

IceCube group at IIHE: Dark Matter signals from the Earth

KUBEC Workshop on Dark Matter 2014

Jan Lünemann, Vrije Universiteit Brussel for the IceCube Collaboration

WIMP searches

Targets for WIMP searches with IceCube:

dwarf galaxies and other halos

Signal

- Dark matter could scatter and be captured in heavy celestial bodies
- WIMP-Annihilation could produce a neutrino signal that can be detected by IceCube

- Neutrino signal from annihilating dark matter would come from center of Earth
- Maximum a few 10³ events per year (more = excluded)
- GeV to TeV energies

Background

- Background coming from all directions
 - Produced in the atmosphere by cosmic rays
- Few 10¹⁰ muons and 10⁵ neutrinos per year
- GeV to PeV energies

Background

Background rate depends on zenith \rightarrow cannot define off-source region by changing azimuth

Other searches: Background estimated by off-source data

Earth searches: Background estimated by simulation

Background

- Instead: estimate background by
 - Extrapolate background expectation from neighboring region
- or
 - Simulation of background and (compare with data in off-source region)

Capture rate

- Capture rate depends on WIMP mass
- Resonance with heavy inner elements of Earth
- Optimize analysis on $m_{\chi} =$ 50 GeV $\chi \chi \rightarrow \tau^+ \tau^-$

Capture rate

- A second independend analysis is done, to be also sensitive to larger WIMP masses
- Data sample is split at neutrino energy of 100GeV
- Optimize analysis on $m_{\chi} = 1$ TeV $\chi \chi \rightarrow W^+ W^-$

²⁰⁰ reconstructed E_{ν} (GeV)

Background Reduction

A typical *signal* event if $m_x = 50 \text{ GeV}$

A typical background event

- How to distinguish between background and signal:
 - Reconstructed direction
 - Signal events come from below
 - Quality of reconstruction
 - Poorly reconstructed background events can appear upgoing
 - Additional topological variables

Background Reduction

- BDT cut was chosen such that the final sample has a purity (neutrino rate/total rate) > 90%.
- Cut will be tuned to get optimal sensitivity

- Variables with good discriminating power are fed into a BDT
- trained on experimental data (atmospheric muon dominated) and 50 GeV WIMP neutrinos.

High Energy Background

- At higher energies coincident muons are more frequent
- Can be simulated as upgoing event

A typical *signal* event if $m_x = 1$ TeV

A typical background event

High Energy Background

- Search for topological connected hits
- Reconstruct hit sets separately
- Reject downgoing events

Sensitivity

- First Analysis with IceCube Data
- Increase of sensitivity by a factor ~10
- Work on improvements

A. Achterberg et al. / Astroparticle Physics 26 (2006) 129-139

Cross section

- Interpretation from neutrino flux to capture rate and cross-section is highly model dependent
 - Influence of gravitational potential of Sun and other planets
 - Probably no equilibrium between WIMP capture and annihilation
 - Capture rate depends on velocity distribution of WIMPs

Summary

- First search for dark matter in the center of the Earth with IceCube will be finished in the near future
- Two optimizations are performed for the low-energy and the high-energy region
- Analysis will be a factor 10-100 more sensitive than the last AMANDA search

IceCube

- 1 km³ of South Pole ice instrumented with 5160 optical modules
 - String spacing 125 m
 - DOM spacing 17 m
- DeepCore
 - String spacing 72 m
 - DOM spacing 7 m

