修士学位論文

炭素スパッタを用いた積層型
Fast Timing RPC の開発

2018年3月9日

専攻名
物理学専攻

学籍番号
161s105s

氏名
小川 圭将

神戸大学大学院理学研究科博士課程前期課程
概要

RPC (Resistive Plate Chamber) とは高抵抗のプレートを積み重ねた構造のガス検出器である。プレート間に電場がかけられることで、RPC 内を荷電粒子が通過するとガスがイオン化され電子が雪崩増幅を起こし、外側の金属電極より誘起電荷を読み出すことで信号を検出することができる。

一般的な RPC において、高抵抗プレートはガラスが用いられており、そのギャップ間隔は一般的に数 mm オーダーである。時間分解能を改善するために、ギャップを縮小させるなどの方法が考えられるが、縮小させばさせてるほど電極表面の滑らかさに精密さが必要である。しかし、高レート環境下における物理実験において、ガラスのような高抵抗物質ではレート耐性が低く、最適ではない。そしてそのギャップ間には数 k~10 kV/mm 程度の電場がかけられているため、検出器全体として非常に大きな動作電圧が必要になるなど、様々な問題が存在する。

本論文では、上記の課題に対し炭素をスパッタさせることで形成する DLC(Diamond Like Carbon) と呼ばれる薄膜抵抗体を電極として使用し、それらをポリイミドフォイルの両面に形成することで各層に独立に電場を供給するという、高速時間分解能が期待出来る新たな RPC(Fast Timing RPC) の構造を考案した。本論文ではその Fast Timing RPC の検出原理や構造について言及し、その試作品の作製及びその性能評価について報告する。
目次

第1章 序論 2

第2章 ガス検出器 3
 2.1 荷電粒子と物質の相互作用 4
 2.2 ガス増幅 6
 2.2.1 ガス中での電離 6
 2.2.2 ガス中でのイオン対の移動 7
 2.2.3 雪崩増幅 9
 2.2.4 ガス検出器の動作電場領域 12
 2.3 種々のガス検出器 13
 2.3.1 比例計数管 13
 2.3.2 MWPC(Multi Wier proportional chamber) 13
 2.3.3 MSGC(Mirco Strip Gas Chamber) 14
 2.3.4 Micromegas (MICRO-MEsh-GAseous-Structure) 15

第3章 Resistive Plate Chamber (RPC) 17
 3.1 Resistive Plate Chamber (RPC) 17
 3.1.1 RPC の歴史 17
 3.1.2 RPC の基本動作 20
 3.2 RPC の課題 24
 3.3 Fast Timing RPC 25
 3.4 Diamond Like Carbon (DLC) 25
 3.5 TOF 測定 27
 3.5.1 TOF 測定法 27
 3.5.2 TOF 検出器 28
 3.5.3 物理実験への応用 30

第4章 FRPC の作製 32
 4.1 FRPC のコンセプト 32
 4.2 スパッタリング技術 33
 4.3 FRPC のデザイン 36
 4.4 FRPC の作製 37

第5章 FRPC の性能評価 42
<table>
<thead>
<tr>
<th>項目</th>
<th>タイトル</th>
<th>頁数</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>測定環境</td>
<td>42</td>
</tr>
<tr>
<td>5.2</td>
<td>信号</td>
<td>43</td>
</tr>
<tr>
<td>5.2.1</td>
<td>信号</td>
<td>43</td>
</tr>
<tr>
<td>5.2.2</td>
<td>ノイズ</td>
<td>43</td>
</tr>
<tr>
<td>5.2.3</td>
<td>ブリアンプ</td>
<td>43</td>
</tr>
<tr>
<td>5.3</td>
<td>ガス依存性</td>
<td>45</td>
</tr>
<tr>
<td>5.3.1</td>
<td>ガスの種類</td>
<td>45</td>
</tr>
<tr>
<td>5.3.2</td>
<td>測定方法</td>
<td>45</td>
</tr>
<tr>
<td>5.3.3</td>
<td>ガス混合比の決定</td>
<td>47</td>
</tr>
<tr>
<td>5.4</td>
<td>検出効率</td>
<td>48</td>
</tr>
<tr>
<td>5.4.1</td>
<td>測定方法</td>
<td>48</td>
</tr>
<tr>
<td>5.4.2</td>
<td>測定結果</td>
<td>50</td>
</tr>
<tr>
<td>5.4.3</td>
<td>シミュレーションによる検出効率の評価</td>
<td>53</td>
</tr>
<tr>
<td>5.5</td>
<td>時間分解能</td>
<td>60</td>
</tr>
<tr>
<td>5.5.1</td>
<td>測定方法</td>
<td>60</td>
</tr>
<tr>
<td>5.5.2</td>
<td>解析方法</td>
<td>62</td>
</tr>
<tr>
<td>5.5.3</td>
<td>測定結果</td>
<td>64</td>
</tr>
</tbody>
</table>

第6章 まとめ 75
概要

RPC (Resistive Plate Chamber) とは高抵抗のプレートを積み重ねた構造のガス検出器である。プレート間に電場がかけられることで、RPC 内を荷電粒子が通過するとガスがイオン化され電子が雪崩増幅を起こし、外側の金属電極より誘起電荷を読み出すことで信号を検出することができる。

一般的な RPC において、高抵抗ブレートはガラスが用いられており、そのギャップ間隔は一般的に数 mm オーダーである。時間分解能を改善するために、ギャップを縮小させるなどの方法が考えられるが、縮小させればさせるほど電極表面の滑らかさに精密さが必要である。しかし、高レート環境下における物理実験において、ガラスのような高抵抗物質ではレート耐性が低く、最適ではない。そしてそのギャップ間には数 k~10 kV/mm 程度の電場がかけられているため、検出器全体として非常に大きな動作電圧が必要になるなど、様々な問題が存在する。

本論文では、上記の課題に対し炭素をスパッタさせることで形成する DLC(Diamond Like Carbon) と呼ばれる薄膜抵抗体を電極として使用し、それらをポリイミドフォイルの両面に形成することで各層に独立に電場を供給するという、高速時間分解能が期待出来る新たな RPC(Fast Timing RPC) の構造を考案した。本論文ではその Fast Timing RPC の検出原理や構造について言及し、その試作品の作製及びその性能評価について報告する。
第1章 序論

Resistive Plate Chamber (RPC) とは高抵抗のプレートを積み重ねた構造のガス検出器である。プレート間に電場がかけられることで、RPC 内を荷電粒子が通過するとガスがイオン化され電子が雪崩を起こし、外側の金属電極より誘起電荷を読み出すことで信号を検出することができる。

原子核・高エネルギー実験において、RPC は様々な用途として使用されている。スイスのジュネーブ郊外、フランスの国境付近に位置する CERN（欧州原子核研究機関）において行われている、大型円形加速器 LHC（Large Hadron Collider）を用いた ATLAS 実験では muon trigger として、ALICE 実験では粒子識別である TOF（Time Of Flight）検出器として使用されている。

RPC はプレート間のギャップが狭いため、検出器として非常に高い時間分解能が期待出来る。近年では高速の時間情報を得るための検出器開発が盛んに行われており、本論文においてもこの時間情報に特化した RPC（Timing RPC）について着目した。

一般的に RPC は高抵抗プレートをガラスが用いられており、そのギャップ間隔は一般的に数 mm のオーダーである。時間分解能を改善するためにギャップを縮小させるなどの方法が考えられるが、縮小させればさせるほど電極表面の相対的な荒さが問題である。また、上記のような高電荷密度下における物理実験において、ガラスのような高抵抗物質ではレート耐性が低く、最適ではない。そしてそのギャップ間には数 kV/mm 程度の電場がかけられているため、検出器全体として非常に大きな動作電圧が必要になるなど、様々な問題が存在する。

そこで本研究では、炭素をスパッタさせることで形成する DLC（Diamond Like Carbon）と呼ばれる薄膜抵抗体を電極として使用し、それらをポリイミドフォイルの両面に形成することで各層に独立に電場を供給するという、高速時間分解能が期待出来る新たな RPC（Fast Timing RPC）の構造を考察した。以下ではその原理や構造について言及し、その試作品の作製及びその性能評価について報告する。

本論文は以下の構成になる。

- 第2章：ガス検出器
- 第3章：Resistive Plate Chamber (RPC)
- 第4章：FRPC の作製
- 第5章：FRPC の性能評価
- 第6章：まとめ
- 謝辞
第2章 ガス検出器

本研究で扱う検出器はResistive Plate Chamber(RPC) だが、これはガスを用いた粒子線検出器の一種である。

ガス検出器はその名の通り荷電粒子の検出をガス分子の電離を利用して行う。ガスで満たした空間内を荷電粒子が通過すると、各種の相互作用が起こり、その粒子の通過経路に沿って励起された分子と電離された分子（イオン単位）を作る。イオン単位には、入射粒子との直接的な相互作用によって作られるものと、入射粒子の衝突角エネルギーが高エネルギー電子（δray）に伝達されるという過程を経て形成されるものがある。このようにして発生した電子は、このままでは陽イオンと衝突し再結合することによって中性粒子に戻ってしまう。しかし、その空間に電場をかけておくことで、電子は電場と逆方向に、イオンは電場方向に動くためこれを防ぐことができる。また、強電場領域において電子はガス分子との衝突と衝突の間に加速され、ガスの種類に依存したエネルギー関数（W 値）を超えると雪崩式に電子によるガス分子の電離が始まる。このようにしてできた多くの電荷の移動により誘起された電荷を電気信号として読み出すことで粒子を検出する。

本章では上述した検出原理について詳しく説明するとともに、実際に応用されているいくつかの検出器の詳細について述べる。
2.1 荷電粒子と物質の相互作用

電子や陽電子以外の荷電粒子の場合、物質との相互作用として支配的であるものは、原子がもつ電子とのクーロン散乱である。その他に核子との散乱もあり得るが、核子の反跳エネルギーが核子自身の質量に比べ十分小さいため無視できる。この作用により、スピン0、電荷q、質量M、速度vの入射荷電粒子が単位長さ当たりに失う平均エネルギーは式2.1に示すBethe-Blochの式に従う[1]。

\[-\frac{dE}{dx} = \frac{Dq^2n_e}{\beta^2} \left(\ln \left(\frac{2m_ec^2\beta^2\gamma^2}{I} \right) - \beta^2 - \frac{\delta(\gamma)}{2} \right) \quad (2.1)\]

ここでm_eは電子の質量、n_eは電子の密度、Iは原子の周りの全電子についての平均である原子のイオン化ポテンシャルである。また、係数Dは以下のように出される。

\[D = \frac{4\pi\alpha^2\hbar^2}{m_e} = 5.1 \times 10^{-25} \text{ [MeVcm}^2]\] (2.2)

また例として、典型的な荷電粒子の一つであるミューオンの運動量に対するエネルギー損失の関係を図2.1に示す。横軸はミューオンの運動量、縦軸はエネルギー損失の平均値（阻止能）である。

図2.1 ミューオンのエネルギー損失（Bethe-Blochの式）[1]

スピン\(\frac{1}{2}\)の粒子（フェルミオン）の場合、少し式の形は異なるがその違いはとても小さい。
ので無視してよく同様の式に従うとしてよい。Bethe-Bloch の式によれば、\(\beta \gamma \) の値によってエネルギーの失い方が異なる。\(0.1 < \beta \gamma < 1.0 \) の領域ではエネルギー損失は \(\beta \) のおおよそ二乗に反比例し、\(1.0 \leq \beta \gamma \leq 1000 \) の領域ではエネルギー損失は非常に小さくなり、特に \(\beta \gamma = 3 \sim 4 \) で最小値を持ちその値は式 2.3 で示される。この領域は最小イオン化領域と呼ばれる。

\[
\frac{1}{\rho} \left(-\frac{dE}{dx} \right)_{\text{min}} \approx 3.5 \frac{Z}{A} \text{[MeVg/cm}^2]\] \quad (2.3)

ここで、\(\rho \) は物質の密度、\(Z \) は物質の原子番号、\(A \) は物質の原子量である。そして、様々な物質についてこれらの Bethe-Bloch の式 2.1、2.3 を計算したものを図 2.2 に示す。

図 2.2 様々な物質に対するエネルギー損失（Bethe-Bloch の式）[1]
2.2 ガス増幅

2.2.1 ガス中での電離

荷電粒子がガス中を通じると、ガス分子が電離する。そのとき、通過粒子の軌跡に沿って電子が放出されるイオン対が生成される。遊離されたイオン対の総数 \(N_T \) は粒子のエネルギー損失 \(\Delta E \) に比例し、式 2.4 のように表される。

\[
N_T = \frac{\Delta E}{W}
\] (2.4)

ここで、\(W \) は入射した荷電粒子が一回のイオン対生成あたりに失うエネルギーの平均であり、\(W \) 値と呼ばれる。電離が起こるのは、入射荷電粒子の局所的なエネルギー損失が電子の束縛エネルギーよりも大きいときで、ガス検出器で用いられるガス原子において電子の束縛エネルギーは最小で 10~20 eV である。また電離によってイオン対が生成される過程の他に、ペニング効果と呼ばれる、より高い束縛状態にある分子に電子が励起されて励起分子を生成する過程がある。励起した希ガス分子は炭化水素などの多原子分子によるクエンチンガスと反応するなどして電子を生成する。したがって、\(W \) 値は電離に必要なエネルギーよりも大きく、各ガスの \(W \) 値を表 2.3 に示す。\(W \) 値はガスの種類、放射線の種類とそのエネルギーに大きくは依存せず、ほぼ一定の値になることが実験的に知られている。また表 2.3 には \(W \) 値の他に、第 1 励起エネルギー \(E_1 \)、イオン化エネルギー \(E_I \)、電子とガス分子との 1 衝突あたりに生成されるイオン対の数 \(N_P \) を示している。

