Technical
Information
Manual

Revision n. 0
22 December 1992

MOD. V288

H.S. CAENET
VME CONTROLLER

CAEN will repair or replace any product within the guarantee period if the Guarantor
declares that the product is defective due to workmanship or materials and has not been
caused by mishandling, negligence on behalf of the User, accident or any abnormal
conditions or operations.

CAEN declines all responsibility for damages or
injuries caused by an improper use of the Modules
due to negligence on behalf of the User. It is strongly
recommended to read thoroughly the CAEN User's
Manual before any kind of operation.

CAEN reservesthe right to change partially or entirely the contents of this Manual at any time and without
giving any notice.

TABLE OF CONTENTS

TABLE OF CONTENTS ... e i
1. DESCRIPTION. ... e 1
1.1.FUNCTIONAL DESCRIPTIONot 1
2. SPECIFICATION et 3
2.1 PACKAGING ... 3
2.2. EXTERNAL COMPONENTS ... 3
2.3. INTERNAL COMPONENTS ... 3
2.4 POWER REQUIREMENTS ..., 3
3. OPERATING MODES. e 5
3.1. H.S. CAENET NETWORK OPERATION ..ot 5
3.2. H.S. CAENET NODE OPERATION ..ot 6
3.3. THE MOD. V288 H.S. CAENET VME CONTROLLER..........cccooiiiiiiii, 6
3.4. MOD V288 OPERATING MODES.........ccoiiii 7
340 RESET . 7
3.4.2. STATUS REGISTER......oiiii 7
3.4.3. DATA PACKET STORAGE........ccoiiii e, 7
3.4.4. START TRANSMISSION. ..., 8
3.4.5. WAITING FOR THE SLAVE RESPONSE ..o, 8
3.4.6. READING THE RESPONSE.........oiiii 9
3.5. V288 - SLAVE COMMUNICATION SEQUENCE ..o, 10
4. VME INTERFACE e 11
4.1. V288 ADDRESSING CAPABILITY ..o 11
4.2. V288 DATA TRANSFER CAPABILITY ..o, 11
4.3. TRANSMIT DATA BUFFER. ... 12
4.4. RECEIVE DATA BUFFER. ..., 12
4.5. STATUS REGISTER. ... 12
4.6. TRANSMISSION REGISTER......cooiii 13
4.7. RESET REGISTER......ouiii 13
4.8. INTERRUPT VECTOR REGISTER ..o, 13
4.9. V288 INTERRUPTER CAPABILITY ..o, 13
4.10. V288 INTERRUPT LEVEL......oiii 13
5. CLAEIN. PROTOCOL ..ot 15
5.1. H.S. CAENET NETWORK FOR REMOTING CONTROL.ccoooviiiiiii, 15
5.2. H.S. CAENET NETWORK IMPLEMENTATION: CAEN APPROACH................... 15
5.3. MASTER TO SLAVE DATA COMPOSITIONccoiiiiiiiii e, 17
5.4. SLAVE TO MASTER DATA COMPOSITIONccouiiiiiiiiiiiie e, 17
5.5. ERROR CODES ... 18
6. REFERENCES 19
APPENDIX A SOFTWARE BUGS AS OF SEPTEMBER 1992 ..o Al
A.1. H.S. CAENET OPERATION BUGS.......coiiii e Al
APPENDIX B SOFTWARE EXAMPLES. o B.1

18/12/92 V288 User Manual

$ED
mr
r
S,
T

1. DESCRIPTION

1.1.FUNCTIONAL DESCRIPTION

The Model V288 HIGH SPEED (H.S.)CAENET VME CONTROLLER has been designed to
control an H.S. CAENET network through the VME bus. It houses an H.S. CAENET Node
and a Control Logic (microprocessor based) which integrates the functions of Node
controller and Network error handler.

Standard VME cycles allow the user to easily control the serial communication on the H.S.
CAENET network according to the typical MASTER/SLAVE communication protocol, where
the VME controller assumes the MASTER function.

It is composed of a collection of registers, for the operation control, and two memory buffers
for the data packet transmitted and received, arranged in a FIFO logic 16 bit wide 256 word
deep.

In the memory buffer for the received data are also stored error messages generated by the
on-board Control logic when the H.S. CAENET operation has failed

The Module is an A24 D16 VME Slave; Its Base Address is programmable through dip
switches located on the Board.

The module operations can be software controlled in polling mode or can be handled via
interrupt facility. It houses a VME ROAK INTERRUPTER [1] that generates a VME interrupt
(if enabled) as soon as the data packet (or the error message) is stored in the receive buffer.

The communication line uses a simple 50 ohm coaxial cable as physical medium.

The data transfer rate is 1 MBaud.

(A functional block diagram is shown in Fig. 1.1.)

18/12/92 V288 User Manual

H.S. CAENET
NODE

BN S S

MUX X Serial data
" DB<0.15>) M 4 1B<0..7> > oo &
i 2 507
T T coaxial cable
CAENET
SERIAL
_ INTERFACE
VME
INTERFACE J,
F "
L1 RX i
o L L FIFO
=
=] RESET
L REGISTER
= e I e e B Tt :
-
TRANSMIT CLOCK (3 MH2)
REGISJER CONTROL
LOGIC Man. RESET D:D
DBO STATUS
REGISTER T e
1

IRQ<1..7> INTERRUPTER

DB<0..7> 3 INTERRUPT
VECTOR REG.

