

1. MeV Gamma-Ray Astronomy Photo Compton **Pair Creation** Absorption. $10^{3} eV 10^{4} 10^{5} 10^{6} 10^{7} 10^{8} 10^{9} 10^{10} 10^{11}$ **keV** TeV MeV GeV **10**⁻¹¹ erg cm²/s EGRET COMPTEL **10⁻¹²** HXD GLAST LMSA-γ **10⁻¹³** 10⁻¹⁴ AXF, ASTRO-E, XMM (Imaging+Polarization) Cangaroo 10m STEREO Air C 1年@衛星 1"~1'~1[°] < 1°~ 0.1° < 0.1° < 0.1[°] $\Delta \theta$ (HXD: collimator) All Sky Pointing All Sky All Sky Pointing $\Delta\Omega$

COMPTEL Results

Intense Diffuse Galactic and Extra Galactic gamma-rays

1-3 MeV Cycle 1-6 SKYMOS/Cray T3E

3-10 MeV Cycle 1-6 SKYM0S/ Cray T3E

0-30 MeV Cycle 1-6 SKYMOS/ Cray T3E

Expected Sources in MeV Region

- Black Hole; Binaries, Galactic Center, AGNs, Primordial BH, 511keV
- Pulsars
- → AGN jets; OVV(可視激変光銀河), Blazar
- Galaxies; ⁰ peak due to Cosmic Ray
- SNRs; AI, Ti, Nuclear Gamma
- Diffuse; Extra and Galactic
- Gamma Ray Bursts; Polarization

ADAF (Advection Dominated Accretion Flow)

2. MeV-

source 🛧

PSD

Imaging Detectors

Narrow FOV Background from collimator Energy < 1MeV

2.Compton Camera

3 events are required Diffuse gamma-ray source × Background

semiconductor

Single Compton

Low-Z

High-Z

Multiple Compton

半導体多重コンプトンカメラ

多重コンプトンカメラの概念

Kamae et al. 1987 NM A260, 254

- 多層に積んだ散乱体(D1)とそれをとりかこむ吸収体(D2)
 - 要求事項
 - 高いエネルギー分解能
 - 高い位置分解能

散乱体は、低いエネルギーの ガンマ線にはSiが、高いエネルギー にはCdTeが適している (Compton/Photo Abs Ratio)

$$\cos \tilde{\varphi} = 1 - \frac{m_0 c^2}{E_2} + \frac{m_0 c^2}{E_1 + E_2}$$

- 大面積 (~m²)
- ISAS 高橋グループ 狭視野、高感度 我々の計画と相補的

Takahashi et al. IEEE N.S. 2002 in press

-ray background of COMPTEL J.Ryan (Astronomy with radioactivities, 2003)

- A, B:internal
- C:two
- D:random coincidence
- E: proton-induced

Other background

- neutron
- electron

Our Detector Full Tracking of the Compton process **Micro-TPC (Gas detector) for a recoiled election Pixel Scintillator for a scattered gamma-ray** Full reconstruction Kinematical cut (-cut) ~1MeV Y ~10MeV Y Track image, dE/dx Drift plane Low energy sensitivity (100 keV) Large field of view (~2str) 30cm-cubic prototype Detector e^+ For balloon borne exp.(2006) ~3000 from Crab (8hrs.) u-PIC

PMT

Scintillator

Reconstruction

SCHEMATICS

µ-PIC Detector

- Micro Pixel Chamber
 256anode + 256 cathode strips
- Fine position resolution
- High gain
- Discharge damage: little

µ-PIC detector : performance

→ PIC Detector: X-ray imaging → Test chart image (Xe:C₂H₆ 7:3) knife edge test 160 µ m resolution

other images

Micro-TPC (3D-Track Imaging)

 → Field cage 8cm drift length 0.4 kV/cm electric fiel +10 × 10cm² µ-PIc
 → micro-TPC

Micro-TPC : tracking performance proton track(~0.8GeV) electron track (⁹⁰Sr,Q 2.3MeV)

- Drift time Depth information
- · dE/dx track direction
- TPC gas gain + clock up more precise track !

Prototype detector

Anger camera

No Veto or Shield !

micro-TPC $10 \times 10 \times 8 \text{ cm}^3$ Ar +C₂H₆ (9:1) Nal(TI) Angur 4" × 4" × 1" 25 PMTs

-ray imaging test

Red zone :TPC

- Green zone :scintillation camera Scattered gamma-ray in Nal Electron track in TPC
 - **RI Source**
 - Reconstructed

Typical Reconstructed Event

Reconstructed Image ¹³⁷Cs 662keV RI source (5cmfrom micro-TPC) e- energy not used

low energy

-ray

Future Works

Micro-TPC

Improvement of gain (required X 5)

- Study of electrodes (electron collection efficiency 30% ->95%), X 3
- Quality control for uniformity of structure X 2
- Sampling pitch 0.4mm -> 0.8mm X 2
- New amplifier IC chip (Time constant 16ns -> 80ns X 3) done
- Xe Gas 1.5 atm dE/dx X 4.5

Scintillation camera

- Required performance (Res.(FWHM), 2mm,7%@662keV)
- Under studying following types

Segment Csl

shape	plane	Segment	Segment
readout	FP-PMT	FP-PMT	Pin-D.Array

Segment CsI and Pin – D. Array 10cm X 10cm, 5mm pitch

開発状況まとめ

→ プロトタイプ検出器でコンセプト実証 → 今後フライトモデル製作及び性能向上 → 2006年に気球実験

研究計画概要

→研究計画: 衛星搭載 ~2006年度 特定領域(A) 計画研究 2006年夏:MeV検出器(30cm角)完成、気球実験 南極周回長期観測計画(50cm角、5年程度) 衛星搭載型検出器の開発へ(50cm角×n) →研究体制:新領域の立ち上げ •現在は京都大学宇宙線研究室(スタッフ3名+学生数名) ・将来的には宇宙研(高橋グループ)等とMeV領域研究グ ループを立ち上げも

→ 予算規模

• 数億円(南極周回計画)

Angular Resolution

 $\Delta \phi$ Angular Resolution Measure(ARM) $\Delta \delta$: Scatter Plane Deviation(SPD)

Detection Efficiency

