

方向に感度を持った 暗黒物質<mark>直接</mark>探索実験

Contents イントロ 物理 実験

2017年10月3日 宇宙観測と地上実験から探る ダークマター研究の現状と展望

Direction-Sensitive WIMP-search NEWAGE

CRCでは、現在検討中の将来計画についての検討を行い、研究者のコンセンサスを形成するためにタウンミーティングを開催してゆきます。 *なお、本タウンミーティングは、専門の研究者を対象としており、一般市民向けの講演会ではありません。

これからの開催

NEW!2017年度CRC将来計画タウンミーティング(通算第12回)

日時: 2017年6月24日(土), 25日(日) 場所:東京大学総合研究棟6F大会議室(柏キャンパス) (交通案内 柏アクセスマップ) 案内文・プログラム

JEDIs, equipped with their WEAP ons, are ready to attack the dark side. JEDI : Japanese Experimental Dark matter Investigators

WHWENNEN MAN

ANKOKGI

メッセージ 「その先」はすぐそこ

> 身内賢太朗 2013年秋学会シンポジウム

L/MAL/MALAW

宇宙の歴史をひもとく地下素粒子原子核研究 文部科学省研究費補助金 新学術領域 領域番号2603 (平成26年~30年度)

ダークマターの懇談会

2017年1月27.28日 於:神戸大学梅田インテリジェントラボラトリ

◎ 趣旨 ◎場所 ◎ 参加登録

◎ 締め切りなど ◎ブログラム ◎ 世話人

● 連絡先

18トーク(含レビュー)

世界的に感度向上が加速している暗黒物質の直接探索について、国内の暗黒物質探索 「についてこれまでを振り返り、将来(10年、20年くらい)について議論することを目的としま す。その際に各ブロジェクトのこれからの戦略を示していただき、議論を行い戦略の向上 の可能性を探りたいと考えております。

研究会形態

諏旨

講演は世話人からの依頼を基本とし、単なる技術的な進捗報告ではなく、世話人からある 程度お願いする 内容(物理や戦略など)に基づいた報告としたいと思います。 それらを踏 まえて、議論の時間も十分とる予定です。当事者間での厳しい議論を行うため、関係者に 優先して連絡、登録を予定しております。

超新星ニュートリノ (C 班) 黑物質 (B班) マヨラナニュートリ (A 册) ウンド技術・高感 0 加留粒子の記述 宇宙の誕生 インフレーション ビッグバン 原子・分子の生成 星・銀河の形成

直接探索実験

DAMA実験

Model Independent Annual Modulation Result DAMA/Nal + DAMA/LIBRA-phase1 Total exposure: 487526 kgxday = 1.33 tonxyr

Single-hit residuals rate of scintillation events vs time in 2-6 keV EPJC 56(2008)333, EPJC 67(2010)39, EPJC 73(2013)2648

over 9σ (by 14yrs of measurement) ⇒ 発見には至らず。。。

DM direct detection

expected direct DM signals
 observed * events
 energy spectrum
 seasonal modulation
 material dependence
 direction-sensitive

ERの捉え方

DM direct detection

expected direct DM signals
observed * events
energy spectrum
seasonal modulation
material dependence
direction-sensitive

Direction-Sensitive Dark Matter Search concept "CYGNUS"

"CYGNUS" concept

Clear Discovery + study the nature of DM after discovery

検出後:

検出まで 宇宙物理

宇宙物理素粒子物理

検出まで □ 「ニュートリノフロア[†]」を超えた探索が原理的に可能

clearly distinguishable * ニュートリノ-原子核コヒーレント散乱 2017年ビーム試験で初観測

Cite as: D. Akimov et al., Science

10.1126/science.aao0990 (2017).

REPORTS

Observation of coherent elastic neutrino-nucleus scattering

Science

検出後:素粒子物理

Test the interaction by scattering angle

PHYSICAL REVIEW D 92, 023513 (2015)

some operators are distinguishable

Paolo Gondolo University of Utah

There are two dark matter species very close in mass, and they can scatter one into the other.