SW3..4

Fig 1.1 Mod. V288 block diagram

18/12/92 V288 User Manual

2. SPECIFICATION

2.1. PACKAGING

1-unit wide VME module.

2.2. EXTERNAL COMPONENTS
(refer to Fig. 2.1).

CONNECTORS

-No. 1 "SERIAL LINE" LEMO 00 type, 50 Ohm connector;
connector for the H.S. CAENET communication line.

LEDs

- No.1"DATA",red LED;
is On when the H.S. CAENET Node is active.

SWITCHES
- No.1"RESET"push button;
by pushing this button the V288 enters in restart mode; this causes the
following operations:
- the buffers are cleared;
- every VME interrupt pending is cleared;
- every data transfer is aborted,;

- the V288 does not accept any command.

It remains in this status for about 3 msec.

2.3. INTERNAL COMPONENTS
SWITCHES

- No.3dip-switches SW2,SW5,SW6;
These dip-switches allow the selection of the VME Base address.

- No.2dip-switches SW3,SW4;
These dip-switches allow the selection of the VME interrupt level.

2.4.POWER REQUIREMENTS

+ 5V 2A

18/12/92 V288 User Manual

@ — on
® | —
— &

Fig 2.1 Mod. V288 Front Panel

18/12/92 V288 User Manual

3. OPERATING MODES

3.1. H.S. CAENET NETWORK OPERATION

H.S. CAENET Network is a send and receive half duplex system; It permits asynchronous
serial transmission of data packet along simple 50 ohm coaxial cable. Several devices (H.S.
CAENET Nodes) are able to share the same media to transmit and receive data.

Each Node is able to receive the serial data packet and store it automatically in the RX FIFO
and to transmit the data contained in the TX FIFO. Both FIFOs are 512 byte deep.

The H.S. CAENET Node listen for clear coax before transmitting but it is not able to detect
collisions on the cable; for this reason it is important to avoid line contention i.e. the Nodes
should not attempt to transmit at the same time.

Usually transfers between H.S. CAENET Nodes take place according to the typical
MASTER/SLAVES communication: there is a single H.S. CAENET MASTER that initiates
the transmission, all the SLAVEs receive the data, and only the SLAVE addressed then
accesses the serial line to transmit the data requested by the MASTER.
The maximum data packet length is 512 bytes.
An external clock source provides the basic time reference in the Node: the clock frequency
is three times the data transfer rate. Actually the clock frequency used in the H.S. CAENET
network is 3 MHz (1 MBaud transfer rate);
The Node is seen as an 8 bit pheripheral device composed of a collection of registers and
two memory buffers arranged in FIFO logic. It generates an interrupt (H.S. CAENET
interrupt) upon:

- the completion of a transmission of a data packet

- the reception of a data packet

- when the RX FIFO has been completely unloaded.

18/12/92 V288 User Manual

3.2. H.S. CAENET NODE OPERATION

The basic operation of the H.S. CAENET Node consists in 3 distinct modes:
Transmit, Receive and Restart mode.

- In the Transmit mode the Node accesses the data stored in the TX FIFO and
transmits them on the cable.

- In the Receive mode the serial packet is stored in the RX FIFO.

- In Restart mode the Node does not execute any commands, all the TX and RX
buffers are cleared and the H.S. CAENET interrupt is removed; it remains in this
mode until it detects that the line is clear.

3.3. THE MOD. V288 H.S. CAENET VME CONTROLLER

The Model V288 H.S. CAENET VME CONTROLLER has been designed to easily control an
H.S. CAENET network through the VME bus. It houses an H.S. CAENET Node and a
Control logic (microprocessor based with dedicated firmware) which integrates the functions
of Node controller with Network error reporting and H.S. CAENET interrupt handler.

The Control logic directly controls the on-board H.S.CAENET Node and its multiplexing logic
interfaces the 16 bit VME data bus with the two 8 bit FIFOs so as they are seen by VME as
16 bit buffers. It receives commands from a VME Master in a way that few standard VME
cycles allow the user to easily control the serial communication on the H.S. CAENET
network; the communication is performed according to the typical MASTER/SLAVE
communication protocol, where the VME Master assumes the H.S. CAENET MASTER
function.

The Module is an A24 D16 VME Slave, it is composed of a collection of registers, for the
operation control, and two memory buffer for the data packets transmitted and received,
arranged in a FIFO logic 16 bit wide 256 word deep (see Fig.1.1)

The Status Register content indicates whether the previous H.S. CAENET Operation has
been successfully performed; in particular shows when the valid data are read from the
Receive Data Bulffer.

In the memory buffer for the received data are also stored error messages generated by the
Control logic when the H.S. CAENET operation has failed.

The module operations can be software controlled in polling mode or can be handled via
interrupt facility. It houses a VME ROAK INTERRUPTER [1] that generates a VME interrupt
(if enabled) as soon as the data packet (or the error message) is stored in the receive buffer.