<table>
<thead>
<tr>
<th>Gas</th>
<th>Density, mg cm(^{-3})</th>
<th>(E_x) eV</th>
<th>(E_I) eV</th>
<th>(W_I) eV</th>
<th>(\Delta E/dx)(\text{min}) keV cm(^{-1})</th>
<th>(N_P) cm(^{-1})</th>
<th>(N_T) cm(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>0.179</td>
<td>19.8</td>
<td>24.6</td>
<td>41.3</td>
<td>0.32</td>
<td>3.5</td>
<td>8</td>
</tr>
<tr>
<td>Ne</td>
<td>0.839</td>
<td>16.7</td>
<td>21.6</td>
<td>37</td>
<td>1.45</td>
<td>13</td>
<td>40</td>
</tr>
<tr>
<td>Ar</td>
<td>1.66</td>
<td>11.6</td>
<td>15.7</td>
<td>26</td>
<td>2.53</td>
<td>25</td>
<td>97</td>
</tr>
<tr>
<td>Xe</td>
<td>5.495</td>
<td>8.4</td>
<td>12.1</td>
<td>22</td>
<td>6.87</td>
<td>41</td>
<td>312</td>
</tr>
<tr>
<td>CH(_4)</td>
<td>0.667</td>
<td>8.8</td>
<td>12.6</td>
<td>30</td>
<td>1.61</td>
<td>28</td>
<td>54</td>
</tr>
<tr>
<td>C(_2)H(_6)</td>
<td>1.26</td>
<td>8.2</td>
<td>11.5</td>
<td>26</td>
<td>2.91</td>
<td>48</td>
<td>112</td>
</tr>
<tr>
<td>iC(_4)H(_10)</td>
<td>2.49</td>
<td>6.5</td>
<td>10.6</td>
<td>26</td>
<td>5.67</td>
<td>90</td>
<td>220</td>
</tr>
<tr>
<td>CO(_2)</td>
<td>1.84</td>
<td>7.0</td>
<td>13.8</td>
<td>34</td>
<td>3.35</td>
<td>35</td>
<td>100</td>
</tr>
<tr>
<td>CF(_4)</td>
<td>3.78</td>
<td>10.0</td>
<td>16.0</td>
<td>54</td>
<td>6.38</td>
<td>63</td>
<td>120</td>
</tr>
</tbody>
</table>

図 2.3 種々のガスにおける \(W \) 値 [2]
2.2.2 ガス中でのイオン対の移動

電離により生成されたイオン対（イオンと電子）は、引きつけ合い再結合することで中性原子に戻ろうとする。このとき陽イオンは陰イオンや電子と再結合し、または低いエネルギー (eV 程度) の電子は電気陰性度の高い機体により捕獲される可能性がある。そのため粒子検出の際は、ガス中に電場をかけることでイオンと電子をそれぞれ逆方向に移動させ、再結合を抑制させる。電場により陽イオンは電場方向に、電子は電場と逆方向に移動するが、その速度は大きく異なる。以下にそれぞれの速度について述べる。

1. イオンの速度

イオンは電場により加速され、気体分子と衝突して止まるということを繰り返しながら移動する。その速度は電場強度 E に比例するが、その平均ドリフト速度 v_D は式 (2.5) のようになる。

$$v_D^+ = \mu^+ E \frac{p_0}{p} \tag{2.5}$$

ただし、μ^+ はイオンの移動度、p_0 は標準圧力 (1×10^5[Pa]) である。イオンの移動度はガス分子と気体の組み合わせによって決まっている。各種気体中におけるイオンの移動度を図 2.4 に示す。

<table>
<thead>
<tr>
<th>気体</th>
<th>イオン</th>
<th>移動度 μ^+ (cm2·V$^{-1}$·s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>He$^+$</td>
<td>10.2</td>
</tr>
<tr>
<td>Ar</td>
<td>Ar$^+$</td>
<td>1.7</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>H$_2$O$^+$</td>
<td>0.7</td>
</tr>
<tr>
<td>Ar</td>
<td>(OCH$_3$)$_2$CH$_2^+$</td>
<td>1.51</td>
</tr>
<tr>
<td>isoC4H${10}$</td>
<td>(OCH$_3$)$_2$CH$_2^+$</td>
<td>0.55</td>
</tr>
<tr>
<td>(OCH$_3$)$_2$CH$_2$</td>
<td>(OCH$_3$)$_2$CH$_2^+$</td>
<td>0.26</td>
</tr>
<tr>
<td>Ar</td>
<td>isoC4H${10}^+$</td>
<td>1.56</td>
</tr>
<tr>
<td>isoC4H${10}$</td>
<td>isoC4H${10}^+$</td>
<td>0.61</td>
</tr>
<tr>
<td>Ar</td>
<td>CH$_4^+$</td>
<td>1.87</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>CH$_4^+$</td>
<td>2.26</td>
</tr>
<tr>
<td>Ar</td>
<td>CO$_2^+$</td>
<td>1.72</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>CO$_2^+$</td>
<td>1.09</td>
</tr>
</tbody>
</table>

図 2.4 種々のガスにおけるイオンの移動度 [3]
2. 電子の速度
イオンもガス中で衝突を繰り返しながら加速していくが、電子はイオンに比べて平均自由行程が長いため衝突間で得るエネルギーはイオンよりもはるかに多い。特に運動エネルギー 1 eV 程度の電子の波長は希ガスの束縛電子の軌道直径の 2 倍程度に相当するので、量子効果によって当該原子を電子に対してほとんど透明にしてしまう（ラムザウア効果)。図 2.5 にアルゴンと電子の衝突断面積と電子のエネルギーの関係、及び図 2.6、図 2.7 に各種気体中での電子のドリフト速度の実測値を示す [4]。
2.2.3 雪崩増幅

イオンはその移動度の小ささから、衝突間電場からほとんどエネルギーを得ることができない。一方、電子の場合、(1気圧の通常のガスの場合) 電場の強さが 10^6 [V/m] 以上の領域において、ガス分子との衝突間に周囲のガス分子を励起あるいは電離のために十分なエネルギーを得ることができる。このようにして放出された 2 次電子がさらに同様の事を繰り返し、電子の数が雪崩式に増えていく。これを雪崩増幅という。

電子がイオンに衝突するまでの平均距離（平均自由行程）の逆数をタウンゼントの第 1 係数と呼び、単位ドリフト距離において生成されるイオン対の数を表す。これを用いて簡単に雪崩増幅過程を記述する。

初期位置 x での電子の数を n とすると、電子が dx 進んだ時の個数の増加分 dn は式 2.6 のように表される。

$$dn = n\alpha(x,p)dx$$ \hspace{1cm} (2.6)

これを x_0 x_1 の範囲で両辺で積分し、

$$n = n_0 \exp \left[\int_{x_1}^{x_2} \alpha(x)dx \right]$$ \hspace{1cm} (2.7)

となることから、最終的な粒子の増加率、すなわち増幅率 M は式 2.8 のように表される。
\[M = \frac{n}{n_0} = \exp \left[\int_{x_1}^{x_2} \alpha(x) dx \right] \] \hspace{1cm} (2.8)

特に電場が一致の場合、\(\alpha \) は定数となるため粒子の増幅率 \(M \) は式 (2.9)

\[M = e^{\alpha x} \] \hspace{1cm} (2.9)

のように表される。

以上からわかるように、電場における電子の数はその位置に対して指数関数的に増大する。
また、増幅された電子イオン対の位置分布の例として、ワイヤーチェンバー (2.3 参照) における分布を図 2.8 に示す。これは電子とイオンのドリフト速度が大きく異なることや、ガス中での拡散によることにより作られる形である。したがって進行方向前方には電子が密集しており、後方には速度の違いにより置き去りにされたイオンが残っている。ただし、イオンの半数は電子と同じく前方に含まれておりこれは最後の平均自由行程の範囲内で作られたものである。
また、タウンゼント第一係数 α は実験的にガスの圧力と電場の大きさに依存するというKorffの経験則が存在し、式 2.10 のように表される。

$$\frac{\alpha}{p} = A\exp \left[-\frac{Bp}{E} \right]$$ (2.10)

ここで A, B はガスの種類に依存した定数である。その例を図 2.9 に示す。
一方で、ガス空間全体で、増幅過程を起こす引き金となってしまう光子放出過程や電場を乱すスペースチャージ等が生じると電子の増加に歯止めがかかり、最終的に放電破壊を招く。これを防ぐためにこれらの現象が起きる閾値 (Raether limit [5]) を知っておくことは極めて重要で、それは以下で与えられる。

$$M \approx 10^8$$ (2.11)

MPGD (Micro Pattern Gaseous Detector) などのように増幅領域が狭い (数百 μm) 場合では、電場が大きくなるので、式 2.11 からが大きくなるためこの制限はさらに厳しくなり、$M \approx 10^{6-7}$ 程度といわれている。

<table>
<thead>
<tr>
<th>Gas</th>
<th>A (cm$^{-1}$ Torr)</th>
<th>B (V cm$^{-1}$ Torr)</th>
<th>K (cm2 V$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>3</td>
<td>34</td>
<td>0.11×10^{17}</td>
</tr>
<tr>
<td>Ne</td>
<td>4</td>
<td>100</td>
<td>0.14×10^{17}</td>
</tr>
<tr>
<td>Ar</td>
<td>14</td>
<td>180</td>
<td>1.81×10^{17}</td>
</tr>
<tr>
<td>Xe</td>
<td>26</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>CO$_2$</td>
<td>20</td>
<td>466</td>
<td></td>
</tr>
</tbody>
</table>

図 2.8 増幅過程におけるイオンと電子の分布図 [6]

図 2.9 Koeff の経験式 [7]
2.2.4 ガス検出器の動作電場領域

検出器の動作電場領域は、その電場強度と增幅率の関係によって異なる。検出器への印加電圧と電離による信号の大きさの関係を、入射粒子が α 線、β 線の場合について図2-10に示す。以下、各領域について述べる。

- 電離飽和領域 (Ion saturation region)
 電場の大きさが小さい場合、電離で生成されたイオン対が再結合してしまう。そのため電場を大きくすることで再結合を抑えて、電離粒子をすべて収集できるが、電子雪崩は起こらない状態の領域である。

- 比例計数領域 (Proportional region)
 検出器の電場の大きさに比例して増幅率が大きくなる領域である。一次電子に比例した出力であるため、入射した粒子線のエネルギー分析が可能である。パルス電流の持続時間が短いため不感時間が短く、高い計数率で測定することができる。

- 限定比例領域 (Limited proportional region)
 印加電圧と信号の大きさの比例関係が崩れている領域。ガス増幅の過程で生じる光子が余分な増幅を起こす効果が無視できなくなっている。

- ガイガーミュラー領域 (Geiger-Mueller region)
 信号の大きさが印加電圧に依存しない領域。増幅過程で生じる光子が次々と増幅を起こし広がっていくため、信号の出力は一次電子の数に関係しない一定値となる。増幅率が大きいので検出感度は大きいが、入射粒子線のエネルギーを分析することはできない。パルス電流の持続時間が長いため不感時間が長く、高計数率での測定は難しい。(gain: $10^8 \sim 10^{10}$)

![Amplitude vs. Applied Voltage Graph](image-url)

図2.10 ガス検出器の動作電場領域 [8]
2.3 種々のガス検出器

2.3.1 比例計数管

比例計数管は最も基本的なガス粒子線検出器のひとつである。図 2.11 のように、円筒状の陰極の中心に数 10～数 100μm 径の陽極のワイヤーが張られた構造をしている。円筒内はアルゴンベースの混合ガスなどで満たされている。円筒内でワイヤー中心からの距離が \(r \) の位置の電場 \(E(r) \) は次式のようになる（図 2.12）。

\[
E(r) = \frac{V}{r \ln(b/a)}
\]

(2.12)

図 2.11 比例計数管の模式図 [9] 　図 2.12 比例計数管におけるワイヤー中心からの距離 \(r \) と電場の大きさ \(E(r) \) の関係 [10]

2.3.2 MWPC(Multi Wier proportional chamber)

MWPC とは、計数管の両側に陰極として動作する 2 枚の大きな平板を置き、その間に多数の陽極線を置いた構造であり、Georges Charpak 氏によって開発された [10]。ガス中で生成された電子ははじめは均一な電場によって加速され、陽極付近で雪崩増幅が始まる（図 2.13）。電子雪崩が捕獲された陽極線には大きな負のパルスが現れ、その隣の陽極線には正のパルスが生じる。これにより粒子の位置を特定することが可能である。またこのような平行平板型のドリフト電場があることでイオンを素早く回収することができる。陰極平板は多数のワイヤーで置き換えることもでき、その場合には 2 次元の位置特定が可能となる（図 2.14）。しかし、電気的な反発の影響で陽極間の間隔は最小でも 1-2 mm であるため、約 0.3 mm 以下の位置分解能は望めない。
2.3.3 MSGC(Mirco Strip Gas Chamber)

上述のように MWPC では位置分解能に限界があり、それを克服するため A.Oed 氏によって提案されたのが MSGC である [11]。絶縁層の上にエッティング法により金属電極ストリップ (陽極、陰極) を形成することで、陽極構造を微細化 (〜10 μm) が可能になった。これによって、比例計数管の陽極線周囲に発生する電界強度と同様のものを陽極ストリップ表面に実現させることができる。陽極中心から陰極までの距離が 250μm の MSGC における電場の構造は図 2.15 に示す。通常の比例計数管と同様に、観測される信号を生み出すのは電子雪崩の中で生成された陽イオンが陽極表面から遠ざかる場合である。光リソグラフィ技術により微細電極が作成可能になり位置分解能が改善されただけでなく、先述したように陽極と陰極は同一平面上に生成されており、その間隔は MWPC と比較すると非常に狭い。これにより陽イオンがすく近くの陰極に素早く引き寄せられ正の空間電荷が早急に消滅するため、MWPC よりもはるかに計数率が高い（図 2.16）。
2.3.4 Micromegas (MICRO-MEsh-GAseous-Structure)

Micromegas は 1996 年に Y. Giomataris によって開発された MPGD である [12]。図 2.17、図 2.18 にその構造と動作原理を示す。Micromegas の構造は、鋼メッシュによる数 mm のドリフト領域と 100μm 程度の増幅領域が存在し、PCB 上に信号読み出し用のストリップ電極とメッシュを支えるためのピラーが配置されている（図 2.17）。ドリフト領域で生成された一次電子がメッシュまでドリフトされ、メッシュと基板の間の高電場領域で電子雪崩を起こし、その誘起電荷が PCB で信号として読み出される（図 2.18）。ドリフト領域の電場が数百 V/cm であるのに対し、増幅領域の電場は数十 kV/cm と程度であり、これによりほとんどの電子はメッシュを通り抜けることができる。電子雪崩から生成されたイオンが速やかにメッシュに到達するため、粒子が高頻度に入射する環境に適しており、Micromegas は ATLAS Phase-I upgrade における muon 検出器として採用されている。

