

Kobe University Particle Physics Labo. MPGD (μ-PIC) group

29/08/2014 KUBEC International workshop on DM search Atsuhiko Ochi

MPGD Development

- What is MPGD ?
 - Micro Pattern Gaseous Detector
 - Recent technology for gaseous detector, using micropatterning (photo-lithography, laser patterning, etc.)
 - Key technology for realizing followings simultaneously
 - high position resolution (<100 μ m)
 - high rate capacitance (> 10⁶ counts/mm²)
 - Large area (~ a few meter size)
 - Mass productivity (close to PCB industrial technology)
- R&D in Kobe PP labo.
 - $-\mu$ -PIC
 - Development of imaging gas detector using resistive electrodes for stable operation.
 - Application for Dark Matter search (NEWAGE)
 - Application for ATLAS phase-II upgrade, High η muon detector

– MicroMEGAS

- For muon spectrometer in ATLAS phase-I upgrade
- Developing new electrodes material, and operation test

- RE-GEM

• Stable, and spark free GEM (Just start to develop)

Micro Pixel Chamber

Common R&D themes for MPGDs

- Understanding for the MPGD operation
 - We need to share our experiences and information.
- Robustness for the spark

It was most critical problem.

- Large area production
 - It was big theme in RD51, depending on applications.

Multi channel readout

 KEK-DTP ASIC group and RD51 have already developed the system

µ-PIC with resistive electrodes

A. Ochi, KUBEC Workshop 2014/8/29

µ-PIC with resistive cathodes with capacitive readout

- The cathodes of μ-PIC is formed by resistive material.
- Large current from spark reduce the e-field, and spark is quenched.
- Signal from low energy deposit will observed with higher gas gain
- This design provide one promised possibility of MIP detector under hadronic background
- It takes enough gain (~7 x 10⁵, with Ar+ethane)
 - This work was followed by KAKENHI supporting research (2011-2014)

Micro scope picture of a prototype (RC27)

- Delivered at July 2012
- Very good accuracy (compared with previous samples)
- Surface resistivity
 - About $50M\Omega$ / strip (10cm)

Spark test using fast neutron

- A few MeV few tenth MeV neutron will produce recoiled nucleon inside detectors
 - That produce great amount of energy deposit (a few MeV/mm²) in gaseous volume.
- The concerned problem for gas detector
 - "Raether limit" ... the electron cluster more than 10⁷⁻⁸ cause the detector to discharge.
- We can evaluate the spark probability for HIP by measuring the spark rate dependencies on neutron irradiation
- Neutron source
 - Tandem nucleon accelerator (3MeV deuteron) + Beryllium target. (Kobe University, Maritime dept.)
 - $d + {}^9Be \rightarrow n + {}^{10}B$
 - Neutron energy: mainly 2MeV

A. Ochi, KUBEC Workshop 2014/8/29

Results of spark reduction test

- HV current on anodes are monitored while neutrons are irradiated
- We found strong spark reduction using resistive cathode !!

[µA]

10

8

6

4

2

0

Voltage

recorder

neutron

-HV

 $(\sim 1 \, \text{kV})$

Cathode = 0V

Anode

(~600

Drift

Application idea for ATLAS upgrade (phase-II)

- Very High η muon detector
 2.5 < η < 4.5
- Improving High pT acceptance
 - \rightarrow + a few tens %
- Available position:
 - 5cm width beside endcap cryostat
- High rate dose
 - $^{\circ}$ 10¹⁶n/cm²
- Required granularity
 - 100µm X 100µm
- \rightarrow Basic study is started by μ -PIC

2014/8/29

MicroMEGAS for ATLAS NSW

A. Ochi, KUBEC Workshop 2014/8/29

Requirements for ATLAS NSW MM

- High position resolution for one dimension
 - <100 µm for eta direction. (Resolution of a few cm is allowed for second coordinate.)
- Tolerant for high rate HIP particles
 - ~ 5kHz/cm²
- Resistive layer should be formed as strips
- Resistivity: ~20MΩ/cm
 - To protect from spark
- Mass production should be available, with large size (1m)
 - ~2000 board should be produced in half year.
- Low cost

