

Jan 25th, 2023 KMI colloquium

Exploring the Nature of the Dark Matter by Direct Searches

focusing on directional methods with gaseous detectors

Kentaro Miuchi (Kobe University) DM Overview
Directional
Related Topics
Summary

Dark Matter Overview

|||--- 交流 ---|||

see also 日本物理学会誌 第75巻 (2020年) 第2号 68-76頁 交流

宇宙のダークマター直接探索の現状

身内賢太朗 ^{神戸大学大学院理学研究科} miuchi@phys.sci.kobe-u.ac.jp

濱口幸一 東京大学大学院理学系研究科 hamaguchi@phys.s.u-tokyo.ac.jp DM Overview Directional Related Topics Summary

• DM: seen in various scales in the universe

- @ galaxy: rotation curves (1970~)
- @ cluster of galaxies: collision of galaxy clusters (2007~)
- @ universe: CMB and other observations (2002[~])

• DM candidates: thousands of them

- "good" candidates would solve other problems
 - AXION (CP problem in QCD)
 - Primordial black hole (BHs are there!)
 - WIMPs (Weakly Interacting Massive Particles)

WIMPs

- Produced in the early universe
- Annihilate rate ∝ cross section × velocity
- Freeze out at some point abundance is fixed
- σ∼weak scale explains present abundance ⇒WIMP miracle !

• WIMP hunting

• WIMP-SM(standard model particle, i.e. quarks) particle interaction

- Direct search
- Indirect search
- Collider

Dark Matter searches in the 2020s

At the crossroads of the WIMP

Symposium on next-generation collider, direct, and indirect Dark Matter searches

11-13 November 2019 The University of Tokyo, Kashiwa Campus Asia/Tokyo timezone

Overview Registration Important Dates Invited speaker List Timetable Poster presentations Participant List How to get to Kashiwa Lunch Information Banquet Information Visa application Accommodation Wifi/Internet connection

🖾 darkmatter2019.tokyo

- Liquid Xe/Ar : double-phase (liquid+gas)
 - XENON1T, L/Z, PandaX-II (Xe), DARKSIDE (Ar)
 - Several 100kg \sim 1ton
 - z position can be known
 - Electron background can be discriminated

- Leading results (LZ)
 - 5.5ton 60 livedays
 - 6.5×10-48 cm2 @ 30GeV

More should come from LZ, XENONnT.

Kentaro Miuchi

DEAP(Ar

XMASS(Xe

light + charge

E_R(charge)

CoGent CDE>

AMIC, SENSEI (G

NEWS-G (N

XENON, LUX,

PANDA-X,LZ (X DarkSide (Ar)

Fluorine advantage

- SD search
- different "Neutrino floor" from xenon

Isotope	J	Abundance($\%$)	$\mu_{ m mag}$	$\lambda^2 J(J+1)$	unpaired nucleon
$^{1}\mathrm{H}$	1/2	100	2.793	0.750	proton
$^{7}\mathrm{Li}$	3/2	92.5	3.256	0.244	proton
$^{11}\mathrm{B}$	3/2	80.1	2.689	0.112	proton
^{15}N	1/2	0.4	-0.283	0.087	proton
$^{19}\mathrm{F}$	1/2	100	2.629	0.647	proton
23 Na	3/2	100	2.218	0.041	proton
127 I	5/2	100	2.813	0.007	proton
^{133}Cs	7/2	100	2.582	0.052	proton
$^{3}\mathrm{He}$	1/2	1.0×10^{-4}	-2.128	0.928	neutron
$^{17}\mathrm{O}$	5/2	0.0	-1.890	0.342	neutron
29 Si	1/2	4.7	-0.555	0.063	neutron
$^{73}\mathrm{Ge}$	9/2	7.8	-0.879	0.065	neutron
129 Xe	1/2	26.4	-0.778	0.124	neutron
$^{131}\mathrm{Xe}$	3/2	21.2	0.692	0.055	neutron
^{183}W	1/2	14.3	0.118	0.003	neutron

PICO Results and Future Plans

Hugh Lippincott, Fermilab for the PICO Collaboration EDU 2017

Scaling to PICO-500

No natural DM model explains, either...