図 2.15 MSGC の電場構造 [11]
図 2.16 MWPC と MSGC における増幅率と計数率の関係 [11]

図 2.17 Micromegas の構造 [12]。鋼メッシュによりドリフト領域と増幅領域が存在し、PCB 上に信号読み出し用のストリップ電極とメッシュを支えるピラーが配置される。
2.18 Micromegas の動作原理の概念図 [12]。ドリフト領域において荷電粒子との反応でガスから電離した電子がメッシュまでドリフトされ、メッシュと基板の間の高電場領域で電子雪崩を起こし、その誘起電荷が PCB で信号として読み出される。

また近年では、この Micromegas を用いた高速の時間測定器開発が PICOSEC Collaboration (CEA(Saclay), CERN, NCSR Demokritos, etc) によって行われている [13]。この PICOSEC detector は、図 2.19 のように、フォトカソード上に Cherenkov Radiator (MgF_2 Crystal) を設置することで、荷電粒子が通過すると Cherenkov Radiator から放出するチェレンコフ光 (photon) をフォトカソード (Csl) で電子に変換し、読み出しとして Micromegas を用いる方法である。開発段階ではあるが、高性能なエレクトロニクスを用いることで 150GeV/c の muon に対して時間分解能 σ_T ∼ 24ps を達成したという報告もある [13]。

2.19 PICOSEC detector の検出原理 [13]
第3章 Resistive Plate Chamber (RPC)

3.1 Resistive Plate Chamber (RPC)

本研究では時間分解能に特化した高速（Fast Timing）の新しいResistive Plate Chamber (RPC)の開発を目的とする。RPCは平行平板カウンター (Parallel Plate Counter)の一種である。現在使用されている一般的なRPCの原型となるものは、1980年代初頭にイタリアのSantonico氏達によって開発されたものである[14]。ここではその開発とその歴史の概要、及び基本原理について述べていく。

3.1.1 RPCの歴史

1. KeuffelのParallel Plate Counter

Geiger-Muller Counterのようなワイヤーチンキーは、ワイヤーを中心とした電場 \(E(r) = 1/r \) を作るため、ワイヤーの近くの領域でのみ電子増殖が起こる。電子は電場によってワイヤーの近傍までドリフトするが、ドリフトする距離によって時間にばらつきが生じ、検出器としての時間分解能が悪くなる。Geiger-Muller Counterの時間分解能を改善するため、Keuffelによって1949年代に平行平板カウンターが開発された[15]。

このカウンターは、アルゴン、エチレンの混合ガスを0.5気圧で封じ込めたガラス管中に35cm²の銅または銅メッキされた鉄を2.5mm間隔で平行に設置したものである。図3.1にその概略図を示す。平行な極板間に電圧をかけると、電子の増幅が起こるような強い電場が一様にできることを利用してガス増幅を発生させる。時間分解能が約0.1μsecと比較的良くなかったGeiger-Muller Counterに対し、このカウンターは数10nsecと良く、検出効率は90％、信号の波高は数100Vであったとされている。また、放電がカウンター全体に及ぶため、極板の面積そのものが位置分解能となる。Geiger-Muller Counterでは、電子雪崩によって生成された電子が電極の周りに分布するためそれ以上の放電を防ぐ役割となるが、このカウンターではそのような電荷の分布をしないため、一度放電が起こると電圧をかけている限り放電が続いてしまう。そのため、放電が起こると一定時間（0.01〜0.05sec）極板の駆動電圧が下がるようにクエンチング回路が設けられている。カウンターの製作には表面処理を綿密に行うことや極板を高い平行度を保つなどと同時に、これらをガラス管の中に作らなければならないことなど、技術的な困難が数多く存在した。また、1〜2カ月でケーブルの側に“spot burst”が起き、その部分が常に放電を起こすようになるため、その度に極板を洗浄または交換しなければならないという問題点もあった。
2. Pestov の Planer Spark Counter

平行平板カウンターを用いて大面積での測定や、高レート環境下における測定を可能にするため、旧ソ連の Pestov らによって平行平板カウンターが開発された [16]。このカウンターは、陽極に半導体ガラスを、陰極にガラスに蒸着させた銅を使用しており、それを 100～200μm 間隔で平行に設置し、陰極の外側において銅のストリップによって放電信号を読み出すものである。図 3.2 にその概略図を示す。

極板間にはアルゴンまたはネオンと、クエンチングガスとしてイソプロタンやエチレンを約 10 気圧で流す。粒子が通過することによりガスが電離し、イオン対が生成され放電が起こるが、クエンチングガスや高抵抗の極板によって、放電が局所的なものに抑えられる。

このカウンターは小型のものでは時間分解能が $\sigma_T = 30ps$ というものが作られるほど時間分解能が良い。このため、一部の物理実験では TOF 検出器として用いられていた。しかし、10 気圧という高圧なガスを流すことを必要とすることや、極板間隔を精密に保つことが技術的に困難であること、極板材料である半導体ガラスが高価であることなどから、大型の素粒子実験への使用には至らなかった。
3. Santonico らの Resistive Plate Counter

Resistive Plate Counter (RPC) は 1980 年代にイタリアの Santonico 達によって開発された [14]。極板は、内側にリンシードオイルをベースとした半導体塗料を塗ったベークライトを用いている。このリンシードオイルはベークライト板の表面を平滑にするためや、極板抵抗を $10^{12} \Omega/cm$ 程度に安定化させる役割を持つ。この極板は 1.5 〜 2 mm の間隔で平行に設置されている。図 3.3 にその概略図を示す。

極板間にはアルゴン/ブタン=60/40 の割合で混合したものに数 % のフロンガスを加えたガスを流す。クエンチングガスとしてのブタンとフロンガスや、極板の内側に塗ったリンシードオイルによりアフターパルスやパルスの広がりを抑えることができる。ベークライトを極板とした RPC の特徴として以下のことが挙げられる。

- 時間分解能が ΔT 〜 数 nsec と良い。
- 製作が簡単で、その材料が安価である。
- ベークライトが吸湿性をもつため、反り返りなどの変形が起こり易く、表面の放電が起きやすい。
3.1.2 RPC の基本動作

- 動作原理
 前節でも述べた通り、RPC の動作原理は Parallel Plate Counter と同じで、プレート間に電場がかけられることで、RPC 内を荷電粒子が通過するとガスがイオン化され電子が雪崩増幅を起こし、外側の金属電極より誘起電荷を読み出すことで信号を検出する。

- オペレーションモード
 RPC には streamer mode と avalanche mode の 2 つのオペレーションモードが存在する。

1. streamer mode

1980 年代に R. Santonico らによって RPC が考案されて以来、avalanche mode が発見される 1990 年代まで主に使用されてきたのが streamer mode である。streamer mode の RPC はアルゴンベースのガスで動作される。アルゴンベースのガスでは、電子は 10^8 個以上に増幅され、紫外線が avalanche 領域の外側の分子をイオン化し、電子が陽極と陰極の間の全体に広がる streamer mode となる。streamer mode では、読み出しストリップへ誘起される電荷が 10 〜 1000pC と大きく、プリアンプ等を使用せずに読み出しを行えるという利
点がある。一方、一度にできる電荷が大きいため、電荷が流れて定常状態に戻るまでに時間がかかって、通常のガラス RPC では 1Hz/cm^2 程度のレート耐性しかないという欠点がある。また、streamer が生じる時間がばらつきがあるため、streamer mode の時間分解能は 1 ns 程度である。streamer mode の RPC は主に muon 用の trigger counter や、宇宙線、ニュートリノ実験で使用されており、Belle 実験、BaBar 実験、ARGO-YBJ 実験、BES III 実験などで使用されている。

2. avalanche mode

avalanche mode の RPC はフロンガス（C_2H_2F_2, R-134a）をベースに動作する。C_2H_2F_2 は電気陰性度が高く、電子を吸着しやすいため streamer の発生を抑え、電子増幅のみで動作することが可能である。avalanche mode では streamer が起き始めると 10^8 以下までしか電子が増幅されない。そのため読み出しストリップへ誘起される電荷は 1 ～ 10pC 程度と小さく、高い増幅率のブリアンプが必要になる。一方、avalanche の電子は streamer に比べて少ないため、定常状態に戻るまでの時間が短くなり、通常のガラス RPC の場合 1kHz/cm^2 程度のレートまで動作することができる。元々、avalanche mode の RPC は高レートに耐える RPC の開発過程で開発されたが、avalanche の信号は時間のばらつきが少なく、非常によい時間分解能を得られることが分かった。近年開発されている RPC はこの avalanche mode で使用されるものが多い。

- 検出効率

検出器内を通過した荷電粒子に対して信号として検出する割合をその検出器の検出効率と呼ぶ。RPC の検出効率は高抵抗プレートのギャップ間の距離とギャップ数に依存する。ギャップ数が多いほど、またはギャップの幅が大きいほど検出効率は高くなる。これは、ギャップ数が多いとガススペースが増えるため通過した荷電粒子とガスが反応しやすくなるためである。ギャップ数 n = 1 の RPC の検出効率を \(\epsilon_1 \) とおくと、ギャップ数 n での RPC の検出効率 \(\epsilon_n \) は式 3.1 で表される [17]。

\[
\epsilon_n = 1 - (1 - \epsilon_1)^n \quad (3.1)
\]

またギャップの幅が大きいと、電子の雪崩増幅される距離が増えるため、生じた電離電子が信号として検出されやすくなるためである。ATLAS 実験などで使用されているミュートリノトリガー用の RPC は、パンチの分離を目的とするため要求される時間分解能は 25 ns と比較的高くなってしまって、ギャップの幅は 2 mm であるが、シングル
ギャップで検出効率は 95% 以上を得ている [18]。一方で ALICE 実験などで使用されている TOF 用の RPC は、50 ps 以下の高い時間分解能が必要であるためギャップ幅は 200μm 程度でギャップ数を 10 にすることで検出効率は 99% 以上を得ている [19]。

- 時間分解能
 検出器内を通過した荷電粒子の到達時間などの時間情報のばらつき具合を時間分解能と呼ぶ。RPC の時間分解能は、主にギャップの幅とギャップ数、及び読み出しバッドやその他モジュールなどのエレクトロニクスの性能に依存する。
 単位ギャップあたりの時間分解能は、電離した一次電子の初期位置と雪崩増幅を起こした後のばらつき具合で決まる。したがって、一次電子の初期位置のばらつきが少ないほど、すなわちギャップが狭いほど時間分解能は良くなる [20]。また、ギャップ数が増えると信号として観測される数が増えるため、時間分解能が良くなり、ギャップ数 n に対して時間分解能 σ_T はおおよそ \(\sigma_T = 1/\sqrt{n} \) となることが示されている [21]。

- Space charge effect（空間電荷効果）
 ギャップの幅が小さい RPC はギャップの幅が大きい RPC に比べ安定した動作性、高い時間分解能、高いレート耐性を持ち、これには正イオンによる space charge effect が重要な役割を果たしている。
 avalanche による電子はアノードへ向かってドリフトするが、2.2.2 にて先述した通り、正イオンは電子に比べて重くドリフト速度が遅いため、電子の時間スケールで見るとギャップ内に停滞を起こす。したがって、正イオンが作り出す電場により、図 3.4 のように avalanche の先端では電場が低くなり、電子の増幅が起こらなくなる。

図 3.4 Space charge effect の模式図 [22]
この正イオンのspace charge effectにより、電子はstreamer modeに突入する直前の$10^7 \sim 10^8$個程度で増幅が止まるため、広い電圧の領域に渡ってstreamerを押えた動作が可能になる。また、高抵抗ブレート表面の凹凸によって局所的に電場が高くなっている場合でも増幅を抑えることができるため、高抵抗ブレートの平行精度に対する要求を低くすることも可能にしている。また、増幅の抑えられた電子は分子に捕えられ、陰イオンとなる。ほぼすべて陽イオンがこの陰イオンと再結合するため、陽イオンがカソードにドリフトしきる前にギャップ内の電場が回復することで高レート環境下においての動作が可能になる。

さらに、狭いギャップほどavalancheの密度が高いため、space charge effectの影響は大きくなる。2mm程度のギャップのRPCよりも、数100μmギャップのRPCの方がstreamer freeのプラトーが長く、ガラス間隔の平行精度の要求が低いことも示されている[22]。
3.2 RPC の課題

前節で述べたように現状の RPC には様々な課題が存在する。
一つは高抵抗プレートの表面抵抗値である。3.1.2 で述べた通り、RPC を含む平行平板型のガス検出器では、プレートの表面を高抵抗なものにすることで局所的な自己放電を防止している。一方で、RPC のギャップ間に生じた電子は増幅された後にプレートの中を流れていくため、できるだけ早く流れて電場が元の状態に戻ることが重要となる。すなわちこれが RPC のレート耐性であり、プレートの抵抗値に依存する。一般的な RPC でプレートとして用いられる glass の体積抵抗率は $10^{13} \Omega \cdot \text{cm}$ オーダーであり、1kHz/cm^2 オーダーのレート耐性しか持たない。前節で扱ったような、Santonico らが開発した RPC は極板にガラスよりも抵抗率の低いベークライトを用いているが、必ずしも高レート環境下に耐えるわけではない。任意の物理実験に対しては任意のレート耐性、すなわち任意の抵抗値を持つことができる極板が必要になってくる。また大規模の物理実験では検出領域が大面積になる場合もあるため、プレートの抵抗値は面積に依らないことも重要である。

もう一つは、動作電圧である。通常 RPC は検出効率を上げるためにギャップ数を増やしていくが、1 つのギャップあたりに 10 数 kV/mm 程度であり、ギャップ数を増やしていくと全体で非常に高電圧が必要になってしまう。またギャップを増やしていくことで検出器全体の物質量が大きくなってしまうことも課題の一つである。
3.3 Fast Timing RPC

前述の課題に対し、本研究では新たなデザインの RPC を考案し、その改善を試みる。RPC としての電極に薄膜抵抗体を用い、それらの電極をフォトリソグラフィ技術を用いたビラーで平行に並べることで非常に薄いギャップの RPC を作製することができる。この構造については 4.1 で詳しく述べる。

フォトリソグラフィ技術によるビラーの作製は Micromegas での実績があり、そこでは 100μm オーダーが実現している。例として、光速に近いような荷電粒子、つまり速度 3 × 10^8 m/s の粒子は、1ps の間に 300μm 進む。つまり、FRPC の開発によりピコ秒レベルの時間分解能が期待でき、飛躍的に性能が向上した高速の信号を読み出す RPC(Fast Timing RPC) の開発が期待できる。