The interrupt vector is software programmable while the interrupt level is selectable via dip
switches;

The Mod. V288 registers are described in the Table 4.1.

18/12/92 V288 User Manual

3.4. MOD V288 OPERATING MODES
The following paragraphs describe the various operations that can be performed via VME

and the use of the V288 registers to accomplish an H.S. CAENET communication.

3.4.1. RESET
It is possible to reset the Mod V288 in these ways :

- by pushing the Front Panel push-button "RESET";
- by writing via VME at the address: Base + 6 (Reset Register).

After one of these operation the V288 enters in Restart Mode; this causes the following
operation:

- the buffers are cleared,

- every VME interrupt pending is cleared;

- every data transfer is aborted;

- the V288 does not accept any command.

It remains in this status for about 3 msec.

3.4.2. STATUS REGISTER

The LSB of the V288 Status Register indicates if the previous H.S. CAENET Operation
handled via VME is valid or not. The RESET operation (see above) is not considered as a H.
S. CAENET operation, thus the content of the Status Register is not valid after a RESET.

Status Register bit 0= 1 "No valid operation";
Status Register bit 0= 0 "Valid operation".

The Status Register is available at the VME address Base + 2.

3.4.3. DATA PACKET STORAGE

The data to be transmitted are stored in the TX FIFO by performing subsequent VME write
accesses to the address Base + 0 (Transmit Data Buffer); The buffer is arranged in FIFO
logic 16 bit wide.

After any writing operation the user is recommended to read the content of the Status
Register. A "No valid operation" means that the Transmit Data Buffer is not available for data
storage. This may occur in these cases:

- if the H.S. CAENET Node is active (it is transmitting a previous data packet or it is
receiving the SLAVE response data packet);

- if the Transmit Data Buffer is full (the maximum number of 16 bit data stored is 256).

18/12/92 V288 User Manual

3.4.4. START TRANSMISSION

An access in writing to the VME address Base + 4 (Transmission Register) enables the
Control logic to transmit on the cable the data packet stored in the Transmit Data Buffer.

The logic first check if the Buffer is empty,

- if not, the logic sets the H.S.CAENET Node in the Transmit mode and the data
packet is transmitted on the cable.

- If the Buffer is empty the control logic does not activate the transmission and write an
error code in the Receive data buffer (error %FFFD see Tab. 5.3).

The content of the Status register indicates if the Start Transmission command has been
recognized by the Control logic; a "No valid operation" means that the H.S CAENET Node is
not able to transmit data. This may happen if the H.S. CAENET Node is active (it is
transmitting a previous data packet or it is receiving the SLAVE response).

If a "valid operation" is contained in the Status register the user will receive the SLAVE
Response or a Control logic message within a maximum period of 500 msec (SLAVE
Response Time-out).

The Response is available at the address Base + 0 (Receive Data Buffer).

3.4.5. WAITING FOR THE SLAVE RESPONSE

The Control logic waits for the SLAVE Response for about 500 msec; if no data packet is
received within this period the Control logic stores an error code in the Receive Data Buffer
(error %FFFF see table 5.3).

If a data packet is received from the cable within the SLAVE Response Time-out, the Control
logic checks if it has the correct header: if not, clears the Receive Data Buffer and stores in it
an error code (error % FFFE see table 5.3).

After these operation, the Receive Data Buffer contains valid data (an error code or the
SLAVE response) for the VME Master that has initiated the H.S. CAENET communication.

At this point the Control logic enables the VME reading, and if the interrupt level selected on
the dip switches is different from 0, a VME Interrupt on the corresponding IRQ line [1] is
generated.

18/12/92 V288 User Manual

3.4.6. READING THE RESPONSE

The User after the transmission of the data packet expects a response in the Receive Data
Buffer; the presence of valid data can be recognized in two different ways: In polling mode or
by the use of the VME interrupt.

Polling mode:

- After the Start Transmission operation, the user reads the content of the Receive
Data Buffer (address Base + 0) and successively the Status Register (address Base
+ 2), this two read operations must be repeated until a "Valid Operation" is contained
in the Status Register; this means that the data read is the first data of the Response.

VME interrupt

- The generation of the VME interrupt means that valid data are present in the Receive
Data Buffer

Then the reading of the Receive Data buffer and the Status Register must be repeated until
a "No valid operation” is obtained.

18/12/92 V288 User Manual

3.5. V288 - SLAVE COMMUNICATION SEQUENCE

The operations previously described are summarized in the following report:

- write the data packet in the Transmit Data Buffer; in the packet is contained the H.S.
CAENET address of the SLAVE (see Tab 5.1 for the data structure).
for each data:

- write the data in the Transmit Data Buffer

- read the Status Register :

- if Status Register ="Valid operation”

{

the data is stored in the buffer.

}
{

error.

}

- else

- Transmit the data packet:
- Access in write the Transmission Register
- read the Status Register
- if Status Register = "Valid Operation"
{
the V288 H.S. CAENET Node enters in the transmit mode and the data
packet stored is transmitted on the cable.

}
{

error.

