



## ATLAS Group at Kobe

Junpei Maeda Kobe University

**KUBEC International Workshop on Dark Matter Searches** 27-29 August 2014, Brussels, Belgium

#### Members

#### Staff

- Hisaya Kurashige (Prof.)
- Yuji Yamazaki (Assoc. Prof.)
- Atsuhiko Ochi, Shima Shimizu, Junpei Maeda (Assis. Prof.)
- Yuan Li (PD)

#### Students

- Tomoe Kishimoto (PhD course)
- Ye Chen, Makoto Hasegawa, Ryota Yakabe, Shogo Kido (master)

#### Contents

#### Muon-trigger

- Level-1 endcap trigger: hardware-based
- Level-2 (high-level) muon trigger: software-based
- Upgrade plan
- Physics
  - Higgs boson decaying to WW
  - QCD jet physics

## **ATLAS Muon trigger and Kobe**

### **ATLAS trigger system**

- Three-level system
  - L1: pipeline readout
     + hardware trigger
  - L2, L3 (Event Filter): High-Level trigger
- Object-based
  - Object reconstructed only around Rol (Region of Interest)
  - Full reconstruction limited to few events

L2/EF merged from 2015 to reduce readout and event building overhead



#### The ATLAS detector



#### **ATLAS muon system**



- Precision chamber: MDT (Monitored Drift Tube)
- Fast trigger chamber: RPC and TGC (Thin-Gap Chamber)
- Barrel and Endcap systems
  - Three "stations" to measure bending

#### Kobe contribution to Endcap trigger chambers



Checking if all the channels \*' are alive using cosmic, in Kobe





Manufactured at KEK: ~1000 wires being soldered

## **Assembling @ CERN**

- Checking again
- Mounting to frames
- Integration with electronics



Endcap Sector Logic board



## **ATLAS trigger - performance requirements**

#### Small S/N

- Interesting events: 1/10<sup>n</sup>
   where n > 5~15
- High rate and pile-up
  - 1 GHz collisions  $\rightarrow$  <500 Hz for tape







#### LHC running plan and luminosity



#### Muon trigger acceptance

Trigger "menu" plan:

| unit in GeV        | Single<br>muon | Isolated<br>muon | Dimuon(1)<br>symmetric | Dimuon(2)<br>asymmetric |
|--------------------|----------------|------------------|------------------------|-------------------------|
| Thresholds in 2012 | 40             | 24               | 13/13                  | 18/8                    |
| Thresholds in 2015 | 50             | none(*)          | 14/14                  | 24/8                    |

(\*) in combination to other trigger signal, or pre-scaled

#### Run1:

- Isolated muon trigger for inclusive W/Z
- Dimuon trigger for Z boson,  $H \rightarrow 4$  lep. etc.

Run2:

- About x3 higher rate (lumi, energy)
- No trigger to take W/Z inclusively need to use "special trigger" e.g. di-muon, µ+jet, µ+e



## **ATLAS muon trigger - Level 1**



#### Improvement in Run-1

 LUT optimisation: loose during commissioning tighter when operation is stable

- Kobe effort: endcap trigger
  - Measuring p<sub>T</sub> from the track angle measured by 3 layers of TGCs in the middle station
  - Using hardware look-up table (LUT)



#### ATLAS L1 muon: background

- Main background: protons
  - produced by interaction of hadrons from pp interaction and material
    - of beam element (B) or
    - in the detector (C)
- Reduction expected by
  - requiring a TGC hit in the inner station (EI) consistent with that comes from the interaction point
  - requiring energy at the rear-most layer of the hadron calorimeter



### Performance with new coincidences

- Inner station
  - coincidence limited
     by chamber coverage
  - ~30% reduction
- Calorimeter
  - very effective reduction
     for 1.0<η<1.3</li>
- Hardware being prepared
  - LUT implementation
  - Communication test with new Calorimeter trigger board developed by Brazil