本研究では上記の電極として用いる薄膜抵抗体に、次節で述べる DLC を用いた新たな Fast Timing RPC を考案し、その作製と性能評価を行っていく。以下ではこの検出器を FRPC と呼ぶことにする。制作の際の DLC 薄膜の製法は 4.2 にて詳しく説明する。

3.4 Diamond Like Carbon (DLC)

本研究では電極として使う薄膜抵抗体に、Diamond Like Carbon (DLC) と呼ばれる素材を用いた新たな検出器を考案した。

DLC は主として炭素の同素体からなる非晶質（アモルファス状態）の硬質膜のことであり。同じ炭素 C からなるものでもその分子構造によって性質が異なり、グラファイト構造に対応する sp² 結合を有する炭素とダイアモンド構造に対応する sp³ 結合を有する炭素がある。DLC はそれらが不規則に混在したアモルファス構造を持つ膜である。それぞれの構造についての模式図を図 3.5、3.6、3.7 に示す。

![模式図](image)

図 3.5 グラファイト構造 sp² の模式図 [23]

25
図3.6 ダイヤモンド構造 sp³の模式図 [23]

図3.7 DLCの構造の模式図 [23]

グラファイト構造は炭素同士の結合にπ電子が含まれるため、これがキャリアとなり抵抗値が低くなるのに対し、ダイアモンド構造は自由電子が存在ないため、高抵抗になる。これらの構造が混在するDLCは、それらの割合や全体の物質量を調整することで任意の抵抗値を持つ薄膜抵抗体を得ることができる。
3.5 TOF 測定

本研究で開発する RPC は、荷電粒子に対する時間情報の測定器としても扱える。物理実験において、荷電粒子の時間情報の測定は非常に重要な役割を担うため、その例として原子核・高エネルギー実験における TOF 測定について紹介していく。

3.5.1 TOF 測定法

原子核・高エネルギー実験において、トリガ信号生成や粒子の識別するために荷電粒子などの到来方向や飛行時間を正確に測定することが必要である。粒子の飛行時間は Time of Flight (TOF) と呼ばれ、TOF 測定には近年様々な検出器が開発され、実際の物理実験でも使用されている。

加速器によって生成された粒子は、それらの粒子情報をもとに識別が行われる。粒子情報の主な要素としては「電荷」と「質量」であり、「電荷」は対象となる荷電粒子が磁場中を運動する際に受けるローレンツ力の向きによってその正負を識別することができる。一方、「質量」を求める方法として用いられる測定法の一つが TOF 測定法である。

ある荷電粒子が検出器内を通った時、その荷電粒子の質量を m、通過距離を L、通過時間を Δt、速度を v、運動量を p とすると、以下のような関係式が成り立つ。

\[p = m \beta \gamma \] \hspace{1cm} (3.2)

\[\beta = \frac{v}{c} = \frac{L}{c \Delta t} \] \hspace{1cm} (3.3)

\[\gamma = \frac{1}{\sqrt{1 - \beta^2}} \] \hspace{1cm} (3.4)

以上より、

\[m^2 \beta^2 = p^2 (1 - \beta^2) \]

\[\therefore m^2 = p^2 \left(\frac{1}{\beta^2} - 1 \right) \]

\[= p^2 \left(\frac{c^2 \Delta t^2}{L^2} - 1 \right) \] \hspace{1cm} (3.5)

となり、荷電粒子の質量 m は p、Δt、L の関数式 (3.5) で表すことができる。

検出器内を通った荷電粒子の通過時間 Δt を測定することで、通過粒子の運動量 p、L を TPC(Time Projection Chamber) などの運動量測定・飛跡測定の検出器と組み合わせることで荷電粒子の質量 m を求めることができる。

TOF 検出器は粒子の飛行時間の差によって質量の違い、つまり粒子識別を行うため、その時間情報の正確さ、つまり時間分解能が非常に高いものを持つことが求められる。また、
飛行距離の長さが質量の違いとしての影響を大きくするため、TOF 検出器自体の設置場所は反応点からなるべく距離を置くことが望ましく、それゆえ一定に立体角を確保するために大面积であることが求められる。また、TPC などの磁場を用いた検出器との併用が想定されるため磁場中での使用といった要請が存在する。

3.5.2 TOF 検出器

TOF 検出器とは、TOF 測定法の考え方に基づき、粒子がある 2 点間を通過した時の飛行時間 Δt を測定する検出器である。RPC もその一種であるが、一般的に TOF 検出器として用いられている検出器について以下に RPC と比較しながら述べる。

1. シンチレーション検出器

シンチレーション検出器は、シンチレータと光電子増倍管を組み合わせた構造の検出器である。これは、荷電粒子がシンチレータを通過した時、励起された電子が基底状態に戻る際に発生するシンチレーション光を利用した検出器である [24] 。シンチレータから出たシンチレーション光は、光電子増倍管により電気信号に変換されると、信号として読み出される。励起された電子は 10^{-9} から 10^{-5} 秒という短い時間で基底状態に戻るため、シンチレータ中の光が伝わっていく時間を測定することで、荷電粒子がどこを通過したかを測ることができる（図 3.8, 3.9）。シンチレーション検出器の時間分解能はシンチレータにおけるシンチレーション光の減衰定数や光電子増倍管の時間特性によって決まり、早いものはおよそ 100ps 程度である。また、シンチレーション検出器の検出面積を大きくすると、シンチレータ内でのシンチレーション光の伝播による経路差による時間のばらつきが大きくなるため、時間分解能が悪化する。そして通常の光電子増倍管は強い磁場によって信号が出なくなるため、磁場中での動作には向いていない。

図 3.8 シンチレーション検出器による TOF カウンターの検出原理 [24]
2. チェレンコフ検出器

チェレンコフ検出器は、原子核・高エネルギー実験において荷電粒子が物質中での光速を超える速度で物質へ入射される際に放出されるチェレンコフ光を利用した検出器である。チェレンコフ検出器はシンチレーション検出器と同様に光電子増倍管を用いて光を電気信号へ変換し、信号が誘われる。一方、シンチレーション光に対してチェレンコフ光は、粒子が通過したタイミングで放出されることや、指向性が高いため光路差のばらつきが小さい。この2点から、チェレンコフ検出器はシンチレーション検出器に比べ時間分解能が非常に良い。現在、最も時間分解能の良いチェレンコフ検出器は高性能の光電子増倍管との組み合わせで10〜20ps程度の時間分解能を達成している。一方で、シンチレーション検出器と同様に光電子増倍管を用いて信号を読み出すので赤道中で使用する際の費用が高くかかるという欠点もある。

3. Resistive Plate Chamber (RPC)

Resistive Plate Chamber (RPC) は、高抵抗のプレート（ガラスなど）積み重ねた構造のガス検出器である（図3.10）。そのギャップは一般的に数mm程度であり、1〜10 kV/mm程度の電場がかけられ、荷電粒子が通過するとガスがイオン化され電子が増幅される。その電子の動きによりガラスの外側の読み出しパッドに誘起される信号を検出する。RPCは1つ1つのガスギャップが狭いため、非常に高い時間分解能を出すことができ、現在最も時間分解能の良いRPCは20ps程度の時間分解能が報告されている[25]。また、実際に実験で使われているRPCの中で最も高い時間分解能を達成しているのは中国のBES III実験のTOF用のRPCで、読み出し回路の影響を含めてTOFとして50ps以下のが時間分解能を達成している。

RPCの時間分解能は主にギャップの幅とその数、および読み出しパッドの形状で決まり、基本的には読み出しパッドが小さいほど時間分解能は良い。しかしRPCの
読み出しパッドはセグメント化が容易なため、小さな読み出しパッドの高い時間分解能を維持したまま大面积を覆うことができる。また、RPC は磁場中でも使用できるという利点がある。さらに、RPC は製作が簡単なため、生産コストを抑えられという利点もある。

図 3.10 多層 Resistive Plate Chamber の模式図

3.5.3 物理実験への応用

TOF 検出器は様々な物理実験へ応用されている。その例として挙げられるのは粒子識別で、\(\pi^\pm \) と \(K^\pm \) の識別や \(\mu \) 粒子と \(\pi \) 粒子の識別などがある。具体例として、加速器で生成された 1 つの粒子がある運動量で入射してきた場合を考えるその粒子が \(\pi^\pm \) であるか \(K^\pm \) であるかという識別能力はその TOF 検出器の時間分解能に依存する。これはすなわち、一定の時間分解能を持つ TOF 検出器に対して、測定できる粒子のエネルギー（運動量）の範囲が一意的に決まる。図 3.11 は、1 GeV/c 以上の運動量を持つ \(\pi^\pm \) と \(K^\pm \) が 1 m の距離において生じる時間差の分布を表したものである。検出器の時間分解能 \(\sigma_T \) に対して、3\(\sigma \) 以上の精度で粒子の識別をするためには時間差が 3\(\sigma \times 2 = 6\sigma \) 以下である必要がある [26] [27]。この図より、例として 10 ps の時間分解能を持つ TOF 検出器の開発した場合、2.5 GeV/c 以下の運動量を持つ粒子の \(\pi^\pm / K^\pm \) 識別が可能になることがわかる。
図 3.11 1m の飛行距離での π^\pm と K^\pm の時間差
第4章 FRPCの作製

本研究では、時間分解能を向上させた新しい高速時間分解能のRPC（FRPC）を開発を行っていく。本章では、その新しいガス検出器の作成に至った経緯とデザイン、及びその作成の方法と技術について述べる。

4.1 FRPCのコンセプト

RPCの時間分解能を向上させるためには、一般的には1mmオーダーの高抵抗電極のギャップをより小さくする必要がある。これは、ギャップによって形成されるガス空間から発生する電子増幅がより高速に読み出されることで、高速の応答が実現できるためである。一方で、短いギャップによる難点もいくつか存在し、主として以下の二つが挙げられる。

- 検出効率の低下
- 相対的な電極表面の荒さの影響

1つは「検出効率の低下」である。そもそも入射粒子と反応するのはガスが満たされた空間の中で、電離した電子をドリフトさせることができる電場が形成されているギャップ間のものである。よってその粒子の検出が可能な空間自体が、ギャップの縮小により小さくなるため、検出器としての検出効率は落ちてしまう。例として、μ粒子に対する検出効率を90%以上とするには2mm程度のギャップが必要という報告もある。

2つ目は「電極表面の荒さ」である。一般的に、Parallel Plate CounterやRPCなどの平行平板型のガス検出器では、電極表面において局所的な自己放電を防止するために、6mmオーダーのギャップを形成することで、その電極表面は相対的に凹凸が荒くなるため、その凹凸もμmオーダー以下に抑える必要がある。

以上の2つの問題点に対し、本研究では図4.1のような基本構造のFRPCを考案した。構造自体は一般的な積層型のRPCと似ているが、通常は中間層にパルクの抵抗体を用いているのに対し、このFRPCではポリイミドフォイルの両面に滑らかな薄膜抵抗物質による電極板を設ける。これにより、電極を積層させた場合に各層に独立に電圧を供給することができ、通常積層させる数だけ電圧差が必要となるのに対し、このFRPCでは一層あたりに必要な電圧差のみで動作させることが可能である。そしてこの薄膜抵抗物質のために、本研究ではスパッタリング技術を用いたDiamond Like Carbon (DLC)を採用している（3.4参照）。スパッタリング技術については4.2で述べる。

また、薄膜抵抗体の上にビラーをつけることで、ガス検出層を確保することができる。このビラーの形成は、フォトリソグラフィ技術によって設置され、感光性の有機物質（フォト
レジスト）を塗布した物質の表面をパターン状に露光することで露光された部分と露光されていない部分からなるパターンを生成する技術である。ピラーの高さを 100μm オーダーに調整することで、非常に薄いガスギャップを実現することが可能である。

図 4.1 FRPC の概念図

この構造により、容易な積層が可能になるため上記の「検出効率の低下」を改善することができる。そして電極としての高抵抗だけでなく「電極表面の荒さ」を解決する素材が DLC であり、それを電極として作成するために用いるのが次節で述べるスパッタリング技術である。

4.2 スパッタリング技術

前節でも述べた通り、本研究では電極として用いる薄膜抵抗体に DLC を採用し、この DLC はスパッタリング技術を用いて作製した。特に本研究で用いたように炭素をスパッタリングして MPGD 用の高抵抗電極として利用する技術は、2013 年に神戸大学が開発したものである [28]。

スパッタリングの原理について説明する。図 4.2 にスパッタリングの概略図を示す。チェンバー内にアルゴンなどの不活性ガスを導入し、成膜材料であるプレート状のターゲットに負の電圧を印加してセットする。グロー放電によりガス原子がイオン化され、そのイオンが電場によって加速されて高速でターゲットに衝突し、ターゲットの粒子が叩き出される。その粒子たちがターゲットの反対側にセットされた基板やフォイル上に付着して堆積することで薄膜が形成される。スパッタリング法では高融点金属や合金など真空蒸着法では困難な材料でも成膜が可能であり、様々な素材の薄膜を形成することができる。スパッタリングの特徴として、以下のことが挙げられる。

- 厚さ 10 nm 単位の薄膜を作製できる
付着力が大きく、物理的・化学的に安定している
スパッタ時間により膜の厚さを制御でき、それにより抵抗値を制御できる
大面積に対応できる
作成時間が長い

図 4.2 スパッタリング用のチェンバーの概念図 1[29]

また、図 4.3 に示すように、膜厚を厚くするほど炭素薄膜の面抵抗値は小さくなっていくが、成分がカーボンのみの薄膜の場合には 3000 Å 程度の膜厚が表面抵抗値 1MΩ/sq に相当する。カーボンはスパッタの効率が悪く、この膜厚の薄膜を形成するには 5〜6 時間かかるため、コストを下げるためにはより薄い膜厚で目標の抵抗値にすることが必要である。これを解決するために、スパッタリングに用いるアルゴンガスに窒素ガスを数 % 混ぜるという手法が考えられた [30]。これによって炭素薄膜に窒素を付加することができ、n 型半導体のような構造が形成され、抵抗値を下げることができる。例として、アルゴンガス中に窒素を 3.2% 混合すれば、膜厚 500〜700 Å で表面抵抗値 1MΩ/sq を達成できる（図 4.3）。本研究でもこの手法を用いてスパッタリングを行った。
図 4.3 炭素薄膜の厚さと抵抗値の関係 [30]