Other Nal detectors • COSINE(106kg)

- 3 years' annual modulation measure
- Consistent with null and DAMA, yet.
- ANAIS (112kg)
 - 3 years' annual modulation measure
 - Incompatible with DAMA $@3\sigma$

SABRE

- North and South
- PICOLON
 - Pure crystal

Need to be stay tuned.

• DAMA, Xenon(SI), Fluorine (SD) 2-6 keV

- 13

Directional Searches

DM Overview
Directional
Related Topics
Summary

Emulsions (NEWSdm)

- Large mass
- Fine-grain AgBr crystals for fine track detection

PhysRevC.107(2023)014608

- A number of R&D publications PTEP (2021) 043H01
- Neutron measurement at Gran Sasso surface
- Hope to see DM search paper soon.

PhysRevC.107(2023)014608

Directional Detection

 Clear Discovery even with the neutrino BG
 + study the nature of DM after discovery

NEWAGE

NEWAGE: pre history

PhD work: DM search with a bolometer (conventional detector)
Shocked by "proton track" image in 論文紹介.

And it all started...

NEWAGE: the history

- **Proposal** PLB 578 (2004) 241
- First direction-sensitive limits

PLB654 (2007) 58

Underground results

PLB686 (2010) 11 ... , PTEP(2021) 063F01, arXiv:2301.04779

KMI Colloquium

Phase for "low BG" & "large volume"

Technology: Gaseous Time Projection Chamber

- 2-dimensional image: Micro Patterned Gaseous Detector (MPGD)
- timing information: 3rd dimension
- realtime 3-dimensional tracking

MPGD: GEM, micromegas, µ-PIC

Detector: NEWAGE-0.3b"

- Detection Volume: 31 × 31 × 41 cm³
- ~1500ch readout system
- Gas: CF₄ at 0.1atm (50keVee threshold)
- Gas circulation system with cooled charcoal

Field cage Drift length: 41cm **PEEK + copper wires**

NEWAGE-0.3b inside

- $-31 \times 32 \text{ cm}^2$
- 8-segmented
- hole pitch : $140 \mu m$
- hole diameter: 70µm
- insulator : LCP 100µm - gain : ~5
- made by Scienergy, Japan

NEWAGE latest results arXiv:2301.04779 318 days measurement @ Kamioka

(a) Nuclear-recoil directions in the detector coordinate

 10^{4} (qd) WIMP-proton $\sigma_{\chi-p}$ 10³ 10² 10¹ **DMTPC 2012** NEWAGE2015 NEWAGE2020 3D-vector NEWAGE2021 10⁰ THIS WORK 3D-vector **DRIFT 2017** SD DAMA/LIBRA 101 10² 10^{3} WIMP mass (GeV/ c^2)

Ken

NEWAGE way to go arXiv:2301.04779 Iow BG and low threshold to explore the DAMA region

NEWAGE getting low background ①

- µPIC of low rate alpha-ray emission (LAµ-PIC) NIM A 977 (2020) 164285
- µPIC of low background (LBG-PIC)

Kentarc

Low-BG μ -PIC (LBG μ -PIC)

• Proto-type Low-BG µ-PIC is developed and evaluated

Resistive Sheet TPC

PTEP 2019 (2019)063H01

- need electric field to drift electrons
- traditional method: wires, ribbons...
- new approach: resistive sheet
 - easy to assemble radioactive low BG uniform electric field

• NEWAGE getting low background (2) = negative ion TPC

- Pioneered by DRIFT group
 - originally for small gas diffusion
 - use several ion species with different drift velocities

\Rightarrow z position sensitive \Rightarrow LOW BG !