}

- Wait for the SLAVE response
- if the Interrupt is enabled

{
wait for V288 interrupt

}
{

- read the Receive Data Buffer

- read the Status Register

- if Status Register = "No Valid Operation" discard the data and repeat the two
read operation.

- if Status Register = "Valid Operation" accept the data read: it may be the
first data of the SLAVE response data packet or a Control Logic error
message; go to the Read Response section

}

- Read SLAVE response
- read the Receive data buffer
- read the Status Register :
- if Status Register = "Valid Operation" accept the data read: and repeat the two read
operations.
- if Status Register = "No Valid Operation" discard the data read and exit: the Receive
Data Buffer is empty.

- else

- else

10

18/12/92

4. VME INTERFACE

4.1. V288 ADDRESSING CAPABILITY

V288 User Manual

The module works in A24 mode; this means that the module address must be specified in a

field of 24 bits.

The Address Modifiers recognized by the module are

AM = %39 : Standard user data access

AM = %3A :Standard user program access

AM =%3D: Standard supervisor data access
AM = %3E :Standard supervisor program access

The module's Base address is fixed by dip switches located on the board (see Fig 4.1)

The Base address can be selected in the range:

%00 0000 <-> %FF FFFO

4.2. V288 DATA TRANSFER CAPABILITY

The registers and the buffers are accessible in D16 mode.

Table 4.1: Mod V288 Registers

NAME TYPE ADDRESS FUNCTION

Transmit Data Write only Base Address + 00 Transmit data storage

Buffer

Receive Data Read only Base Address + 00 Receive data storage

Buffer

Status Read only Base Address + 02 After an H.S.CAENET op-

Register eration has been performed,
the Status Register hit 0
indicates whether the
operation isvalid or not
0=Valid Operation
1 =No Valid Operation

Transmission Write only Base Address + 04 By writing into this register

Register. the Transmit Data Buffer
content is transmitted on
the cable

Reset Register Write only Base Address + 06 Module's Reset

Interrupt Vector Write only Base Address + 08 Interrupt vector program-

Register

ming register

1

18/12/92 V288 User Manual

4.3. TRANSMIT DATA BUFFER

(Base Address + 0 write access)

This is the buffer which is loaded with the data packet to transmit, it is arranged in a FIFO
logic 16 bit wide; (the data packet transmitted is composed of 16 bit words as shown in Tab
5.1).

4.4. RECEIVE DATA BUFFER
(Base Address + 0 read access)

This is the buffer where the H.S. CAENET Node automatically stores the data packet
received from the SLAVE or, if the H.S. CAENET operation has failed, the Control Logic
stores an error code. It is arranged in a FIFO logic 16 bit wide; (the data packet received is
composed of 16 bit words as shown in Tab 5.2).

4.5. STATUS REGISTER
(Base Address + 2 read only)

The LSB bit of the V288 Status Register indicates if the previous H.S. CAENET Operation
handled via VME is valid or not

Status Register bit 0= 1 No valid operation;
Status Register bit 0= 0 Valid operation.
The bits from 1 to 15 are unused and are read as "one".
After one of the following operations the user is recommended to read the Status Register:
- write data in the Transmit Data buffer: it indicates if the datum written has been
stored or not in the Transmit Data Buffer; a "No valid operation" means that the
Transmit Data Buffer is not available for data storage. This may happen in these

cases:

- if the H.S. CAENET Node is active (it is transmitting a previous data packet
or it is receiving the SLAVE response data packet);

- if the Transmit Data Buffer is full (the maximum number of data stored is
256).

- write in the Transmission Register (Start data packet transmission): it indicates if
the Start Transmission command has been recognized by the Mod. V288; a "No valid
operation" means that the H.S CAENET Node is not able to transmit data. This may
happen if the H.S. CAENET Node is active (it is transmitting a previous data packet
or it is receiving the SLAVE response);

-read data from the Receive Data Buffer: it indicates if the data read is valid or not.

18/12/92 V288 User Manual

4.6. TRANSMISSION REGISTER

(Base Address + 4 write only)
An access in writing at this location enables the V288 Control Logic to transmit on the cable
the data stored in the Transmit Data Buffer. If this operation is performed with the Transmit

Data Buffer empty, The Control logic stores an error message in the Receive Data Buffer
(error %FFFD see Table 5.3).

4.7. RESET REGISTER
(Base address + 6, write only)

An access in writing to this location causes the V288 to enter in restart mode; this causes
the following operations:

- the buffers are cleared;

- every interrupt pending is cleared;

- every data transfer is aborted,;

- the V288 does not accept any command.

It remains in this status for about 3 msec.

4.8. INTERRUPT VECTOR REGISTER

(Base address + 8, write only)

The value written in this 8 bit register is the STATUS/ID that the V288 INTERRUPTER
places on the VME data bus during the Interrupt Acknowledge Cycle.

4.9. V288 INTERRUPTER CAPABILITY
The V288 module houses a VME ROAK INTERRUPTER DO08(0) type[1].This means that:

- it responds to 8 bit, 16 bit and 32 bit interrupt acknowledge cycles providing an 8-bit
STATUS/ID on the VME data lines D00..D07.