本研究でのスパッタリングはピースパッタ社 [31] に依頼して行った。図 4.4 はスパッタリング用のチャンバーである。円柱型のチャンバーの両端にスパッタターゲット、中心のドラムに薄膜を着・堆積させる基材がセットされており、ドラムが回転することで基材上に均一な薄膜が形成される。フォイルなどの柔かい素材であれば 4×1 m² までの面積に対応できる。これにより、将来的には大面積の薄膜抵抗体の生産が可能である。

図 4.4 スパッタリング用のチャンバーの概念図 2[29]
図 4.5 スパッタリング用のチャンバーの写真
4.3 FRPC のデザイン

炭素をスパッタしたポリイミドフォイルを用いて、FRPC の試作器の作製を行う。この試作品におけるギャップ数 $n=1$ の場合の構造を図 4.6 に示す。厚さ 75μm のポリイミドフォイル上に炭素スパッタを施し、その三辺に放電防止のためにフォトリソグラフィ技術によるレジストを形成する。それを二つ用意し、一方の上に 100μm のピラーを形成する（上面）。これによって 100μm のガスギャップを作ることができ、それを他方（下面）のフォイルに積むことで積層が可能となる。図 4.6 にあるように、「上面」と「下面」によって単層型の FRPC が作製できる。また、ポリイミドフォイルの両面に炭素スパッタを施したシートである「中間面」を作製することで、図 4.7、4.8 のように中間層として使用でき、積層型の FRPC($n\geq2$) を作製することができる。

![図 4.6 単層型 FRPC($n=1$) の試作品の構造図。「上面」と「下面」によって単層型 FRPC が作製できる。](image)

36
4.7 積層型 FRPC(n=2) の構造図。「上面」と「下面」による単層型 FRPC に「中間面」を足すことで積層型 FRPC が作製できる。

図 4.8 FRPC の試作品の積層時の構造図。ポリイミドフォイルの両面に炭素スバッタを施すことで各層に独立した電場を形成することができ、各層をスライドさせて設置することで各々の面に電圧の印加が可能になる。

4.4 FRPC の作製

先述したでデザインを元に、FRPC を実際に作製する。作成する高抵抗プレートは図 4.7 のように上面・中間面・下面の 3 種類である。それらの作製と共に、FRPC 作製の手順を以下に説明する。

1. ポリイミドフォイル上に炭素をスバッタリングする（上面・中間面・下面）
厚さ 75.50μm のポリイミドフォイル上に 40mm × 42.5mm の大きさでスパッタをする。これがこの FRPC における検出面積の最大値となる。上面と下面はそれぞれ一面に、中間面は両面にスパッタリングを行う。スパッタリングは 4.2 節の通り、ビュー スパッタ社にてスパッタリング用のチェンバーにて炭素をスパッタリングする。

2. スパッタの周りに感光性カバーフィルムによる放電防止のコの字カバーを形成する（上面・中間面・下面）
長方形のスパッタ面において、その 4 辺は放電を起こしやすい。そのため、フォトリソグラフィ技術を用いて図 4.9 のように感光性カバーフィルムを用いたコの字のカバーを 3 辺幅に施すことでその放電を防ぐ。このコの字カバーの幅は 5 mm 幅で、厚さは 25 μm である。残りの一面は電極面（スパッタ面）への高電圧供給のための経路確保のために空けておく。

3. スパッタ上に感光性カバーフィルムによるピラーを形成する（上面・中間面）
上下の電極面を支えるために、感光性カバーフィルムによるピラーを形成する。ただし電極面のギャップに対し、上面にピラーを付けるため、上面（裏側）と中間面の一方にのみ形成する。このピラーはコの字ピラーと同様にフォトリソグラフィ技術によるもので、直径 400μm、高さ 100μm で 2.5mm 間隔で配置する。このピラーの高さが FRPC のギャップ間隔となる。
4. 組み立て

PCB（読み出し基板）に炭素をスバタをされたポリイミドフォイルを貼り、単層の場合は上面を、複数層の場合は上面と中間面を、それぞれ高電圧供給用の配線を行い、重ねる。ただし高電圧供給は、図4.14 カプトンテープ上に銀ペンを用いて描いたものとそれぞれの電極面につなげる。この時、電圧供給の一方のグランドに繋げるため、PCBに対して上側を negative HV に、下側（ピラー側）を GND につなげた。
これらの高抵抗プレートを PCB 上に設置し配線を行った後、ガスパッケージをして FRPC の完成である。それらの外観を図 4.15、4.16、図 4.17 に示す。
図 4.16 FRPC 全体の外観
図 4.17 FRPC をガスパッケージ状態の外観
第5章 FRPCの性能評価

本章では、作製したFRPCの試作器について、線源を用いた性能評価について、その測定環境や方法、およびその結果について述べる。

5.1 測定環境

本研究における性能評価は、神戸大学内の実験室とCERN内の実験室との2か所で行った。それぞれの実験室において標高に大きな差があるため、測定への影響を考えられる。

まず、標高 \(H [\text{m}] \) における気圧 \(P [\text{hPa}] \) は以下のようによばせる。

\[
P = P_0 \left(\frac{1 - 0.0065H}{T + 273.15} \right)^{5.257}
\] \hspace{1cm} (5.1)

ただし海面気圧 \(P_0 = 1013.25 \text{hPa} \), 気温 \(T = 20[\circ \text{C}] \) とする。

また、気圧 \(P [\text{hPa}] \) と電圧 \(V [\text{V}] \) にはおおよそ比例関係にあるため、

\[
\frac{P_{\text{CERN}}}{V_{\text{CERN}}} = \frac{P_{\text{Kobe}}}{V_{\text{Kobe}}} = \text{Const}
\] \hspace{1cm} (5.2)

となる。

したがって、神戸での標高 \(H_{\text{Kobe}} = 132[\text{m}] \), CERN(ジュネーブ)での標高 \(H_{\text{CERN}} = 375[\text{m}] \) より、5.1, 5.2に適応すると、

\[
\frac{V_{\text{CERN}}}{V_{\text{Kobe}}} = \frac{P_{\text{CERN}}}{P_{\text{Kobe}}}
= \frac{997.96 \text{[hPa]}}{970.52 \text{[hPa]}}
\approx 1.0283
\] \hspace{1cm} (5.3)

となり、\(V_{\text{CERN}} \) は \(V_{\text{Kobe}} \) 対しこのおおよそ2.8%ほど大きい。以下での測定結果における印加電圧は、特に表記がない限り、式5.3の校正を用いた神戸大学内での表示 \(V_{\text{Kobe}} \) を用いる。

また、気候の変動によりそれぞれの実験室での気圧も変動する。上記の変動幅に対し、気候による気圧変化の印加電圧への影響はおおよそ0.5%程度であった。

以降の測定結果には、以上の実験室の標高や気候による印加電圧への影響も考慮したものを示す。
5.2 信号

5.2.1 信号

図 5.1 は、ギャップ数 \(n = 1 \) の FRPC に対して、ORTEC 社のプリアンプとシェイバー（詳細は 5.2.3 に述べる）を用い、インピーダンス 50Ω のオシロスコープで見た場合の典型的な信号波形である。この信号は β 線源である Sr90 によるものだが、図 5.1 におけるパルスの高さは 200mV と比較的高く、立ち上がり時間は約 100ns と早いか。信号の大きさは放射線の強さ、およびアンプの増幅率やガスの種類に依存し、立ち上がり時間はアンプや shaper の性能による影響が大きくため、高速の情報の測定においては注意する必要がある。

図 5.1 典型的な FRPC の信号波形。横軸は 100 ns/div、縦軸は 100 mV/div である。

5.2.2 ノイズ

FRPC は定常的なノイズが見られた。主な原因としては印加電圧を上げた時に生じる暗電流やプレート表面の凹凸によって生じる自己放電、エレクトロニクスおよび周囲の電磁波などによるものであると考えられる。よって、電圧を上げた際は時間をかけ暗電流の減少を待ち測定に臨み、またエレクトロニクスを含めたグランドの強化の強化とディスクリミネーターの閾値の調整により数 10 Hz 程度にして測定を行った。

5.2.3 プリアンプ

本研究では、都合上 3 種類のプリアンプを使用した。それぞれについて以下に簡単に述べる。
・ORTEC 142PC(図 5.2)
立ち上がり時間はおよそ 200 ns、ゲインは 8.4 V/pC である [32]。後述のガス依存性や検出効率の測定に使用した。

図 5.2 ORTEC 142PC の外観 [32]

・FUJI DIAMOND amp 0380(図 5.3)
詳細な特性は不明であり、後述の検出効率の測定にのみ使用した。

図 5.3 FUJI DIAMOND amp 0380 の外観 [33]

・APIC (V4/2017)
本実験でのセットアップでの立ち上がり時間は約 38 ns である。後述の時間分解能の測定で使用した。詳細は 5.5 で述べる。
5.3 ガス依存性

FRPC を含めた RPC は荷電粒子とガスの反応を利用した検出器であり、使用するガスによって検出器の性能に影響が出ることが考えられる。

5.3.1 ガスの種類

3.1.2 でも述べた通り、近年開発されている RPC の内、avalanche mode で動作するものはフロンガス (C₂H₂F₄, R134-a) をベースガスとし、数 % の iso-C₄H₁₀, SF₆ を含めた混合ガスとして使用している。

C₂H₂F₄ は ODP=0(ODP: オゾン層破壊係数、CFC-11 を 1 としたオゾン層に与える破壊効果の強さを表す値) である代替フロンの一種であり、不燃性のガスである。従来の RPC のベースガスであった Ar に比べ、C₂H₂F₄ は電気陰性度が高いため電子の増幅を抑えることができ、avalanche mode での動作が可能となる。また、Ar に比べ C₂H₂F₄ は、密度が 2.5 倍であるため荷電粒子が通過したときに電離する電子数が多いため、高い検出効率が期待出来ることや、ドリフト速度が速いため高い時間分解能が期待出来るなどの様々な利点が存在する。

iso-C₄H₁₀ は streamer を発生させる原因となる紫外線を抑制するためのクエンチャーとしての役割を果たすため、RPC では多くの実験で用いられている。

SF₆ もまた、電気誘和力が大きいため、電子をよく吸収し streamer を抑えるクエンチャーとしての役割を果たす。これらにより、広い電圧範囲において streamer を含まない、avalanche mode での動作が可能となる。

本研究では、上記の 3 種のガスを用いて、混合比を変えた数種のガスについて性能の比較を行った。

5.3.2 測定方法

ガスの割合を変え、β 線源である ⁹⁰Sr による信号のレートによる比較を行った。表 5.1 に示す 4 種の割合で測定を行った。
<table>
<thead>
<tr>
<th>混合比</th>
<th>$C_2H_2F_4$ [%]</th>
<th>iso-C_4H_{10} [%]</th>
<th>SF_6 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>95</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>90</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>85</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>D</td>
<td>95.2</td>
<td>4.5</td>
<td>0.3</td>
</tr>
</tbody>
</table>

表 5.1 使用したガスの割合

ここで混合比 D は、CERN で行われている ATLAS 実験や CMS 実験における RPC で用いられているもので、「標準混合 (RPC standard gas)」と呼ばれている。

これらの割合のガスを用いて、FRPC 一台に対して図 5.4 のように 90Sr 線源を置き、信号のレート測定を行った。測定におけるブロック図を図 5.5 に示す。

図 5.4 ガス依存性における測定方法

図 5.5 ガス依存性における測定のブロック図

ここで、図 5.5 における preamp は ORTEC 社の ORTEC 142PC を用いた。
5.3.3 ガス混合比の決定

図 5.6 は、各種のガス混合比におけるレート測定についての結果である。それぞれのガスについて、放電により電流が大きくなるまで印加電圧を上げてゆいたため、図にある印加電圧が FRPC におけるそれぞれの動作電圧の範囲である。

それぞれの印加電圧について、ベースガスである C₂H₂F₄ の割合が大きくなると信号として観測されるレートも大きくなることがわかる。しかし、クエンチャーとしての SF₆ の割合を大きくしても動作電圧の最大値にあまり差が見られなかった。また、SF₆ の割合を 5% に固定し、iso-C₄H₁₀ をずらした場合、他の混合比にくらべて低電圧での放電が多く確認された。

したがって、ガス自体の環境への影響やその割合における物理実験での実績から、本研究での以降の測定については C₂H₂F₄/iso-C₄H₁₀/SF₆ = 95.2/4.5/0.3 の割合を用いることとした。

図 5.6 gas の種類によるカウントレートの違い
5.4 検出効率

5.4.1 測定方法

検出効率を測定するために FRPC を 2 台用意し、図 5.7 のように重ねて設置し、ブレートに垂直な方向に対して入射する荷電粒子がより多く通るよう、それぞれの FRPC の有感領域が重なるようにした。下側の FRPC の印加電圧を一定 (1050 V) に設定し、上側の FRPC の印加電圧を調整しながら検出効率を測定した。これらの 2 台の FRPC の垂直方向の距離は 3 cm である。またこの測定におけるブロック図を図 5.8 に示す。

検出効率の測定において用いた放射線源は ^{90}Sr である。図 5.7 のように、^{90}Sr 線源から出てくる β 線をある程度コリメートして上側の FRPC 上に設置することで、下側の FRPC で観測される β 線は必ず上側の FRPC も通過していると仮定している。

また、^{90}Sr は中性子過剩であるため β 崩壊により ^{90}Y を生成し、さらに β 崩壊し安定な ^{90}Zr となる。(式 5.4)

$$^{90}\text{Sr} \rightarrow ^{90}\text{Y} \rightarrow ^{90}\text{Zr}$$ (5.4)

このとき、^{90}Sr から ^{90}Y にベータ崩壊するときの Q 値は 0.5459 MeV、^{90}Y から ^{90}Zr にベータ崩壊するときの Q 値は 2.28 MeV であるため、それらの和である ^{90}Sr 線源から放出される β 線のエネルギースペクトルは図 5.9 の赤線のようになる [34]。

一方、この線源を FRPC 上を通過させることで、β 線が FRPC の素材との相互作用によりエネルギー損失を起こし減衰することが予想される。すなわち、FRPC を 2 台通過する β 線を観測する際、上記の Q 値から FRPC の素材とその性質について式 2.1 を対応させたエネルギー損失分布を示したもの (0.599 MeV) よりも大きいエネルギーの範囲での測定が可能であると見込まれる。β 線のエネルギースペクトルは連続であるため、本実験における観測可能なエネルギー範囲は図 5.9 の緑線で示される範囲となる。