NEWAGE getting larger

- C/N(CYGNUS/NEWAGE)-1.0 chamber
- 18 \times 30 \times 30 cm² detectors
- being commissioned @ Kobe

NEWAGE getting international = CYGNUS

2020 J. Phys.: Conf. Ser. 1468 012044

CYGNUS-10 Boulby, UK 10m³ He:SF₆ GEM + wire readout

NEWAGE/CYGNUS-KM Kamioka, Japan SF6 / CF4 Strip readout

CYGNO-Initium Gran Sasso, Italy He CF₄ (SF₆) sCMOS+PMT readout

CYGNUS-OZ Stawell, Australia R&D leading to 1 m³ Long-term plan 10 m³ CYGNUS-HD10 SURF, USA He: $CF_4:C_4H_{10}$ Strip readout

multi-site observatory

CYGNUS: physics reaches

Realistic simulation (strip readout)

arXiv 2008.12587

Exploring the Nature of the Dark Matter (1)

astronomy/cosmology

- Test the HALO model
- (ex) Sagittarius stream

constellation "CYGNUS" GC

SUN

Our GALAXY

Halo model test

- isotropic (1-r) + anisotropic(r) DM HALO model indicated by n-body simulation (r \sim 0.3)

Discrimination of anisotropy in dark matter velocity distribution with directional detectors

Keiko I. Nagao ^{a,b,*}, Tomonori Ikeda ^c, Ryota Yakabe ^c, Tatsuhiro Naka ^{d,e}, Kentaro Miuchi ^c

^a Faculty of Fundamental Science, National Institute of Technology, Niihama College, Niihama, Ehime 792-8580, Japan
 ^b Faculty of Science, Okayama University of Science, Okayama, Okayama 700-0005, Japan
 ^c Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan
 ^d Department of Physics, Faculty of Science, Toho University, Funabashi, Chiba 274-8501, Japan
 ^e Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Aichi 464-8601, Japan

Physics of the Dark Universe 27 (2020) 100426

Exploring the Nature of the Dark Matter (2)

- CYGNUS After Discovery : particle physics
 - Some interaction provide characteristic angular distributions

Related Topics

DM OverviewDirectionalRelated TopicsSummary

Related Topic 1: MIRACLUE PTEP (2021) 013C01 = Migdal effect observation by gaseous TPC • MIGDAL effect

- Low mass search with "MIGDAL effect"
- Ordinary nuclear recoil : ionization along the track
- Low energy recoil : ionization efficiency is low ⇒ difficult to detect
- Very rare case electrons are emitted

lead by Kiseki Nakamura

(Tohoku University)

FIG. 1. Illustration of the ER signal production from BREM

MIRACLUE concepts

- Ar (1atm) and Xenon (8 atm) gas : direct interests in DM search
- start with existing technologies : less R&D
- characteristic X-ray channel for 2-cluster detection (as the first step) : less BG
- low energy (565keV) neutrons : less BG

Kentar

Related Topic ③: AICHAM = alpha-ray imaging by gaseous TPC

Po-210

 For material screening • sensitivity: O (10⁻³) α /cm²/hour

NIM A 953, (2020), 163050 J. Phys.: Conf. Ser. 2156 (2021) 012176.

lead by Hiroshi Ito (Tokyo University of Science)

SUMMARY

The nature of the dark matter can be explored by directional method with gaseous TPCs which also have a variety of other applications.

KEK プラットフォームC

地下から解き明かす宇宙の歴史と物質の進化

Unraveling the History of the Universe and Matter Evolution with Underground Physics

G S Physics cases for directional TPCs as a function of

exposure

47

N = volume in m³ assuming 1 atm operation

Many interesting physics opportunities already at relatively small scale

Kentaro Miu

E. Baracchini - Directional Dark Matter Searches - IDM 2022, Vienna, 19th July 2022