- it removes its interrupt request when the VME Master reads the V288 STATUS/ID
during the Interrupt Acknowledge Cycle (ROAK: Release On Acknowledge).

4.10. V288 INTERRUPT LEVEL
The interrupt level corresponds to the value set on the two dip-switches SW4,SW3 as
described in Fig. 4.1.

13

18/12/92 V288 User Manual

[
|
s
COMPONENTS 510E
L L L
[y =21]
u =l
]
v oS
= a27
]
]
]
a1 A1
4 T == ;=
LCY0 B W IW"ZRRUFPT LY CL
LEYl n u
LI 59 CH Levy Eomm
SAh=AdTANL OFE =7 D=1
SWIR= A 2TIAIS 1DF==, =1
Sl f A O ALY R =1 OM =1
Sl T CRRLPTLEYCLCTO L CIT -7 QM -1 DIP SWITCHES ARE ON
WHEN DOT IS VISIBLE
SW3=IhT=RRLPTLEvEL =, OFF =1, =10

Fig 4.1 Mod. V288 dip switches setting.

14

18/12/92 V288 User Manual

5. C.A.E.N. PROTOCOL

5.1. H.S. CAENET NETWORK FOR REMOTING CONTROL.

H.S. CAENET provides a unique way of remotely controlling "passive" electronic modules;
modules which have not been designed for specific data acquisition purposes, and therefore
have no bus interfaces like CAMAC or VME.

NIM modules (Delay Units, Attenuators, Amplifiers, 1/O registers) as well as H.V. supplies
have several parameters which need to be adjusted under computer control; many CAEN
units houses an H.S. CAENET Node inside the module that allows the possibility of linking
devices of different types and functionality with a central controller.

5.2. H.S. CAENET NETWORK IMPLEMENTATION: CAEN APPROACH.

CAEN has developed a transmission protocol via H.S. CAENET line that permits the
monitoring and control of many CAEN units from a single controller. This network has the
following structure and protocol:

The transfers between H.S. CAENET Nodes take place according to the typical
MASTER/SLAVEs communication:

- There is a single MASTER : H.S. CAENET Controller;

- The SLAVEs are daisy-chained on the network, and are identified by an address
code (from 0 to 99); the address is usually selectable via thumb-wheel switch located
on the front panel of the module;

- the H.S. CAENET MASTER initiates the transmission, all the SLAVESs receive the
data, and only the SLAVE addressed then accesses the serial line to transmit the

data requested by the MASTER.

In this way is possible from a single point to control up to 100 SLAVES.

15

18/12/92 V288 User Manual

5.3. MASTER TO SLAVE DATA COMPOSITION

The MASTER to SLAVE data have to be written in the Transmit Data Buffer, by performing
subsequent write accesses to the address Base +0, and should have the following structure.

Table 5.1: MASTER to SLAVE data composition

Order Operation Address Datum M eaning
(HEX)

1 Write Base Ad. +0 %0001 H.S. CAENET Controller
identified code

2 Write Base Ad.+ 0 %00X X SLAVE address code
(0..99)

3 Write Base Ad.+0 Code Code of the operation to be
performed

4 to Write Base Ad.+ 0 Set Eventual set values

256

5.4. SLAVE TO MASTER DATA COMPOSITION

The answer data coming from the SLAVE or a Control Logic error message is stored into the
V288 Receive Data buffer.The VME Master can get it by performing subsequent read
accesses to the address Base +0. The following Table shows the structure of the SLAVE
data packet:

Table 5.2: SLAVE to MASTER data composition

Order Operation Address Datum M eaning
1 Read Base Ad+0 Error Code Error code
2 to 255(*) Read Base Ad+ 0 value Eventual Parameter value

(*) The first data of the packet is read and checked by the Control Logic as shown in § 3.4.5.

The Error codes are described in Tab. 5.3.

16

18/12/92

V288 User Manual

5.5. ERROR CODES

The Error codes are described in the following Tabl e:

Table 5.3: Error Codes

Datum Meaning

(Hex)

%0 Successful operation.

%FFFD No data to be transmitted; it has tried to start a transmission with
the Transmit data Buffer empty. (Control logic error message).

%FFFE The H.S. CAENET Controller identifier is incorrect. (Control Logic
error message)

%FFFF The addressed SLAVE does not exist. This message are generated
after a period of 500 msec. (Control Logic error message).

All the other possible error codes from the SLAVE module have the format "%FFnn" where
"nn" can be any number.

17

18/12/92 V288 User Manual

6. REFERENCES

[1] VMEDbus specification Manual Revision C.1 October 1985

18

17/07/01 V288 User Manual

APPENDIX A SOFTWARE BUGS AS OF
SEPTEMBER 1992

This appendix contains the software bugs recognized as of September 1992

A.1. H.S. CAENET OPERATION BUGS

If one of the SLAVE in the H.S. CAENET Network has the address code = 0 the Network
communications do not work.

Do not use SLAVE address code = 0.

Al

18/12/92 V288 User Manual

APPENDIX B SOFTWARE EXAMPLES

The detail of using the Mod.vV288 to communicate with an H.S. CAENET SLAVE are
explained by means of complete examples:

- VMECAENET.H: Declaration for communication via VME with the Mod. V288
- VMCAENET.C : Caenet Package for V288 Module
These two listings describes the function and general design of a

driver for the Mod Vv288; all the possible errors are handled, included
the VME Buserror.

