Direction-sensitive Direct Search Review

Neil Spooner, University of Sheffield

- Directional Detector Motivation and Basics
- Gas TPCs and DRIFT
- Alternative technologies

Special thanks to Dinesh Loomba and DRIFT collaborators

Collaboration....!

What a WIMP does

SRIM simulation - 100 keV F recoil in 75 Torr CF_{4} (D3 collaboration)
atom

What a WIMP does

Particle ID, even neutrinos

Directional Basics

Most experiments use low pressure gas-based TPCs:

Anode

Far more information on events than possible with conventional DM technologies:

But the challenge is detecting \sim mm tracks in cubic meter volumes

Background Rejection

Each produces ~ 500 electron-ion
\swarrow pairs in 40 Torr Ar

40 KeV Ar recoils

13 KeV electrons

Simulations from SRIM97, EGS4/Presta
thanks to Dinesh Loomba

Limits even with small mass

Directionality and Tracking

From concept to reality

A real track has straggling
$Y(\mu m)$
X ($\mu \mathrm{m}$)
SRIM
thanks to Dinesh Loomba

Directionality and Tracking Projection (2D or 3D):

A real readout might be 2D

Optimising Directionality

How many WIMPs are needed to get a directional (non-isotropic) signal?

A conclusion - head-tail discrimination ("vector") may be more important than 3D reconstruction (however, 3D may be important for background rejection).

Only about 10 WIMP events may be needed to see directionality

Optimising Directionality

Directional sensitivity vs. energy threshold

A. Green et al.

Fig. 4. The exposure required to reject isotropy (and detect a WIMP signal) at 95% confidence in 95% of experiments as a function of energy threshold, for WIMP-proton elastic scattering cross-section $\sigma_{0}=10^{-7} \mathrm{pb}$, assuming a local WIMP density of $\rho=0.3 \mathrm{GeV} \mathrm{cm}^{-3}$.
A conclusion - low energy threshold may not be important for directionality (however, it may be important for background rejection).

Head - Tail

Zoom in on the recoil:

Importance:
with H/T need ~ 10 's of events to rule out isotropy, w/o H/T need ~ 100 's

From Tanimori, et al Phys.Lett. B578 (2004) Hitachi's work

How close to 10 events can we get?

Diffusion

A real track will suffer diffusion

3.5 mm
$100 \mu \mathrm{~m}$ pixel readout

Diffusion

A real track will suffer diffusion

Diffusion

A real track will suffer diffusion

So diffusion must be kept low

Discovery Strategy

These issues lead to a complex optimisation and choice of detector parameters and detector design depending on technology and strategy:

- Full track imaging or asymmetry signal only?
- 1D, 2D or 3D tracking?
- Track sense and head-tail discrimination or not?
- Low energy threshold or not? Low mass WIMP or not?
- Background rejection power
- SI and SD sensitivity, or both
- Scale-up to multi-tonne or not
(1) Search phase (detection of nonzero recoil signal)
(2) Detection of anisotropy
(3) Study of properties of anisotropy

GAS

DRIFT-UNM optical TPC R\&D
DM-TPC
MIMAC
NEWAGE
D3

Gas: A Flexible Technology

- Flexibility in choice of target A: light targets (He, C, O) for low mass WIMPs, F for spin-dependent, etc.
- Negative ion drift: target $+\mathrm{CS}_{2}$ mixtures enable drift with thermal diffusion (Martoff). VS
Shorter drift distance

- Pressure is tunable: given a minimum resolvable track-size, $R_{\text {min }}$, one can vary the directionality E_{th} by lowering pressure:

Rate

UNM R\&D (DRIFT) pianh hamban
 UNM How close to 10 events can we get?: University of New Mexico

Concept: 100 Torr CF_{4} (and CS_{2} later) with ThGEM and CCD optical readout

- 2D readout with $\sim 160 \mu \mathrm{~m}$ pixels
- 3 CERN GEMs - high signal-to-noise, gas gains achieved $\sim 100,000$
- back-illuminated CCD (QE ~ 93\%, 10 e- rms)
- Low diffusion, $\sigma \sim 0.4 \mathrm{~mm}$

UNM R\&D

Powerful background reduction with the GEM and $\mathrm{CS}_{2} / \mathrm{CF}_{4}$:

- Results reveal how low energy electron tracks look "blobby" so good S/N is essential in CCD technique to separate from low energy recoils.