以上より、FRPC の検出効率 ϵ は以下のように定義した。

$$\epsilon = \frac{\text{上の FRPC の coinsidence count}}{\text{下の FRPC の count}}$$ (5.5)
図 5.7 検出効率の測定方法

図 5.8 検出効率の測定のブロック図

図 5.9 ^{90}Sr 線源から放出されるベータ線のエネルギースペクトル。赤線は^{90}Srから^{90}Y、^{90}Yから^{90}Zrに崩壊するときの放出電子のエネルギースペクトルの和。緑線の範囲は2台のFRPCでの^{90}Sr線源のエネルギー測定できる領域を示す。
5.4.2 測定結果

図5.10に検出効率の測定結果を示す。後に使用する2つのFRPCそれぞれについて、自己放電により測定ができなくなるまで印加電圧を上げていたため、図5.10にある印加電圧の範囲が各々のFRPCにおけるそれぞれの動作電圧の範囲である。

2台のFRPCそれぞれについて測定すると、最大でおおよそ10%前後という結果になった。印加電圧を上げていくと徐々に検出効率が上昇し、10%付近でその上昇は緩やかになった。

検出効率の測定において、FRPCから測定された信号はディスクリミネータで設定した閾値を超えたものである。本研究での閾値の設定は-42 mVであったため、電子1個あたりの電荷量は$1.6 \times 10^{-19} C$であることから、この閾値を電子の個数に換算すると

$$\frac{-42 \text{ [mV]}}{-8.4 \text{ [V/pC]} \times 1.6 \times 10^{-19} \text{ [C/個]}} \approx 3.2 \times 10^4 \text{ [個]} \quad (5.6)$$

となる。したがって、FRPC内で増幅された電子はこの3.2×10^4個を超える数となった場合にはのみ信号としてカウントすると考えられる。

また3.1.2で述べたように、RPCの動作モードにはavalanche modeとstreamer modeの2種類が存在し、今回のようにフロンをベースガスとした場合は主にavalanche modeで動作する。さらにstreamer modeの信号は、印加電圧を徐々に上げていってもspace charge effectによりstreamer modeに入り直前で増幅率の上昇が止まるため、avalancheの信号で検出効率がほぼ100%に漸近してから現れる[35]。したがって、今回の測定で観測された信号はすべてavalancheによるものであると推測できる。

また、このFRPCのギャップ間の距離は100μmと非常に小さく、荷電粒子とガスが反応する容積が小さい。したがって、信号として増幅された一次電子の中には90Srによるβ線がポリイミドフォイルなどの検出器の素材に当たって叩き出された二次電子なども考えられ、ガス以外の影響も無視できないと言える。
図 5.10 FRPC の種類による検出効率の違い

さらに、上側の FRPC について、4.4 節で作製した高抵抗プレートの中間層を積層させることにより、ギャップ数 n を増やした積層型の FRPC を作製し、その検出効率を測定しギャップ数について比較したものが図 5.11 である。実線で結んだものがそれぞれのギャップ数での検出効率で、点線で結んだものがギャップ数 $n = 1$ の検出効率に対し複数層の理論上（式 3.1）の検出効率を計算したものである。ギャップ数を増やすことで、ガスポリュー

ムが増え検出効率が上がっていることや、その値がおおよそ理論値と一致していることが確

認できる。
図 5.11 ギャップ数による検出効率の違い
5.4.3 シミュレーションによる検出効率の評価

本研究で使用した FRPC の特徴として、一般的な RPC と比較して電極間のギャップが
100 μm と非常に小さいことが挙げられる。FRPC で信号として得るためには、FRPC の
ギャップでガスから電離した電子が増幅され、ディスクリミネータの閾値を超えるほど
大きな信号となる必要がある。検出効率の測定結果の妥当性について議論するために、本
研究で作製した FRPC が設定した閾値を超えるような増幅率を実現する可能性について、
MPGD 用のシミュレーションソフトウェア「Garfield++」を用いて検証した。

また Garfield++ のみでガス増幅のシミュレーションをすることが可能であるが、外部プ
ログラムで計算した電場を読み込むことでシミュレーションを行うこともできる。複雑な電場
構造をもつ検出器のシミュレーションを行う場合には、後者の方法が推奨されている。本研
究ではメッシュの作成に Gmsh、電場計算に Elmer というソフトウェアを用いて、その結
果を Garfield++ に読み込んでシミュレーションを行った。

1. Gmsh

Gmsh は有限要素法におけるメッシュ作成ソフトウェアであり、Christophe Geuzaine
と Jean-Francois Remacle によって開発された [38]。2 または 3 次元のメッシュの
作成などのプリプロセッシング、解析データの可視化などのポストプロセッシングを行
うことができる。

このソフトウェアを用いて単層型 FRPC のジオメトリを設計し、メッシュを作
成した。図 5.12 に単層型 FRPC のジオメトリとメッシュを可視化したものを示
す。ここで作成したメッシュファイルを Elmer に読み込みました。

図 5.12 単層型 FRPC の（左）ジオメトリ（右）メッシュ
2. Elmer

Elmer は偏微分方程式を解くための有限要素法ソフトウェアであり、2005年に GNU General Public License (GPL) の下でリリースされた [39]。非常に多種の方程式の取り扱いができ、さらに方程式を一般的な形で達成させることが可能であるため、マルチフィジカルなシミュレーションのための汎用ツールとなっている。

このソフトウェアを用いて、面の電位と立体の誘電率を設定し、単層型 FRPC 内に作られる電場を計算した。図 5.13 に計算された電位を示す。ここで計算した電場を Gafield++ に読み込ませてシミュレーションを行った。

3. Gafield++

Gafield++ はガスまたは半導体を用いた粒子線検出器の詳細なシミュレーションのためのオブジェクト指向のツールキットであり、CERN で開発された [40]。微視的な計算を行うため MPGD に対応でき、また 3 次元で計算することが可能である。複数のシミュレーターの複合で成り立ており、イオン化には Heed[36]、電荷輸送には Magboltz[41] を利用している。

電子を発生させ、その電子による電子雪崩をシミュレーションすることができる。増幅後の電子とイオンの数やそれらの終着点の座標、時間などの情報を得ることが可能である。また、信号波形をシミュレーションすることもできる。単層型 FRPC のギャップ間に電子 1 個が入射したときの、電子雪崩で生じた電子の飛跡を可視化したものを図 5.14 に示す。
図 5.14 単層型 FRPC のギャップ間の電子の飛跡。電極に垂直な方向に電場が発生しているため、電子の初期位置から真下に雪崩増幅していく。

以上より、Garfield++ を用いた単層型 FRPC の增幅率について考察する。

RPC と同じ測定原理である FRPC は、ギャップ 100 μm (これを z 方向と呼ぶことにする) の内、発生した一次電子の初期位置によってその増幅率は変わる。例として、印加電圧差 1050 V において 1 個の一次電子の初期位置を z = 100μm で固定した場合の電子の増幅率分布を図 5.15 に示す。電子の増幅自体にも確率的な揺らぎが存在し、Polya 分布に従うことが知られており [42]、このシミュレーション結果からも確認できる。
図 5.15 印加電圧差 1050 V において、1 個の一次電子の初期位置を \(z = 100\mu m \) で固定した場合の電子の増幅率分布。分布は Polya 分布に従った結果となっている。

図 5.15 と同様に、1 個の一次電子の初期位置を \(z = 0 \sim 100\mu m \) の範囲で 10\(\mu m \)ごとに変えた場合、最終的に読み出しストリップまでの増幅率を比較すると図 5.16 のようになる。ただし、図 5.16 は印加電圧差を 1050 V にした場合である。また、各々の増幅距離 \(z \) において分布は最大値を 1 として規格化している。

これより、印加電圧差 1050 V での、検出効率測定で設定したディスクリミネータの閾値 (式 5.6) を超える信号の割合は 4.58 \% となる。
図 5.16　印加電圧差 1050 V において電子の初期位置を z 方向に 10 μm ごとに変えて固定した場合の増幅率の比較。電圧差 1050 V の場合、閾値を超える電子の個数は 1000*10 個の内、458 個である。

また、単位クラスターあたりに発生する 1 次電子数が n(≥ 2) 個となった場合、信号として測定されるための条件である閾値を超える電子数 (式 5.6) は 1/n となる。よってこれら の条件で、図 5.16 と同様に閾値 (5.6) を超えた電子数の割合を算出すると表 5.2 のようになる。

<table>
<thead>
<tr>
<th>電子数 [個]</th>
<th>割合 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.58</td>
</tr>
<tr>
<td>2</td>
<td>9.67</td>
</tr>
<tr>
<td>3</td>
<td>12.53</td>
</tr>
<tr>
<td>4</td>
<td>14.52</td>
</tr>
<tr>
<td>5</td>
<td>15.68</td>
</tr>
<tr>
<td>6</td>
<td>16.36</td>
</tr>
</tbody>
</table>

表 5.2　1次電子数と閾値を超える電子数の割合
一方で、第2章でも述べたように、FRPCを含めたガス検出器は通過した荷電粒子がガスとの反応により電離した一次電子を增幅させることで信号として検出し、ガスの種類によってその発生する一次電子の数は異なる。一方、この過程において、はじめに電子はクラスターと呼ばれる一定の数の集まりとなって電離する。このクラスターの数と、一つのクラスターあたりに存在する電子の数はそれぞれ独立の変数であり、ガスの種類によって変わる。本研究はブロンをベースガスとしており、同様の場合における、ガスの種類に対するクラスター数の平均および単位クラスターあたりに存在する電子数の確率分布についてHeed[36]でシミュレーションされたものを図5.17、5.18に示す[37]。図5.17の横軸は入射した荷電粒子の速度vに対応する値でv → 0 のとき γ − 1 → 0 に対応し、縦軸は単位長さあたりの平均クラスター数である。本研究でのセットアップでの平均クラスター数は100μmあたりおよそ0.75個となり、その分布は平均をμ = 0.75としたポワソン分布に従うと仮定する。また、図5.18の横軸は単位クラスターあたりの電子数、縦軸はその確率である。

図5.17 Heedを用いたブロンをベースガスとしたRPCにおける平均クラスター数のシミュレーション[37]。横軸は入射した荷電粒子の速度に対応する値、縦軸は単位長さあたりの平均クラスター数。

図5.18 単位クラスターあたりの電子数に対する確率[37]
以上の表 5.2、図 5.17、5.18 を用いて、電離電子が読み出し可能な信号となる増幅度に達する確率と、クラスタ内の電子数毎にプロットしたものが図 5.19 である。ただしこの計算には表 5.2 で示す閾値を超える 1 次電子数の割合が 1 より十分小さいため、ガスギャップ空間内に複数のクラスタが同時に発生した場合を無視した近似を用いている。

図 5.19 より、一次電子数が 1 ～ 6 個の確率の総和が約 4.5 % となるため、印加電圧差 1050 V の単層型 FRPC から検出される信号の検出効率の概算値としては 5.4.2 で述べた測定結果 (約 10 %) とおおむねファクターレベルで一致していると言える。一方で、測定値が概算値よりも大きくなった原因としては増幅過程を再現するシミュレーションの厳密性が不十分であることや、放射線源が FRPC 内に入射する際に、検出器を構成する物質と反応して生じる二次電子による影響などが考えられる。

図 5.19 発生する 1 次電子数とその確率
5.5 時間分解能

5.5.1 測定方法

時間分解能の測定は、検出効率の測定と同様に FRPC 二台を用いて行った。^{90}Sr から出てくる β 線を 2 台の FRPC を一度に通過すると仮定し、それぞれの FRPC の信号の時間差から時間分解能を求める。図 5.20、図 5.21 にその測定方法とそのブロック図を示す。このセットアップについて、下側の FRPC の印加電圧を 1050V で固定し、上側の FRPC の印加電圧を 900 ～ 1050V の範囲で信号の測定を行った。

図 5.20 時間分解能の測定方法

図 5.21 時間分解能測定のブロック図

時間分解能の測定ではプリアンプに APIC(V4/2017) を用いた。APIC は CERN の
MPGD 用に開発されたブリアンプで、shaper やディスクリミネータ、充電式パッテリーなどを搭載している（図 5.22）。またオシロスコープには Lecroy 社の WaveRunner 104mxi-a を用い、周波数帯域は 1 GHz で、サンプリング数が 10 GS/s であった。APIC の立ち上がり時間 \(t_r \) は入力の信号のキャパシタンスに依存し、今回の場合はおよそ \(t_r = 38ns \) である。また gain はおよそ 0.1 ~ 15 まで設定することができ、本研究では 1.4 で統一して使用した。

これらを用いて、上下の FRPC から各々の印加電圧について約 5 分測定して信号波形を記録し、その時間差を見ることで時間分解能を求めていく。
5.5.2 解析方法

上下の FRPC から得られたそれぞれの信号波形データは、放電やエレクトロニクス由来のノイズが多く含まれている。そのため、データ取得の際にあらかじめ誤ったトリガーを防ぐために以下の Double threshold 法を用いたセレクションを行った。

Double threshold 法

信号波形として得られたデータは、トリガーとして設定したディスクリミネータのスレッショルド（閾値）をパルスの高さが超えたときに記録される。これに加え、トリガレベルを超えてから再度トリガーがかかる間に前もって設定した値（ヒステリシス）を超えないと次のトリガーが発生しないようにするヒステリシストリガーをかけて解析的なセレクションを行う方法が Double threshold 法である。

ヒステリシストリガーの概念図を図 5.23 に示す。仮に信号として緑線のものが測定される時、図 5.23 では立ち上がりと立ち下がりを合計すると、信号がトリガーレベルを 6 回超えているが、ダブルスレッショルド法における有効なトリガーは 3 回のみである。有効なトリガーは信号がレベルを超える前にレベル + ヒステリシス以上もしくはレベル−ヒステリシス以下の値になる必要がある。ヒステリシスの範囲内で信号がピークを迎え、再度レベルを超えた場合にはトリガが発生しない。これにより、ノイズによる誤ったトリガーを防ぐことが期待できる。