VMESY403.C : Demonstration on the use of Caenet Routines in communication
between V288 module and the SY403 HighVoltage System

This example is to be used as guides in creating a communication
software between the V288 and an H.S.CAENET SLAVE module

B.1

18/12/92

V288 User Manual

/****************'k****************************'k*****************************/

| *
I C. A. E.
| *

N .

SpA

/* VMCAENET. H - Decl arations for comrunication with V288 Mdul e

/*

*/
*/
*/
*/
*/

/*************************'k*'k***/

#i f ndef uchar
#defi ne uchar
#endi f
#i f ndef ushort
#defi ne ushort
#endi f

/* Constants for vne_cycles routines */
#def i ne BYTE

#defi ne WORD

#define LWORD

/*

Errors returned by caenet_read and caenet_wite;

unsi gned char

unsi gned short

N~

the positive ones

are dependi ng from V288 Mdul e and not from CAENET network

*/

#def i ne TUTTOK

#def i ne E_NO_Q_| DENT
#defi ne E_NO_Q _CRATE
#define E NO Q CODE
#def i ne E _NO_Q DATA
#defi ne E_NO Q TX
#def i ne E NO Q RX
#defi ne E_LESSDATA
#def i ne E_BUSERR

o~NO O WNEFO

/* Number of iterations before deciding that V288 does not answer */

#define TI MEQUT -1
#defi ne Q (ushort)Oxfffe
#def i ne V288 1
/* Registers of V288 Mdule */

#define STATUS (v288addr +0x02)

#def i ne TXM T

#def i ne
#def i ne

/*Interface between the user program and V288;

LOBYTE(X)
HI BYTE(x)

infile Vntaenet.c */

int caenet_read();

int caenet_wite();

/* Decl arations of dd obal

extern
extern

unsi gned
ushort

(v288addr +0x04)

(uchar) ((x) &xf f)
(uchar) (((x) &xff00) >> 8)

Variabl es defined in the user program*/

v288addr, craten;

code;

t hese functions are defined

/***/

/*

A C. A. E. N. SpA ------
/*

/* VMCAENET. C - Caenet Package for V288 Modul e

/*

*/
*/
*/
*/
*/

/***/

B.2

18/12/92 V288 User Manual

#i ncl ude "vntaenet. h"

int read_data(dat ovne)

ushort *dat ovne;

{

ushort q=0;

vne_r ead(v288addr, dat ovire, WORD) ;
vne_r ead(STATUS, &q, WORD) ;

return((gq == Q ? TUTTKK : TI MEQUT);
}

int wait_resp(datovne)
ushort *datovne;

t

int i=0;

ushort q=0;

whil e(i ! =TI MEQUT && q! =Q

vie_r ead(v288addr, dat ovne, WORD) ;
vie_r ead(STATUS, &q, WORD) ;
| ++;

}
return((i == TIMEQUT) ? TIMEOQUT : TUTTOK);
}

int send_com vneaddr ess, dat ovie)
unsi gned i nt vreaddress;

ushort dat ovne;

{

int i=0;

ushort q=0;

whi l e(i ! =TI MEQUT && q! =Q

if('vne_wite(vrmeaddress, &lat ovne, WORD))
return E_BUSERR;
vire_r ead(STATUS, &q, WORD) ;

i ++;
b
return((i == TIMEQUT) ? TIMEQUT : TUTTK);
}
/*** __

Caenet _read: Called by user progranms to |oad "byte_count" bytes from
CAENET into the buffer pointed by "*dest_buff".

The VME address of V288, the CAENET crate nunber and the

B.3

18/12/92 V288 User Manual

CAENET code are found in gl obal variables.

Caenet _read returns TUTTOK = 0 if everything has worked;

It returns one fromseven different errors (defined as
positive constants in Vncaenet.h) if it has received one
error which strictly depends from V288 Mdul e;

It returns a negative error (depending fromthe CAENET sl ave
nmodul e) if the CAENET conmmuni cation has not worked.

Renmenber: Mdul e V288 can return three "general" negative errors
related to the CAENET network that this routine does not

handl e separately fromthe "slave specific" ones.

int caenet_read(dest_buff, byte_count)
uchar *dest_buff;

int byte_count;

{

int i,esito;

ushort mstident =V288, dat at enp;

short dat o;

i f((esito=send_comm(v288addr, nstident)) == TI MEQUT)
return E_NO_Q_| DENT,

else if(esito == E_BUSERR)
return esito;

/* Transmt Crate Number */

i f((esito=send_comm{v288addr, (ushort)craten)) == TI MEQOUT)
return E_NO_Q _CRATE;

else if(esito == E_BUSERR)
return esito;

/* Transnit Code */

i f((esito=send_comm v288addr, (ushort)code)) == TI MECUT)
return E_NO_Q _CODE;

else if(esito == E_BUSERR)
return esito;

/* Start Transni ssion */
if((esito=send_comm(TXM T, nstident)) == TI MEQUT)
return E_ NO Q TX;
else if(esito == E_BUSERR)
return esito;

if(wait_resp(&dato) == TI MEQUT)
return E_NO Q RX;

if(dato == TUTTOK) /* Test on the operation */
for(i=0;i<byte_count;i+=2)

i f(read_dat a(&datatenp) == TIMEQUT && i<byte_count-1)
return E_LESSDATA;
dest _buff[i] Hl BYTE(dat at enp) ;
dest _buff[i +1] LOBYTE(dat at enp) ;
}

return dato;

Caenet _write: Called by user prograns to transfer "byte_count” bytes to
CAENET fromthe buffer pointed by "*source_buff".