UNM R\&D

Cf-252 neutrons show powerful head-tail and directional discrimination:

Axial directional threshold:
$\sim 40 \mathrm{keV}_{\text {recoil }}$
Vector (head-tail) directional threshold:
$\sim 55 \mathrm{keV}_{\text {recoil }}$
~ 18 events needed to point back to the source...

Directionality
threshold: axial, vector

...after quality cuts on ~ 40 events randomly chosen from dataset with vector directionality

Kentaro Muichi et al. via micro-PIC TPC

- Three detectors: NEWAGE-0.3a (Kamioka); NEWAGE-o.3b, NEWAGE-o. 1 (HT R\&D)
- Micro patterned gaseous detectors (MPGDs) 768×768 pixels ($400 \mu \mathrm{~m}$) a micro pixel chamber (μ-PIC) which is a two-dimensional fine-pitch imaging device plus a gas electron multiplier (GEM)
- $30 \times 30 \times 41 \mathrm{~cm}^{3}$ of detection volume.
- CF4 gas at 0.2 atm
- A gas circulation system with cooled charcoal

MIMAC

Concept: low pressure $\mathrm{CF}_{4}, \mathrm{CHF}_{3}$ and H with charge readout via Micromegas + pixel technology

- X and Y coordinates are measured on the pixelated anode

Daniel Santos et al.

LPSC (Grenoble) : J. Lamblin, F. Mayet, D. Santos J. Billard (Ph.D) (left in July 2012), Q. Riffard (Ph.D) (started in October 2012)

Technical Coordination :

- Electronics :
- Data Acquisition:
- Mechanical Structure
- Ion source (quenching) :
- Z direction by anode sampling at 50 MHz , use of $\mathrm{CF} 4+30 \% \mathrm{CHF} 3$ to slow the events
- The anode is read every 20 ns . The 3D track is reconstructed, from the consecutive number of images defining the event Bi-chamber module $2 \times\left(10.8 \times 10.8 \times 25 \mathrm{~cm}^{3}\right)$

Pixel micromegas from IRFU (Saclay) - $200 \mu \mathrm{~m}$

Performance underground at Modane:

$3.1 \mathrm{keV}\left({ }^{109} \mathrm{Cd}\right)$

A 5.9 keV electron track in 350 mbar $95 \% 4 \mathrm{He}+\mathrm{C} 4 \mathrm{H} 10$

MIMAC

Future: MIMAC $-1 \mathrm{~m}^{3}=16$ bi-chamber modules ($2 \times 35 \times 35 \times 25.5 \mathrm{~cm}^{3}$)
i) New technology anode $35 \mathrm{~cm} \times 35 \mathrm{~cm}$
ii) Stretched thin grid at 500 um .
iii) New electronic board
iv) Only one big chamber

New $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ pixel anode (1024 channels)

Challenges for MIMAC?:

- Use of CF_{4} requires addition of CHF_{3} to slow the gas down to allow z -determination
- No Z fiducialisation
- Can pixilated daq be scaled-up and reasonable cost
- background issues?

DM-TPC

Concept: low pressure CF_{4} with charge mesh and CCD

At MIT

- Avalanche in mesh produces amplification and scintillation
- Primary ionisation encodes track direction via dE/dx profile arXiv:1301.5685v2 (2013)
- Light and charge readout required for tracking backgrounds
- Light used to reject wrong Range vs. E; charge to reject e-. CCD artefacts
- No ΔZ from light (for 3D) - R\&D to use charge signal for 3D
- No absolute Z or Z fiducialisation

DMTPCino: $1 \mathrm{~m}^{3}$ Detector

DM-TPC

- Prototype for very large detector: build many $1 \mathrm{~m}^{3}$ modules because ot dittusion lımit.

