

ガスアルゴンTPCによる 原子核反跳に伴った ミグダル効果観測実験

2024年3月20日

JPS春

身内賢太朗 (神戸大) 東野聡,生井凌太, 中村輝石,内山偉貴,矢野清志朗, 細川佳志,吉田将

Miraclue
Detector
Beamtest
Summary

MIRACLUE = Migdal effect observation by gaseous TPC • MIGDAL effect

- Low mass DM search with "MIGDAL effect"
- Ordinary nuclear recoil : ionization along the track
- Low energy recoil : ionization efficiency is low \Rightarrow difficult to detect
- Very rare case electrons are emitted
- ・ 原子核反跳に伴うMIGDAL効果は未観測

MIRACLUE concepts

- Ar (1atm) and Xenon (8 atm) gas : direct interests in DM search
- start with existing technologies : less R&D
- characteristic X-ray channel for 2-cluster detection (as the first step) : less BG
- low energy (565keV) neutrons : less BG

Miraclue 期待される事象数

PTEP 2021, 013C01

K. D. Nakamura et al.

Table 1. Typical values of parameters for estimating the Migdal effect. The branching ratios for (n, l) = 1s and $q_e = 511$ eV are shown. Details on the event cut are described in Sect. 3.2.

仮定 10 ³ n cm ⁻² s ⁻¹	Target gas	Ar 1 atm $(30 \text{ cm})^3$	Xe 8 atm $(30 \text{ cm})^3$
	Number of nuclei	7.26×10^{23}	5.81×10^{24}
	Cross-section for 565 keV neutron	0.65 barn [24]	6.0 barn [24]
	Migdal branching	7.2×10^{-5} [15]	4.6×10^{-6} [15]
	Fluorescence yield (K shell)	0.14 [25]	0.89 [26]
	Scaling factor $(q_e^{\text{max}}/511 \text{ eV})^2$	2.92 [15]	0.280 [15]
	Event rate	603 events per day	975 events per day
	Event rate (after cut 3)	344 events per day	361 events per day

Detector: KMArT (Kobe Miraclue Argon TPC)

- Detector
 - GEM + µ PIC readout 30×30 cm² ∶ NEWAGE標準
 - TPC by resistive sheet:一樣電場
 - 100μm EVOH シート 薄型「ベッセル」:BG(散乱、(n,γ)) 低減
 - Ar+C₂H₆ 1 気圧 (84:16 分圧) : 耐放電

• DAQ

• SMILE実験用に開発された「岩城チップ」+「岩城ボード」

- 1ch/2 strip, 128ch/board
- hit情報 (TOF, TOT @ 100MHz) /ch
- 波形情報 (@ 100MHz) / 32ch
- 使用可能ボード X: 20cm分(256ch) + Y 10cm(128ch)

Performance

Kenta

- 8keV X-rays (cool-X)
- energy calibration
- W/東大細川氏
 2-cluster demonstration
 - 5keV電子 + 3keV 電子 (Ar特性X線)
 実際にはArを見たい 本番もこれを見る

25000 Entries 21476Mean energy spectrum 20000 15000 10000 5000

Beamtest 2024-01

- @ 産総研
 - DT beam (中性子 14.8MeV)
 - 1.25×10² cm⁻² s⁻¹
 - 2024年1月24日-25日
 - Migdal用データ: 1.05×10⁴ sec
 有感体積 10×20×30cm³
- 14.8MeV 中性子を使用
 565keVを予定 → 加速器側の都合
 BG, 事象数ともに↑
 - 反跳エネルギー↑ 見やすいがサチる

JPS 202

Kentaro Miuchi

Beamtest データ
・中性子照射量 1.3 × 10⁶ n cm⁻²
・ Ar recoil expected : ~ 5×10⁴ 事象
・ Ar: C: H 反跳 ~ 2:1:2 程度
・ MIGADAL (2-cluster) expected : 40 events

・総トリガー数:
・有効事象数:~7×10⁵ event

JPS 2(

Kentaro Miuchi

Event selection BG: 陽子反跳、ガンマ線による電子飛跡 飛跡による事象選別

Kentaro Miuchi

JPS 2024春

・ 飛跡長(length)によるselection (2cm以下を選択)

 Ar+C (+ 残存BG) 候補事象数: ~ 1.1×10⁵ event (Ar+C 0.7 ×10⁵ event expected)

Kentaro Miuchi

JPS 2024春

JPS 2024春

今後の解析
多変数解析 (NEWAGE解析)
クラスター解析 (c.f. 次トーク)
機械学習 (教師データ作成が課題)

Kentaro Miuchi

展望・まとめ

•展望

- ・取得データの解析/simulationとの突合せ
- 回路追加
- ・低エネルギー(565keV, 2MeV)でのデータ取得

• まとめ

- MIRACLUE
- KMArT 30×30×30cm³ Ar-based detector
- 2024年中性子照射: MIGDAL 40 事象程度 expected、解析進行中

お楽しみに / 一緒にやりませんか?

Kentaro Miuchi

JPS 2024春