B.4

18/12/92 V288 User Manual

The VME address of V288, the CAENET crate nunber and the
CAENET code are found in global variables.

Caenet _wite returns TUTTOK = 0 if everything has worked;

It returns one fromseven different errors (defined as
positive constants in Vntaenet.h) if it has received one
error which strictly depends from V288 Mdul e;

It returns a negative error (depending fromthe CAENET sl ave
nodul e) if the CAENET conmmuni cation has not worked.

Remenber: Mdul e V288 can return three "general” negative errors
related to the CAENET network that this routine does not
handl e separately fromthe "slave specific" ones.

int caenet_write(source_buff, byte_count)
uchar *source_buff;

int byte_count;

r

int i,esito;

ushort msti dent =V288, dat at enp;

short dato;

i f((esito=send_comm(v288addr, mstident)) == TI MEQOUT)
return E_NO_Q_|I DENT,;

else if(esito == E_BUSERR)
return esito;

/* Transmit Crate Number */

i f((esito=send_comm(v288addr, (ushort)craten)) == TI MECQUT)
return E_NO Q CRATE;

else if(esito == E_BUSERR)
return esito;

/* Transnit Code */

i f((esito=send_comm(v288addr, (ushort)code)) == TI MECUT)
return E_NO Q CODE;

else if(esito == E_BUSERR)
return esito;

/* Transmt data */
for(i=0;i<byte_count;i+=2)

dat at enp=(ushort) source_buff[i]<<8 | source_buff[i+1];
i f((esito=send_conmmv288addr, datatenp)) == TI MEQUT)
return E_NO _Q DATA;
el se if(esito == E_BUSERR)
return esito;
}

/* Start transm ssion */
if((esito=send_comm(TXM T, nstident)) == TI MEQUT)
return E_.NO_Q TX;
else if(esito == E_BUSERR)
return esito;

if(wait_resp(&dato) == TI MEQUT)
return E_NO Q RX;

return dato;

}

B.5

18/12/92 V288 User Manual

B.6

18/12/92

V288 User Manual

/****************'k****************************'k*****************************/

/*
/*
/*

[* VMESY403. C -

/*
/*
/*
/*
/*
/*
/*
/*

------ C.

N . SpA

Denonstration on the use of Caenet Routines in

conmuni cati on between V288 nodul e and SY403 Hi gh
Vol t age System Version 1.06

06/ 05/ 91
10/ 14/ 91
11/15/91
04/ 01/ 92

Creat ed
Updat ed
Updat ed
Updat ed

System Sof tware Version 1.08
System Sof t ware Version 1.27
System Sof t ware Version 1.40

*/
*/
*/

/****************'k*'k******************************'k*************************/

#i ncl ude
#i ncl ude
#i ncl ude

#i f ndef
#defi ne
#endi f
#i f ndef
#defi ne
#endi f

#def i ne
#defi ne
#def i ne

#def i ne

#def i ne
#def i ne
#defi ne
#def i ne

#defi ne
#def i ne
#def i ne
#def i ne
#defi ne
#def i ne
#def i ne
#defi ne

#def i ne
#def i ne

/*

<stdi 0. h>
<strings. h>
"vncaenet. h"

uchar
uchar

ushort
ushort

ESC
CR
BLANK

EUROCCOM

| DENT
READ_STATUS
READ_SETTI NGS
READ LI M TS

VOSET
V1SET
| OSET
| 1SET
VMAX
RUP

RDWN
TRI P

| SPRESENT(x)
MAKE_CODE(ch, cod)

unsi gned char

unsi gned short

Ox1b
0x0d
0x20

Oxf f 000000

wWN RO

~NoO O h~rWNEFO

(ch_read[(x)].status&(1<<2))
(((ch)<<8) | (cod))

The foll owi ng macro transfornms the V288 input address in a "good"

VME address for Standard Accesses by Eltec CPU board

*/
#defi ne

/*

The fol l owi ng structure contains al

UPDATE(addr)

the settings of a channe

*/

struct hvch

{

char

chnane[12];

((unsi gned int) EUROCOM + addr)

t he useful information about

B.7

18/12/92 V288 User Manual

| ong vOset ;
| ong vlset;
short i Oset;
short i lset;
short vnmax;
short rup;
short rdwn;
short trip;
ushort flag;

h

/*
The following structure contains all the useful infornmation about
the status of a channel