- Design based on 4-shooter 20L prototype:

Challenges for DM-TPC?:

- Fast CF_{4} makes makes $\Delta \mathrm{Z}$ hard to do
- No Z fiducialisation
- Can CCD technology be scaled-up?
- CCD noise: residual bulk images (e.g. from sparks), (2) intermittent hot pixels, (3) noise
(i) new mesh with high gain
(ii) multi-camera readout imaging 2 drift regions
(ii) low-background materials
(iii) triggering with charge/PMTs

DRIFT IIa, b, c, d, e, DRIFT III

Concept: -ve ion $\mathrm{CS}_{2}+\mathrm{CF}_{4} \mathrm{TPC}$, MWPC readout, m^{3} volume, 40 Torr

DRIFT-II Readout

- Anode plane of $51220 \mu \mathrm{~m}$ wires with 2 mm pitch
- 2 cathode planes of $512100 \mu \mathrm{~m}$ wires perpendicular to anode plane, 2 mm pitch - one of which is read out

$\Delta \mathrm{X}$: Number of anode wires crossed
$\Delta \mathrm{Y}$: Progression across grid wires
$\Delta \mathrm{Z}$: Drift time between start and end of track

Multiplexed to 18 channels of digitised waveform output for $1 \mathrm{~m}^{2}$ readout plane

Simple, cheap \& scalable

DRIFT-II Backgrounds

- Gamma/electron rejection is $>10^{5}$ and is not an issue at our E threshold
- The main background is from Radon Recoil Progenies (RPRs)

RPR Discrimination

- DRIFT-IIa runs revealed ~ 600 RPR events per day!
- But RPRs have large pulse widths as expected from maximally diffused tracks drifting from cathode. So, RPRs can be reduced in analysis

DRIFT-II RPR Reduction DRIFT IId upgrade to thin Cathode

 Wire Cathode \longrightarrow Thin Cathode \longrightarrow Thin Texturised Cathode~600 RPRs/day

Wire Cathode

~130 RPRs/day
(with nitric etch)
~1 RPRs/day

Thin Film

Texturised Cathode

DRIFT-IId

Use of multi-panel 0.9μ m thick DRIFT cathode
cathode tested at full voltage $(32.5 \mathrm{kV})$

DRIFT-II RPR Reduction

$20 \mu \mathrm{~m}$ wire cathode

$0.9 \mu \mathrm{~m}$ film cathode
Background events
174 events/day
anode.F.recoil.energy vs anode.iws.rmst

Background events
14.7 events/day
anode.F.recoil.energy vs anode.iws.rmst

DRIFT - Full Z Fiducialization

Discovery of "minority peaks" in $\mathrm{CS}_{2}+\mathrm{O}_{2}$ mixtures:

D.P.S-I, Rev. Sci. Instrum. (2014)

DRIFT - Full Z Fiducialization drift2d-20130701-02-0003-neut Event 7977

- 1\% oxygen added to 30:10 Torr CS_{2} : CF_{4} mixture
- Appearance of "minority carrier" peaks earlier than the "majority" peak, carrying $\sim 1 / 2$ of the total charge (see Snowden-Ifft Rev. Sci. Instr. 85 (2014))
- Timing between main peak and minority peaks gives absolute Z information on events
- This allows rejection of RPRs that originate near the cathode at $\mathrm{z}=50 \mathrm{~cm}$ or MWPC planes at $\mathrm{z}=0 \mathrm{~cm}$

DRIFT - Full Z Fiducialization

Both are from ~ 50 day dark matter runs at Boulby
An expanded region with zero background....

DRIFT-II Direction Sensitivity

S. Burgos et al., Astropart. Phys. 31 (2009) 261-266
S. Burgos et al., NIM A600 (2009) 417-423

Head-Tail discrimination

Axial directional discrimination

DRIFT's directional signature is based on measuring the recoil's range in 2D $(\Delta x, \Delta z)$ and its head-tail in 1D (z). This enables DRIFT to detect WIMPs with a few 100 events at the 90\% C.L.