図 5.23 ヒステリシストリガーの例。有効なトリガーは 1,4,5 のみである

以上によるセレクションを行った後、時間情報について解析的にいくつかの基準を定義し、それを元に差し引きを行う。以下にそれぞれの基準とそれに伴う解析方法を説明する。

- パルスのピークを基準とする方法

図 5.24 得られた信号波形一つ一つに対し、パルスのベースラインを 0%、ピークを 100% とした場合の 30% の位置を時間情報の基準時間とした。
図 5.24 パルスのピークを基準とする方法。各々のパルスに対し、ベースラインを 0％、ピークを 100％とした場合の 30％の位置を時間情報の基準時間とした。

- Centroid 法（重心法）
 重心法は、信号波形の各点に対して電荷量の大きさで重み付けした重心座標を求めめる方法である。信号波形を構成する各点の座標を \((t_i, q_i) \) とおくと、基準となる重心点 \(t_j \) は式 5.7 のように表せる。

\[
 t_j = \frac{\sum_i q_i t_i}{\sum_i q_i}
\]

図 5.25 centroid 法（重心法）

- 立ち下がり時間を基準とする方法
 図 5.26 のように、得られた波形に対してエッジ型の関数でフィットすることで信
号の立ち上がり時間 \(t_0 \) を求める。フィットするための関数は式 5.8 のように表す。
ただし、式 5.8 でフィットする際、信号のベースラインやピーク付近のノイズによって本来の立ち上がり位置から大きくずれてしまう場合があるため、得られた波形データの内、パルスの大きさが小さいもの、すなわち入射粒子のエネルギーが低いイベントを閾値を設定してカットしたものを解析として使用する。

\[
 f(t) = \begin{cases} b & (t < t_0) \\ a(t - t_0) + c & (t_0 < t) \\ \end{cases} \quad a, b, c : \text{Const} \tag{5.8}
\]

![FR1's signal by Sr](image)

図 5.26 立ち上がり時間を基準とする方法

5.5.3 測定結果

それぞれの解析方法に関して、上下の FRPC から得られた基準となる時間情報の時間差をプロットしていき、その結果を示す。

- パルスのピークを基準とする方法

上側の FRPC のそれぞれの印加電圧に対する時間差の分布を図 5.27 から図 5.35 に示す。それぞれの分布に対し、ダブルガウシアン（式 5.9）でフィットを行った。

\[
 F(t) = A \exp \left(-\frac{(t - t_{0,A})^2}{2\sigma_A^2} \right) + B \exp \left(-\frac{(t - t_{0,B})^2}{2\sigma_B^2} \right) \quad (\sigma_A \leq \sigma_B) \tag{5.9}
\]

ただし、\(\sigma_A \leq \sigma_B \) として、\(A, B \) は定数であり、\(A\sigma_A, B\sigma_B \) はそれぞれのガウシアンの項の面積に比例した量である。またそれぞれの項のガウシアンの中心を \(t_{0,A}, t_{0,B} \) とする。

図 5.27～図 5.35 は、印加電圧の差 900 ～ 1050V における上下の FRPC の信号の
時間差分布である。これらより、分布の多くは大きく二つのピークに分けられてい
て、それらの合成で表現されることがわかる。

図 5.27 電圧差 900 V における上下の
FRPC 信号波形のピークを基準とした時間
差分布

図 5.28 電圧差 920 V における上下の
FRPC 信号波形のピークを基準とした時間
差分布

図 5.29 電圧差 940 V における上下の
FRPC 信号波形のピークを基準とした時間
差分布

図 5.30 電圧差 960 V における上下の
FRPC 信号波形のピークを基準とした時間
差分布
図 5.31 電圧差 980 V における上下のFRPC 信号波形のピークを基準とした時間差分布

図 5.32 電圧差 1000 V における上下のFRPC 信号波形のピークを基準とした時間差分布

図 5.33 電圧差 1020 V における上下のFRPC 信号波形のピークを基準とした時間差分布

図 5.34 電圧差 1040 V における上下のFRPC 信号波形のピークを基準とした時間差分布
図 5.35 電圧差 1050 V における上下の FRPC 信号波形のピークを基準とした時間差分布

これより、二つのピークにおける、標準偏差である時間分解能と印加電圧の関係は図 5.36(ピークの鋭い成分)、図 5.37(ピークの鈍い成分) のようになる。

図より、2つのピークそれぞれについて、印加電圧による標準偏差に大きな違いは見られないが、印加電圧が上昇するにつれて、図 5.36 では時間分解能が良くなり、図 5.37 では時間分解能が悪くなっていることがわかる。したがって、鋭いピークを持つものが線源由来の信号による FRPC の時間分解能を表し、鈍いピークを持つものがノイズによる信号の影響によるものであると推測できる。図 5.37 の 1050 V に急激に分解能が悪くなっているのは、放電が顕著に表れることによる影響であると考えられる。

図 5.36 時間差分布のうち、ピークの鋭い成分の時間分解能と印加電圧の関係。縦軸は \(\sigma_A \) である。

図 5.37 時間差分布のうち、ピークの鈍い成分の時間分解能と印加電圧の関係縦軸は \(\sigma_B \) である。

67
Centroid 法

パルスのピークを基準とする方法と同様に、上側の FRPC のそれぞれの印加電圧に対する時間差の分布を図 5.38 から図 5.46 に示す。また分布のフィットも同様に式 5.9 ダブルガウシアンで行った。

図 5.38 電圧差 900 V における上下の FRPC 信号波形の重心を基準とした時間差分布

図 5.39 電圧差 920 V における上下の FRPC 信号波形の重心を基準とした時間差分布

図 5.40 電圧差 940 V における上下の FRPC 信号波形の重心を基準とした時間差分布

図 5.41 電圧差 960 V における上下の FRPC 信号波形の重心を基準とした時間差分布
図 5.42 電圧差 980 V における上下的 FRPC 信号波形の重心を基準とした時間差分布
図 5.43 電圧差 1000 V における上下的 FRPC 信号波形の重心を基準とした時間差分布
図 5.44 電圧差 1020 V における上下的 FRPC 信号波形の重心を基準とした時間差分布
図 5.45 電圧差 1040 V における上下的 FRPC 信号波形の重心を基準とした時間差分布
図 5.46 電圧差 1050 V における上下的 FRPC 信号波形の重心を基準とした時間差分布
これより、二つのピークにおける、標準偏差である時間分解能と印加電圧の関係は図 5.47、図 5.48 のようになる。

図より、2つのピークそれぞれについて、印加電圧によるに標準偏差に大きな違いは見られないが、パルスのピークを基準とした方法に比べて時間分解能がおおよそ 10 倍良くなっていることがわかる。すなわち、図 5.36 で表される 90Sr 線源由来の鋭いピークについて、さらに解析的な分離を行ったと言える。

![Graph 1](image1.png) ![Graph 2](image2.png)

図 5.47 centroid 法による解析での時間分解能と印加電圧の関係 1
図 5.48 centroid 法による解析での時間分解能と印加電圧の関係 2

一方で、印加電圧の上昇に対して時間分解能が良くなっていないことから、測定された 2つのピークのどちらか線源由来であるかは断定できない。

印加電圧が変わると FRPC の増幅率が変わるため、測定される信号の電荷量にも影響がでる。図 5.49 は上側の FRPC で観測されたすべての電圧での信号の電荷量と、そのイベントについての信号の時間差分布である。一般に、信号が discriminator の閾値を超えるタイミングは信号パルスの高さに依存するため、その補正が必要である（タイムウォーク補正）。しかし図 5.49 から電荷量と時間差の相関が見られないことから、印加電圧による影響は無視できる程の時間分解能しか得られていないと言える。

次に、それぞれのイベント数に比例した量である、$A\sigma_A$、$B\sigma_B$ の比較を行った。それぞれの印加電圧に対して、定数の比 $A\sigma_A/B\sigma_B$ を計算したものを図 5.50 に示す。
図 5.49 上側の FRPC で観測されたすべての電圧での信号の電荷量と、そのイベントについての信号の時間差分布

図 5.50 $A\sigma_A/B\sigma_B$ と印加電圧の関係

図から、印加電圧に対する $A\sigma_A/B\sigma_B$ 比に相関が見られない。印加電圧の上昇とともにこの比に一定の増加または減少傾向が現れればその一方が、放電由来のノイズであるなどが考えられるが、その傾向が見られないため、この解析で示される 2 つのピークのどちらもノイズ由来であるとは断定できない。

また、^{90}Sr 線源を外した状態で、同様の測定を行った結果を図 5.51 に示す。ただし、上側の FRPC の印加電圧は 1050 V とした。線源を外した条件で測定される信号はミューオンなどの宇宙線由来やエレクトロニクス由来のノイズが考えられるが、
測定時間は約 15 時間に 39 カウントと非常に少なく、エレクトロニクスなどによるノイズによる影響は無視できると言える。

したがって、今回観測された 2 つのピークは放射線源に由来するものであり、ピークの鋭いものは読み出し領域外で生じた電子由来の信号によるクロストークなどの可能性があると考えられる。

図 5.51 線源無しの条件での測定における時間分解能
・立ち下がり時間を基準とする方法

2つのFRPCで測定された信号の立ち上がり時間の差分に対する分布について、例として電圧差1050 V、1000 V、960 Vについて図5.52、5.53、5.54に示す。ただし分布のフィットにはガウシアンを用いた。

図5.52 電圧差960 Vにおける上下のFRPC信号波形の立ち上がりを基準とした時間差分布

図5.53 電圧差1000 Vにおける上下のFRPC信号波形の立ち上がりを基準とした時間差分布
図 5.54 電圧差 1050 V における上下の FRPC 信号波形の立ち上がりを基準とした時間差分布

以上より、ガウシアンの標準偏差である時間分解能と印加電圧の関係は図 5.55 のようになる。時間分解能は全て数十 ns のオーダーであり、おおよそこれまでの解析とオーディオレベルで同じ結果となった。測定にあたって使用されたブリアンプが数十 ns であるなどから、本研究での FRPC のセットアップにおける時間分解能はエレクトロニクスの時間分解能に大きく影響していることが推測できる。

図 5.55 立ち上がり時間基準による解析での時間分解能と印加電圧の関係
第6章 まとめ

RPC（Resistive Plate Chamber）とは高抵抗のプレートを積み重ねた構造のガス検出器である。プレート間に電場がかけられることで、RPC内を荷電粒子が通過するとガスがイオン化され電子が雪崩増幅を起こし、外側の金属電極より誘起電荷を読み出すことで信号を検出することができる。

原子核・高エネルギー実験において、RPCは様々な用途として使用されている。スイスのジュネーブ郊外、フランスの国境付近に位置するCERN（欧州原子核研究機構）において行われている、大型円形加速器LHC（Large Hadron Collider）を用いたATLAS実験ではミューヨントリガーとして、ALICE実験では粒子識別であるTOF(Time Of Flight)検出器として使用されている。

RPCはプレート間のギャップが狭いため、検出器として非常に高い時間分解能が期待出来る。近年では高速の時間情報を得るための検出器開発が盛んに行われており、本論文においてもこの時間情報に対化したRPC(Timing RPC)について着目した。

一般的なRPCにおいて、高抵抗プレートはガラスが用いられており、そのギャップ間隔は一般的に数mmオーダーである。時間分解能を改善するために、ギャップを縮小させるなどの方法が考えられるが、縮小させればはあるほど電極表面の滑らかさが精細の必要がある。しかし、上記のような高レートな環境下における物理実験において、glassのような高抵抗物質ではレート耐性が低く、最適ではない。そしてそのギャップ間には数k～10kV/mm程度の電場がかけられているため、検出器全体として非常に大きな動作電圧が必要になるなど、様々な問題が存在する。

そこで本研究では、炭素をスパッタさせることで形成するDLC（Diamond Like Carbon）と呼ばれる薄膜抵抗体を電極として使用し、それらをポリイミドフォイルの両面に形成することで各層に独立に電場を供給するという、新たなRPC likeな高速時間分解能が期待出来る検出器（Fast Timing RPC）の構造を考案した。このDLCを用いた構造により、容易にプレートを積層させることができ、ギャップの縮小による「検出効率の低下」と相対的な「電極表面の荒さ」の影響の改善が期待できる。

実際にFRPCの試作品を作製し、その性能評価として主にガス依存性、検出効率、および時間分解能の測定を行った。

まず、放射線源である90Srを用いた測定により検出器としての動作を確認し、その動作電圧を測定した。また一般的にRPCで用いられているガスであるフロンガス($C_2H_2F_4$, R134-a)をベースガスとし、数%のiso-C_4H_{10}、SF$_6$に対し割合を変えた4種類の混合ガスを用いた信号レートの測定をし、現在RPCを使用した物理実験の多くで用いられている「標準混合」と呼ばれる混合比$C_2H_2F_4$/iso-C_4H_{10}/SF$_6$=95.2/4.5/0.3が比較的高レートで
動作電圧が広範囲であることがわかった。また、FRPC 2 台を用いた FRPC の検出効率 \(\epsilon \) を測定した。その結果、印加電圧が上昇するにつれて検出効率も上昇し、およそ 1050 V になると \(\epsilon = 10\% \) 付近でその上昇は緩やかになった。この理由として、測定される信号の元となる一次電子が発生する個数とその確率の関係から、今回の場合一次電子 4 つ分以上からなる信号しか捉えることができず、さらに小さい個数からなる信号を測定する確率とのギャップが存在するためであると考えられる。一方、測定された電圧を超えると放電が持続的に起こるようになり、動作しない状態となったため、放電の対策やさらなる検出効率の改善を行う必要があると言える。また、FRPC のギャップ数を 2 層・3 層と増やして同様に検出効率の測定をし 1 層の結果を比較すると、おおよそ理論通りに検出効率の増加が確認された。また、シミュレーションソフト Garfield++ を用いて単層型 FRPC での検出効率について評価を行った。測定で設定したディスクリミネータの閾値を超える電子の割合から検出効率の概算値を算出した結果、実験結果とおおむねファクターレベルで一致した。測定値が概算値よりも大きくなった原因としては増幅過程を再現するシミュレーションの厳密性が不十分であることや、放射線源が FRPC 内に入射する際に、検出器を構成する物質と反応して生じる二次電子による影響などが考えられる。

次に、\(^{90}\text{Sr}\) を用いて時間分解能の測定を行った。プリアンプとして CERN で開発された APIC と呼ばれる比較的時間分解能の良いものを使い、900～1050 V の範囲での印加電圧に対する時間分解能について検証した。各々の印加電圧において、2 台の FRPC から同時に取得した波形データから、ピークからの一定基準、重心法による基準、信号の立ち下がり時間による時間差を求め、そのばらつきにより時間分解能を算出した。その結果、およそ時間分解能として 10～80 ns と算出され、本研究での FRPC のセットアップにおける時間分解能はエレクトロニクス由来のノイズや放電による影響、および読み出し領域外からのクロストークの影響などで大きく影響されていることが推測される。
参考文献