Mass splitting δ up to tens of keV.

 $\delta = m_{\rm out} - m_{\rm in}$

 $\delta > 0$ endothermic (outgoing WIMP has less kinetic energy than incoming WIMP)

 δ < 0 exothermic

Inelastic dark matter

 $\chi(m)$

(A,Z)

 $\chi'(m+\delta)$

(A, Z)

(outgoing WIMP has more kinetic energy than incoming WIMP)

Recoil nuclear track detection < 100keV challenge: short track

> a few mm in low pressure gas a few 100 nm in solid

Most typical "CYNGUS": TPC low pressure gas TPC (time projection chan ber

2D readout + timing \rightarrow 3D tracking

ガスTPC:大型検出器

Physics Letters B 578 (2004) 241-246

DRIFT: パイオニア

early 2000s ~ Iarge TPC Iow BG study

ELSEVIER

Nuclear Instruments and Methods in Physics Research A 463 (2001) 142-148

RESEARCH Section A www.elsevier.nl/locate/nima

Measurement of carbon disulfide anion diffusion in a TPC

Tohru Ohnuki^{a,*}, Daniel P. Snowden-Ifft^a, C. Jeff Martoff^b

^a Department of Physics, Occidental College, 1600 Campus Road, Los Angeles, CA 90041-3314, USA ^b Department of Physics, Temple University, 1900 N. 13th Street, Philadelphia, PA 19122-6082, USA

Received 15 May 2000; received in revised form 13 November 2000; accepted 14 November 2000

Nuclear Instruments and Methods in Physics Research A 498 (2003) 155-164

www.elsevier.com/lo

Neutron recoils in the DRIFT detector

D.P. Snowden-Ifft^{a,b,*}, T. Ohnuki^{a,b}, E.S. Rykoff^{a,b}, C.J. Martoff^{a,b}

^a Physics Department, Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA ^b Barton Hall, Temple University, 1900 N. 13th St., Philadelphia, PA 19122-6082, USA

Received 5 July 2002; received in revised form 11 October 2002; accepted 27 November 2002

2mm pitch multi-wire proportional chamber not very direction-sensitive 0

NEWAGE (PI 身内): 方向感度を追求

New general WIMP search with an Advanced Gaseous tracker Experiment

µ-PIC(MPGD) based TPC
 3-D tracks SKYMAP
 CF₄ gas for SD search

Proposal PLB 578 (2004) 241
 First direction-sensitive limits

 PLB654 (2007) 58

 Underground results

 PLB686 (2010) 11, PTEP (2015) 043F01s

 Phase for "low BG detector"

R&D in the surface lab

NEWAGE detector

- NEWAGE-0.3b'
- Detection Volume: 31×31×41cm³
- Gas: CF4 at 0.1atm (50keVee threshold)
- Gas circulation system with cooled charcoal

NEWAGE-0.3b' inside view Detection Volume: 30×30×41cm³

400 µm

 $50 \mu m$

100

μ-PIC(Micro-pixel chamber)

- 31 × 31cm²

- pitch : 400µm

gain : ~1000

- made by DNP, Japan

Cathode

Anode

Field cage Drift length: 41cm PEEK + copper wires

- GEM
- 31 × 32 cm²
- 8-segmented
- hole pitch : 140 μ m
- hole diameter: 70µm
- insulator : LCP 100 μm
- gain : ~5
- made by Scienergy, Japan

● 低BG化 ■ 低α μ-PIC: α線レベル×1/100のμ-PIC完成 ■ Z方向のfiducialization: SF₆ガスのstudy

6 8 10 12 14 16 18

■ NEWAGE 大型化 ■ 現状:30×30×40cm3 → 大型チェンバー製作中 ■ まずは 2×(30×30×50cm³)で開始

- 18個ある窓に違った検 出器を設置可能
- observatoryとして国内 外の研究者に提供予定

まとめ

□ 市向に感度を持つ直接探索 □ 確実な発見 → 宇宙物理 素粒子物理 ■ ガスTPC、原子核乾板 など