The Muon Spectrometer

Resistive strips foil

- Pattern
 - Along with readout strips, with inter connect pattern.
 - 300-350 µm width
 - 415–450 µm pitch
- Resistivity
 - Typically, 20MΩ/cm for each strips
 - +/- 20% will be accepted as "Grade A"
 - Maximum allowance: -67% / +200% (Grade C")

Candidates for production

- Sputtering+liftoff
 - Pros.
 - Large area (>2m)
 - Fine pattern (<100µm)
 - Uniform resistivity
 - Strong attachment on substrate
 - Cons.
 - Production speed (Now, it will be OK, next slide)
 - High cost

- Screen printing
 - Pros.
 - Large area (>2m)
 - Fast production speed
 - Low cost for mass production
 - Cons.
 - Stability of resistivity
 - Thick pattern (~20 µm)
 - Lower tolerance for breakdown for high voltage

Prototype of small MicroMEGAS

- June, 2013 bulk MM
 - Surface resistivity: $10M\Omega/sq$. 0
 - With 300Å carbon + 50Å W
- November, 2013 floating mesh
 - Surface resistivity: $500k\Omega/sq$.
 - With 3600Å carbon
- The readout board consists of
 - Readout strips (Rigid PCB).
 - Resistive strip foil (Polyimide film).
 - Fine strip pitch of 200 µm is formed on 25µm polyimide foil. 0
 - Substrate thickness : 60 µm.

200.00um

Fast neutron test

- Beamtests for sputtering MPGD
- Gain curve of 5.9 keV X-ray.
 - Drift = -300V
 - Drift spacing: 5mm
 - Gas: Ar(93%) + CO2(7%)
- Fast Neutron test for spark probability
 - @Kobe Univ.
 - 17-23 Jun. 2013
 - 20-27 Jan. 2014
 - HV current log under intense neutron.
 - Neutron intense : ~ 10⁵ cps/cm².
 - + 0.01V correspond to 1 μ A
 - ~600nA of base current was found while beam ON.

/Users/ochi/Documents/Work/mpgd/J4/current_monitor/run231708.txt

After sparks by neutrons

No damage is observed on the resistive strips after neutron test

Charged particle tracking

 At Kobe Univ, Sept. 2013
 1.4GeV electron beam
 At Spring-8 BL33 beamline,¹⁵⁰ Nov. 2013

SRS system

Large resistive strip foil for MSW

866.4mm

425.3mm

Enlarged picture of resistive strip foil

10 mm

Carbon sputtering further developments

New idea: Nitrogen doping

- The structure of the sputtered carbon is amorphous diamond like carbon (a-DLC).
- It is thought that the charge carrier is very few in the DLC
- So, I got an idea of nitrogen doping as a supplier of carrier electrons
 - This is same story as the n-type semiconductor production.
- The nitrogen is easy to introduce into the sputtering chamber with Argon gas.

Resistivity vs thickness (June, 2014)

- ► For 3.2% N₂ content foils
 - 2400Å \rightarrow 55k Ω /sq.
 - 700Å \rightarrow 700k Ω /sq. (42min. sputter)

Other MPGD development using carbon sputtering

- Resistive µ–PIC
 - New version using carbon sputtering is being tested
- Resistive GEM
 - The resistive electrodes are made by very thin (50 – 300nm) material
 - It will improve the signal gain
 - We have just made it, and it is being tested now.
 - (Scienergy + Raytech)

Synergy of MPGD group

Kobe MPGD group Member (2014)

- Atsuhiko Ochi 0
- Kentaro Miuchi 0
- Yasuhiro Homma 0
- Tsuyoshi Takemoto 0
- Fumiya Yamane 0

Summary

- We are developing MPGDs as common technologies in particle physics experiments
 - MPGD with resistive electrodes
 - To suppress the electric discharge
 - μ -PIC : High rate \rightarrow ATLAS phase-II upgrade Low rate \rightarrow NEWAGE
 - MicroMEGAS : ATLAS NSW development
 - GEM : RE-GEM R&D has been started