 Atsuhiko Ochi, etal.
[34] 卒業論文「ダブルベータ崩壊探索実験」, 小川圭将 中澤美季 又吉康平 若宮光太郎, 神戸大学, 2014.
[36] I.Smirnov, Heed, program to compute energy loss of fast particles in gases, Version 1.01, CERN.
謝辞

本研究を進めていくにあたり、ご指導いただいた多くの方々に感謝いたします。指導教員である越智教授は、その気さくな性格と創造性から、常に気軽に質問できる環境を与えてくださり、私の研究に関する疑問にも何度も夜遅くまで付き合っていただきました。活発なコミュニケーションが可能な環境を与えてくださったおかげで、日々押し寄せてくる課題に対して、物理的にも精神的にも乗り越えることができたと思っております。CERN への長期出張の際も、急な滞在の延期などありましたが、衣食住の面でのサポートをしてくださりました。普段は機械類の取扱説明書を読もうとしないのに料理の時だけしっかり分量を計ったりしていたのが非常に印象的です。日々の生活から研究に至るまで、本当にありがとうございました。

越智先生の、何事にも気軽に取り組み、常に創造性を働かせ、家族に対し、愛情を全力で注ぐ姿勢は、恐らく、今後私が歩んでいる人生における様々な場面において、大きな役に立つと思います。越智先生の指導のもとで学ぶ生活が送れたことを誇りに思います。ありがとうございます。またこの μ-PIC グループで飲めたらなと思います。そのときは「言っとくけど喋らんぞぉ！」と言わずに気軽に喋ってください。楽しみにしています。

研究室の先生方にも大変お世話になりました。まずは神戸大学の学長である武田賞先生です。我々の粒子物理研究室出身だからという理由で、一つ上の学年の追いコンのために突然動画撮影をしたいという要請を早急に承諾していただき、本当にありがとうございました。私自身の大学での思い出としては 5 本の指に入る大きな出来事となりました。学長秘書の水嶋さんが含め、本当にありがとうございました。蔵重久弥先生はコロキウムや研究報告及び本論文執筆にあたり大変多くのご指導や親身な指導をしていただきました。いかなる質問に対しても、愛想の湧き上がる知識による指摘を与えていただきました。いつも研究というより会議をしでいるという中で、一番印象に残っているのは 23 時くらいに研究室に来られ「やっと会議終わったあ！」って言うとおむろにカップ麺とビールとワインを開けて「飲んでないってやられるか！」っておっしゃっていたことです。お体には気をつけしてください。竹内康雄先生は専攻長としての任期が満了したにもかかわらず常に忙しくでしたが私が質問するときは常に丁寧に対応していただきました。ライザップの料理本でダイエットに成功するなど見習うべきところが多くあります。しかし誰かの研究室へのお土産であったカステラを少し食べになった時はものすごい笑顔でした。学長とも面会を模索していた時も急なお願いをしてすすいませんでした。山崎祐司先生はここ数年、担当の学生をよく学生部屋に来て探している印象で、たいた私が「今日はまだ来てませんね」と返事していたような気がします。また「もりのおんがくかい」と招待していただきありがとうございました。席がガラガラだろうからと言っていましたが、実際は満員御礼で非常に貴重な鑑賞が経験できました。身内賢太朗先生は学部時代の卒業研究の時からお世話になっており、また私たち μ-PIC グループと NEWAGE グループが実験室を共有しているため様々なサポートをしていただ
きました。そして同じ MPGD の研究者として多くの指摘をいただきました、感謝いた
します。今でも NEWAGE で研究をしたかった入りが少ありませんが、くれぐれも
飲み会での下ネタはもう少し周りの反応とかを考慮してエンジンをかけたほうがいいかなと思
います。前田順平先生は私の席に揃えていたキングダムの直近の 3 卷を借りバックしていたこ
とが強く印象に残っていますが、解析に関して、修論提出間近で切羽詰まった私の様々なア
ドバイスをしていたいただきました。本当にありがとうございました。鈴木州先生は、公私とも
に本当にお世話になりました。普段の雑な会話だけでなく徹夜タコバや例の女の子に関する
不定期の報告など、バラエティに富んだ研究生活があったと思います。武田学長や谷森先
生などによる結婚への圧力のも屈せず我が道を進んでいくその精神を見習うべきか、前
向きに検討したいと思います。また機会があれば色々と寄ってください。本当にありがとうございました。
岡田勝吾先生も解析について多くのご指導をしていただきました。越智先生
と同部屋という謎配置で、短い間でしたが本当にお世話になりました。矢野孝臣先生は、卒
業研究のときから様々な質問に答えていただきました。2016 年度卒業生のためのメッセージ
動画撮影でかっこいい言葉を言おうとして嘗んで take くらいまでののは印象深い
です。私はあまりゲームに詳しくないんですが、ガールフレンド (仮) ってゲームは面白い
んですかね？川出健太郎先生は CERN で初対面にもかかわらず家族のこととか聞きまくっ
te 成いませんが、とりあえず研究室 HP の顔写真を変えるべきだと思います。原俊雄
先生は学部の頃から人生について色々なことを教えていただきました。秘書の横山さんは、
CERN 出張中に BERN へ旅行に連れて行ってくださいました。途中でゲリラ豪雨に遭った
ときに雷の音で少女のように怯えていたことが印象的です。秘書の吉田さんは短い期間でし
たが早くから名前を覚えていただきたくしていたですね。色々とありがとうございました。

粒子物理研究所以外の先生方にも大変お世話になりました。増渕さんは私の CERN 出張
中、何度も車に乗せたいただき助かりました。ある日増渕さんが RD51 lab で珍しく検出器
の作製を行っているのを私が見かけ、何をしているのかを聞くと「趣味」と言われた時は少
し考えさせられました。その他、山崎友寛さんにはパリに連れて行っていただきありがとうございました
し、山賀昌大さんには CERN での移動では助かりました。また結婚についても勝手に考えさせられました。その他にも、私が研究やそれ以外の様々な場面でお世話に
った方は沢山いらっしゃいます、ありがとうございました。

There are two people who took care of me very much when I was staying at CERN.
First is Eraldo. I taught various things from idea to measurement concerning the daily
research at RD 51 lab from you. Thanks to him, such as lending us APIC and other
modules, allowing me to use the lab(building 256) and the freon base gas for my RPC,
so I was able to study at CERN and I could write my thesis (it’s not good result..sorry).
I’m really thankful to you. Besides research, I enjoyed playing with balls, Petanque
after BBQ, and colorful glass. It’s my lifetime memory and precious treasure.
Another person is Beatrice. I gave the freon base gas and experiment space to use it for her, and she taught me a lot about RPC. When I was in great trouble because Atsuhiko returned to Japan, she responded carefully to me not only weekdays but also holidays. On the last day of my staying at CERN, I think that I couldn’t take a picture with Sauli unless she said to me that I should talk to him. Thank you very much.
Thanks to them, my CERN business trip has become very meaningful. Especially, I couldn’t talk in English at all, but I got confidence to speak actively and I think that there is no longer a mind in my mind about going abroad. It’s my precious treasure. I think they are academic advisors to me. I would like to say thank you for borrowing this place. Thank you very much !!!

Particle Physics Research Lab's predecessor also greatly contributed. It was almost the same μ-PIC Group's Sugiura. MM's QAQC and D talk were a lot of fun and I enjoyed listening to Beatrice. She taught me a lot about RPC. When I was in great trouble because Atsuhiko returned to Japan, she responded carefully to me not only weekdays but also holidays. On the last day of my staying at CERN, I think that I couldn’t take a picture with Sauli unless she said to me that I should talk to him. Thank you very much.

μ-PIC Group is a very meaningful experience. Especially, I couldn’t talk in English at all, but I got confidence to speak actively and I think that there is no longer a mind in my mind about going abroad. It’s my precious treasure. I think they are academic advisors to me. I would like to say thank you for borrowing this place. Thank you very much !!!
飲み会ができてうれしかったです。またみんなで飲みましょう。

研究室の同期にも大変お世話になりました。まずは年功序列で阿部ちゃんこと阿部圭吾氏。先輩なんか同期なんかわかりませんでしたがタメ口でも気にしないその器の大きさは見習いたいです。何事にも黒潮的な感じとその細身の身長が羨ましいです。ただゲームを通じて出会ったおっさんと飯食うとか私には無理です。どういうコミュ力なんでしょうか。また Xperia 契ってください。次にミキティこと中澤美季氏。結局ミキティと呼んでたのは私だけでした。思えば意外と B4 の頃から話した回数は多いかと思いますが、自分の席に座って、目の前のディスプレイを見ながらいきなり私に話しかけるのは最後まで慣れないでした。あなたはコミュニテですね。ツッコミとしてはボケのエッジが効きすぎてツッコミきれない時もありましたが日々楽しかったです。B4 の頃私が無理やり仲介してあの人と沖縄旅行の計画をしてたのだろうなさんはけ。早く爆発してください。次はマタヨこと吉広平氏。同じ µ-PIC の同期として様々な場面で一緒にいたのですごく心強かったです。研究だけでなく日々の生活においてもマタヨが原則的に冷静でいてくれることでいろいろな挑戦や突拍子もないことが出たと思っています。あなたが笑う。インターフェルノは絶対読みます。その次のやつも絶対読みます。色々と無茶な会話に付き合ってくれてありがたいです。琉球乃笑。はい、そしてピカ太郎こと若宮光太郎氏。ピカ太郎とは実質 B 4 の頃の付き合いですが、非常に入れ思い出がたくさんあります。B4 の頃、すでに二徹していた私と卒業発表の本番 5 時間前（朝 5 時ごろ）に解析ソフトのデバッグに悩んでいたことは未だに忘れられない思い出です。あの辛さを乗り越えたから今があるような気がします。そして数々のチェックイン。私にはないセンスを持っていると思います。おそらく振り返るたびに笑える思い出が出たくさんでした。また親指と耳が縮むくらいバンバン飲みましょう。財布 on the rock。

最後にこうすけこと（ボ）こと竹田康亮氏。思えば学部の入学式からの付き合いですが、まさかあのメンツで君だけ D 進するとは思っていませんでした。私のあだ名は何回も変わり、もう本当に最初名前で呼ばれていたのか怪しいレベルです。思い出を一から話しているとキリがないので省略しますが、君と出会えたことで私の大学生活が本当に充実したものとなりました。面と向かって言うのは恥ずかしいですが、この場を借りて言いたいと思います。ありがとうございます。ただまあどうもとうとうとこの先も長い付き合いになるかと思います。また変わらず意味不明なことを言い合うような関係でいましょう。さて（˵ー˵）笑

研究室の後輩にもなんだかなんだお世話になりました。まずはとびえもんこと石飛由介くん。µ-PIC 唯一の後輩として私と共に様々な経験をしたと思います。来年度からは先輩 3 人が抜けて寂しくなるかと思いますが、その勇敢なことが残るよう積極的にいろいろな経験をしようとしたつもりですし、結果的に私が楽しませてもらいました。年中桐谷星美玲の顔面を貼り付けたり、歴史を刻んだり、KEK で遊び足したり、秋葉原のメディアカフェを満喫したり、パリでスリにあったと帰りの電車が 3 時間遅延したり、フランスで夜な夜なイメージングのマスクを作ったり。とびえもんが µ-PIC グループの後輩で本当に良
かったと思っていますし、これからも研究を頑張っていける真面目さと行動力があると思います。まあ、いい感じで適度にノリで頑張ってください。次に、石浦氏こと石浦宏尚氏。よく考えれば卒論の関係で本格的に先輩ですが、二階の実験室や学生部屋での日常など、楽しい思い出が多い方が色々あります。親指とか佐々木とか証明写真とか、楽しみましてもらいました。ほんとうに知識的にも、助けていただきました。そして次に、チャンさかこと酒井貴義くんはぬるいコーヒークソ伊達メガネでした。幾度となく、ウザい絡みがお互いにありました。しかし、船出の直前になった今、そのほとんどが楽しかったと感じます。夜中に研究室の小会議室の長時間矢野さんが寝そべっていたソファベッドで電気つけて PC 付けたまま寝るのはほどほどに、そしていそべっちこと礀部裕太くん。比較的私が一方的に話しかけることが多く、困惑したこともあると思いますが、私はそのリアクションが他の人にはないセンスを感じて面白がっていました。礀部礀兵衛物語〜浮世はつらいよ〜、面白いよ。太郎こと杉本太郎くん。CERN 滞在中にとある愚痴で気が合ってから勝手に親近感が沸いていたが、私の言うことに対してよく爆笑してくれている印象で、ちょいちょい嬉しさ爆発してました。また寿司とか歴史とか行くたいですね。多分、トッティこと吉田登志輝くん。CERN 出張の行きが同じだったら、MM のシフトで話すことが多かったですね。最初は太郎とかそのままへんと縮退していましたが、今では真面目でいい子であることがわかりました（笑）。そして４代目ぐっさんこと堀口樹日くん。先代のぐっさんが転移み研究室を去ったので丸で定着しないあだ名でした。研究室では話しかけてくれることが多く嬉しかったです。次に忘れかけてた、ヤベ氏こと宮辺裕樹くん。君とは私が B1 の頃に地元の塾でチューターと生徒の関係から始まりましたが、まさかこんなことになるとは思っていませんでした。今でも不思議です。いつまで経っても可愛らしい後輩ですが、これからも変わらずクソヒゲメガネチビマスク歴史研究室住み込みゲーム野郎でいてください。最後にオカケンこと岡田健くん。武田学長との面会の時に本格カメラと三脚つれてつれてきた時にオカケンがいてくれて良かったと心から思いました。日々の生活でも急なお願いをした時も快く受け入れてくれたり、いらい後輩を持ったと思っています。ありがとう。その他 B4 の皆さんも、話す機会は少なかったですが、おそらく大半が真面目なイメージです。もし私について聞きたいことがあれば上記の人たちに何でも聞いてください。物理的なエピソードはほとんどないでしょうが、本望です。みなさん頑張ってください。

最後に、これまで学生生活を支えてくれた母、祖母、そして天国の祖父に感謝いたします。

小川圭将