DRIFT was first to show HT discrimination (in $1 \mathrm{~m}^{3}$ at low energy)!

DRIFT II Status and prospects

DRIFT-IId is currently volume limited

Scale-up looks feasible

- Apology - not all latest results included yet

Boulby Underground Laboratory, UK

DRIFT-IIe

Study directionality, lower background, robustness

Aside: A powerful tool for Rn Assay

DRIFT is very good at identifying classes of alpha particle and nuclear recoils.

An excellent tool for assay of materials:
Sensitivity to surface alphas on contaminated material (e.g. ${ }^{210} \mathrm{~Pb}$): $0.1-0.01 \mathrm{mBq} / \mathrm{m}^{2}$

Sensitivity to ${ }^{222} \mathbf{R n}$ emanation: $1-2 \mu \mathrm{~Bq} / \mathrm{m}^{2}$
cathode crossing alpha

S

Between detectors without directionality and gas TPCs with directional sensitivity, a difference of at least three orders of magnitude in active mass exists; how can this gap be confronted?

Can we find a directional technology with higher density?
It would be nice! But a long history of looking has not so far produced much

Stilbene
Rotons in Lq He
Phonon focussing Multilayers....

It is hard...but recent work is progressing...

Anisotropic Scintillators

Nuclear Emulsions
High pressure Xe, LAr
DNA strands
Carbon nanotubes

Anisotropic Scintillators

Concept (1): Anisotropic organic scintillator, anthracene or stilbene where light response p, α, recoil nuclei, \cdots depends on direction with respect to the crystal axes:

Effectively the quench factor has an angular dependence:

- Groups in UK, Italy and Japan
Y. Shimizu et al., Nucl. Instr. and Meth. A 496, 347 (2003)
N.J.C. Spooner et al., IDM (World Scientific 1997), p. 481
R. Bernabei et al. Eur. Phys. J. C 28, 203-209 (2003)
- Effect arises from preferred directions of the exciton propagation in the crystal lattice
- e.g. in Anthracene 6.56 MeV alpha impinging along b-axis (a-axis) gives 66\% (80\%) of the light for direction along the c^{\prime}-axis

$$
\begin{aligned}
q_{n}\left(\Omega_{\mathrm{out}}\right)= & q_{n, x} \sin \gamma \cos \phi+q_{n, y} \sin \gamma \sin \phi \\
& +q_{n, z} \cos \gamma
\end{aligned}
$$

Expected rate at 1-2 keV vs. detector possible velocity directions for 50 GeV WIMP at WIMP-proton cross section $3 \cdot 10^{-6} \mathrm{pb}$

Anisotropic Scintillators

Example work (2003): Hiroyuki Sekiya (Kyoto University) M.Minowa, Y.Shimizu, Y.Inoue,

Respons to $\sim 100 \mathrm{keV}$ carbon recoils:

116 g stilbene crystal +2 R8778 PMTs
W.Suganuma (University of Tokyo)

Challenges for directional organics:

- Only carbon is the target (SI)
- Anisotropy is likely <20\%
- Low quench factors
- No head-tail
- High backgrounds?
- Small crystals

Alternative example (2013) - $\mathbf{Z n W O}_{4}$: F. Cappella et al., Eur. Phys. J. C 73 (2013) 2276
Both the light output and the pulse shape of ZnWO 4 detectors depend on the direction of the impinging particles with respect to the crystal axes - this can provide two independent ways to exploit the directionality approach

Expected for 10 GeV WIMP-p cross section $3 \cdot 10^{-5} \mathrm{pb}$

ADAMO

Concept: ZnWO_{4}

DAMA group - F. Cappella et al., Eur. Phys. J. C 73 (2013) 2276 Dependence of α / β ratio on energy of α particles in ZnWO_{4} directions perpendicular to (010), (001) and (100) crystal planes (directions 1, 2 and 3, respectively).

