PRD 105, 102004

Axion search with quantum nondemolition detection of magnons

Tomonori Ikeda[®] Department of Physics, Kyoto University, Kita-Shirakawa, Sakyo-ku, Kyoto 606-8502, Japan

Asuka Ito[†] Physics Division, National Center for Theoretical Sciences, Hsinchu 30013, Taiwan

Kentaro Miuchi[®],[‡] Jiro Soda[®],[§] and Hisaya Kurashige[®] Department of Physics, Kobe University, Rokkodaicho, Nada-ku, Hyogo 657-8501, Japan

Yutaka Shikano[©]

QUP workshop: toward Project

7-8 November 2022 Seminar Hall, 1st floor, building 4, KEK

Asia/Tokyo timezone

enough queue for project Q Let's enjoy the collecions.

project

2022/11/

balance in community, person I am looking forward to seeing the "chosen one".

2022/11/7

Axion dark matter detection with magnon

Kentaro Miuchi

(Kobe University, connecting from Gran Sasso, Italy)

QUP workshop toward project

2022 Nov 7th

based on PRD 105, 102004

Axion search with quantum nondemolition detection of magnons

Tomonori Ikeda[®] Department of Physics, Kyoto University, Kita-Shirakawa, Sakyo-ku, Kyoto 606-8502, Japan

Asuka Ito[†] Physics Division, National Center for Theoretical Sciences, Hsinchu 30013, Taiwan

Kentaro Miuchi[®],[‡] Jiro Soda[®],[§] and Hisaya Kurashige[®] Department of Physics, Kobe University, Rokkodaicho, Nada-ku, Hyogo 657-8501, Japan

Yutaka Shikano[®]

2022/11/7

Motivations

• Physics motivation: dark matter halo axion

1µeV~1meV ⇔ 1GHZ~1THz range

$$f_a = \frac{\omega_a}{2\pi} = \frac{m_a c^2}{h} \simeq 0.24 \left(\frac{m_a}{1.0 \ \mu \text{eV}}\right) \text{ GHz.} \tag{1}$$

• Technology motivation: quantum technology 2022/11/7 QUP WORKSHOP

axion search main stream: axion-gamma coupling

Detection Principles

axion-electron interaction

$$\mathcal{L}_{\text{int}} = -ig_{aee}a(x)\bar{\psi}(x)\gamma_5\psi(x),$$

a: axion filed, ψ : electron field

✓ Interaction term for non-relativistic DM halo

✓ CAVEAT: Super tiny for one electron

axion

2022/11/7

QUP WORKSHOP

 e^{-}

Magnon: elections' collective spin

✓ spin behaviors in ferromagnet with external magnetic field

$$\hat{\mathcal{H}} = -g\mu_{\mathrm{B}}B_{z}\sum_{i}\hat{S}_{i}^{z} - 2J\sum_{\langle i,j \rangle}\hat{\mathbf{S}}_{i} \cdot \hat{\mathbf{S}}_{j},$$

from external field interaction of neighboring spins

✓ Magnon-axion coupling

 $\mathcal{H}_{int} = \hbar g_{eff}(\hat{a}^{\dagger}$

$$\hat{c} + \hat{a}\hat{c}^{\dagger}), \quad g_{eff} \equiv \frac{g\mu_B B_a}{2\hbar} \sqrt{2sN}, \quad \sqrt{N}$$
 N: r

 \sqrt{N} enhancement N: number of spins

2022/11/7

HALO Axion detection

Amplitude • Phase number of Magnons

→Measure the Magnons!

QUAX: the pioneer

magnon measurement by cavity-antenna

Make it QUP ! Quantum non demolition measurement

Wave length of the states transition depends on the number of Bosons.

 Boson numbers can be known by measuring the transition wave length. (QND measurement)

QUP WORKSHOP

2022/11/7

photon counting by Qubit

Magnon measurement with qubit

D.Lachance-Quirion, et.al.,

Demonstration of magnon detection (= calibration for axion search)

15

Expected signal by axion-Magnon interactions

QUP WORKSHOP

2022/11/7

DM RUN (or BG run for U.Tokyo group)

- 0.5mm diameter YIG
 spin density : ~2.1 × 10²² cm⁻³
- 4 hours' data in August 2015
- scan 200 frequency-bins
 - No significant peak was found at f=1

ReusIts

2022/11/7

For improvements (see also Kusaka-san' s talk)

- statistics increase: $\times 100$ Spectroscopy frequent (200bins in 4hours $\rightarrow 100$ bins in 1week) $\rightarrow \times 10$ in sensitivity
- Magnon number increase
 - G. Flower et. al. uses Φ 2.1mm in contrast to Φ 0.5mm (this work)
 - Magnon number \times 64 \rightarrow \times 8 sensitivity
- magnon-width improvements (Q-value of YIG (~1000)) :
 - would give a further \times O(10) statistic improvements made by "pencil" search $\bar{n}_{\pm}^m = \frac{g_{eff}^2}{(\Lambda + \chi)^2}$

2022/11/7

Conclusions

- DM axion search was performed by Magnon counting method
- Fisrt limit for ma=33 μ eV $g_{aee} < 1.3 \times 10^{-6}$ (95% C.L.)
- A lot of room for improvement