#### Pseudorapidity $\eta$



### **HLT muon trigger**

- L2 muon: outside-in strategy
  - Standalone: muon system only
    - Iow rate, but coarse resolution
  - Combined: require a track in the inner detector
    - precise determination of momentum



- Endcap: bending angle
- EF muon
  - Combined muons mainly used for physics analysis
  - Optional isolation requirement using tracks/calorimetry

## HLT (L2) muon: problem

- Many fake hits in MDT
  - in Inner Station
  - failure in pattern recognition
- Removing the outliers by
  - narrower searching "road"
  - removing hits with big contribution to χ<sup>2</sup> etc.
- Utilising EE chamber
  - One more layer in B field
    - fully installed in this shutdown
  - determining bending radius with 3 stations a la Barrel



## L1 upgrade: future plan

- L1 MDT trigger (2023) Mid. term: NSW (New Small Wheel), 2019- upgrading the inner station Endcap Narrow strip: stronger for pileup Ω Providing both fast signal (sTGC) for L1 and precision measurement (Micromegas) for HLT/analysis Magnetic Field ~130 µm position resolution Outer IP Middle see next talk by A. Ochi Inner Long Term: fast MDT trigger (2023-) • The  $\beta$  parameter also for L1 replaced by NSW (2019) sTGC and Micromegas Kobe contribution Micromegas production, quality control
  - electronics, LUT optimisation

## L2 upgrade: future plan

- Coincidence with TileCal
  - like L1, still possible reduction
     of fakes
- Track-seeded algorithm
  - Hardware-based FTK (fast tracking) available from 2015
    - Signal is ready while L2 starts to process
  - FTK-track + a segment in Inner Station or TileCal may suffice to find a muon track?
- HLT development for NSW for 2019 '
  - Fast algorithm at the first step of muon HLT algorithm sequence

(b)

ΕM

EI

#### **Understanding the trigger**

- Precise determination of the trigger efficiency
   ◆ using copious Z→µµ decays
- The "MC scale factor"
  - precision: typically below 1%
  - also simulation good to <1% level</li>
- Little dependence to the amount of pileup
  - muon trigger is robust for high-luminosity environment



#### Monitoring the trigger: data quality



Web page display for DQ histograms: example for HLT Trigger efficiency vs run number for 2012 operation

Both L1 and L2 muon trigger monitors developed by Kobe
Helping stable operation

## **ATLAS Physics from Kobe**

# Reducing errors in Higgs cross-section measurements through H→llvv

- L. Yuan and T. Kishimoto from Kobe
- Main focus: extending the kinematic range
  - Higgs is lighter than what was assumed when designing analysis
  - But this increasing background, too



#### Background estimation technique developed by us

H

- Diboson (WZ, ZZ, Zγ)
  - looks similar to signal in extended kinematic range
  - use the same-sign contribution to estimate opposite-sign signal  $\sqrt{q} = \frac{l}{T_0} \sqrt{q}$



#### data-driven method to improve precision in estimation



#### Top quark

 Using exactly the same sample to the data analysis to estimate b-quark rejection efficiency

# Forward jet in different CMS energies and parton densities in proton

- by S. Shimizu
  - asymmetric configuration of jet production
    - sensitive to parton densities in both low-x and high-x regions

The European Physical Journal

volume 73 · number 8 · august · 2013

Particles and Fields

🕗 Springer

ATLAS



vs POWHEG  $\otimes$  PYTHIA (NLO interfaced to parton shower)

high- $\mathcal{X}$ 

low- $\mathcal{X}$ 

#### **Other contributions in physics analyses**

Standard model jet+photon

Previous subgroup convener (S. Shimizu)

- Speakers committee member (Y. Yamazaki)
- Editorial board: internal referees (S. Shimizu, Y. Yamazaki)



### Summary

- Kobe contribution muon trigger on
  - construction
  - future development
- Physics analysis
  - Various contribution, experience gained
  - Jumping into Run-2, wishing for (at least) one more discovery.