Ion	Quenching factor		
	dir. 1	dir. 2	dir. 3
O	0.235	0.159	0.176
Zn	0.084	0.054	0.060
W	0.058	0.037	0.041

QF for O, Zn and W ions with energy 5 keV for different directions in ZnWO 4 .

Dependence of pulse shape on energy and direction of α particles relatively to (010), (001) and (100) crystal planes.

Prototype now under study

Issues for $\mathbf{Z n W O}_{\mathbf{4}}$:

- Check low energy response
- Backgrounds
- No head-tail

Nuclear Emulsion

Nagoya University, OPERA...
Concept (1): Use of emulsion film to give 3D tracking - solid detector (3g/cc), high spatial resolution, low cost, target $\operatorname{Ag}(46 \%), \operatorname{Br}(34 \%), \mathrm{C}(\mathrm{N}, \mathrm{O})(19 \%)$

- Progress made to produce stable very fine crystals by using the PVA techniques
- Track produces line of silver grains

- Challenge is to get: (i) small grains <40nm (OPERA had 200 nm), (ii) closely packed, and (iii) sensitive to low ionisation
- Typical recoils are order $100 \mathrm{~nm}-\mathrm{Ag}, \mathrm{Br}$ likely produce tracks too short so need to use C, N, O target

Nuclear Emulsion

- Progress with carbon recoil tests
track detection efficiency 175 keV (520nm expected): $80 \% 80 \mathrm{keV}$ (250nm expected) : 50% crystal separation is shorter than carbon tracks
- Scanning process being developed combining optical and x-ray techniques

Challenges for directional organics:

- What range threshold can be achieved (100nm)?
- Efficiency of grain production by recoils
- No head-tail?
- Not real time - target rotation?
- Can background grains be reduced?

e.g. unexpected silver grains are generated at random, if too close, they become noise tracks

High-Pressure Xenon

D. Nygren et al.

Concept: Idea to use columnar recombination (CR) based on atomic/molecular processes in xenon-TMA. CR may be sensitive to the angle between nuclear recoil direction and drift field E in a gaseous TPC.

$\sim N O C R$

A large angle between track and field leads electrons transversely away from the ion column. Recombination signal is small relative to the ionisation signal.

A small angle implies a higher level of recombination as the electrons drift more or less parallel to the ions, encountering many; a recombination signal is relatively large in comparison to the surviving ionization signal.

Substantial CR

High-Pressure Xenon

Conceptual design: scheme in which all information is collected in the form of optical signals using high-pressure xenon gas electroluminescent (EL) TPC

Journal of Physics: Conference Series 460 (2013) 012006

- 10 bars Xe gas TPC with penning additive
- Two drift regions of 2.5 m
- WLS 4π for light collection

Directionality is via the ratio of recombination signal "R" (UV scintillation) to the surviving ionisation signal "I". The challenge is to maximise the detection efficiency of the \mathbf{R} signal in a detector of interesting scale.

Although unknown at present, a head-tail effect may appear as a difference in \mathbf{R} / \mathbf{I} between the upper and lower halves of the TPC.

Challenges for HPXe:

- No demonstration yet
- The density for optimal Onsager radius may not be matched for directionality
- Optical detection efficiency - does TMA additive work sufficiently, what fraction?
- What electric field is required at given xenon density - is it reasonable?
- No head-tail sensitivity?
- Simulation so far do not show CR exists at the recoil energy

Conclusions

There is a simple, strong, SIGNATURE for WIMP dark matter - that nuclear recoils produced move opposite to our motion in galactic coordinates towards Cygnus. No terrestrial background can mimic this signal.

CYGNUS 2015

fifth international workshop on directional dark matter detection

Backup

DRIFT III Scale-up

- Two modules composed of $8 \mathrm{~m}^{3}$ footprint $\sim 6 \mathrm{~m}$ by 3 m .
- Modular design to allow approach to ton-scale
- 4 kg target - $24 \mathrm{~m}^{3}$
- 250 of 4 kg modules gives 1 ton would fit into a standard DUSEL module or 500m tunnel at Boulby

- Preference for CH-based material