*/

struct hvrd

{

| ong vread;

short iread;

ushort status;

h

/*
The followi ng structure contains all the useful infornation about the
voltage and current linmts of every board
*/
struct vi_max
{
short vmax[4];
short inmax[4];
short resv[4];
short resi[4];
short decv[4];
short deci[4];
H

/*

d obal s
*/
int Y; /* File conio.c needs it */
unsi gned v288addr, cr at en;
ushort code; /* Caenet code */
struct vi_nmax max_vi ;

i nt makenenu()

{

int c;

clrscr();

hi ghvi deo() ;

puts(” - MAIN MENU - \n\n\n ");

nor nvi deo() ;

puts(" [0] - Read Moddule ldentifier ");
puts(" [1] - Channels 0..15 Mnitor ")
puts(" [2] - Channels 16..31 Mnitor ");
puts(" [3] - Channels 32..47 Monitor ");
puts(" [4] - Channels 48..63 Mnitor ")
puts(" [5] - Parameter Setting)
puts(" [6] - Speed test)

B.8

18/12/92 V288 User Manual

puts("\nm\n [7] - Qit ");
while((c=getch()-'0") <0 & c > 7);
return c;

voi d read_ident ()

i{nt i, response;

char sy403ident[12];

char tenpbuff[22];

code=I| DENT; /* To see if sy403 is present */

i f((response=caenet _read(tenpbuff,22)) !'= TUTTOK && response ! = E_LESSDATA)
{

printf(" Caenet_read: Error nunber %l received\n", response);
puts(" Press any key to continue ");

getch();

return;

}

for(i=0;i<11;i++)
sy403i dent [i] =t empbuf f[2*i +1] ;

sy403ident[i]="\0";
printf(" The nodul e has answered : %\n", sy403ident);
puts(" Press any key to continue ");
getch();
}

int get limits)
{

int response;

code=READ LIM TS;
i f((response=caenet_read(&max_vi, sizeof (struct vi_max))) != TUTTCK)

printf(" Caenet_read: Error nunber %l received\n", response);
puts(" Press any key to continue ");
getch();

}

return response;

voi d ch_nonitor(group)

int group;
i nt i,
caratt="P,
response,
chs=(group-1)*16;
static float powlO[]={ 1.0, 10.0, 100.0};

B.9

18/12/92

V288 User Manual

fl oat scal ei, scal ev;
ushort channel ;
static int page=0;
static struct hvch ch_set[16]; /* Settings of 16 chs. */
static struct hvrd ch_read[16]; /* Status of 16 chs. */
scal ev=powlO[max_vi . decv[group-1]1];
scal ei =powl0[max_vi . deci [group-1]1];
clrscr();
hi ghvi deo() ;
i f(!page)
put s
(" Channel Vimon | non VOset | Oset Vlset | 1set Fl ag Ch#
ll);
el se
put s
(" Channel Vimax Rup Rdwn Trip St at us Ch# ");
nor nvi deo() ;
gotoxy(1, 23);
puts(" Press '"P' to change page, any other key to exit ");
while(caratt == '"P') /* Loops until soneone presses a key different fromP */
{
/* First update from Caenet the informati on about the channels */
for(i=0;i<16;i++)
{
channel =(uchar) (chs+i);
code=MAKE_CODE(channel , READ_STATUS) ;
i f((response=caenet_read((char *)&h_read[i], sizeof (struct hvrd))) != TUTTCOK)
got oxy(1, 22);
printf(" Caenet_read: Error nunber %l received\n", response);
puts(" Press any key to continue ");
getch();
return
}
code=MAKE_CODE(channel , READ_SETTI NGS) ;
i f((response=caenet _read((char *)&h_set[i],sizeof (struct hvch))) != TUTTOK)
got oxy(1, 22);
printf(" Caenet_read: Error nunber %l received\n", response);
puts(" Press any key to continue ");
getch();
return
}
}
/* Then test if this group is present in the sistem?*/
i f(!1SPRESENT(0))
{
got oxy(1, 22);
puts(" Sorry, this group is not present ");
puts(" Press any key to continue ");
getch();
return;
}

/* If the group i s present,

if(!page)

for(i=0;i<16;i++)

{

B.10

display the information */

/* Page 0 of display */

18/12/92 V288 User Manual

gotoxy(1,i+5);

printf(" 99s",ch_set[i].chnane);

gotoxy(12,i +5);

printf
("w7.2f 9%O7.2f 9%9©7.2f 9O7.2f 9O7.2f 9O7.2f %x o%2d \n",
ch_read[i].vread/ scalev,ch_ read[i].iread/ scalei,ch_set[i].vOset/scalev,
ch_set[i].iOset/scalei,ch_set[i].vlset/scalev,ch_set[i].ilset/scalei
ch_set[i].flag, chs+i);

el se /* Page 1 of display */
for(i=0;i<16;i ++)

gotoxy(1,i+5);

printf(" 9%9s",ch_set[i].chnane);

got oxy(14,i +5);

printf
("9%d %3d %3d %05. 1f Yl x o2d \n",
ch_set[i].vmax, ch_set[i].rup,ch_set[i].rdwn,ch_set[i].trip/10.0
ch_read[i].status,chs+i);

}
/* Test the keyboard */
if(_gs_rdy(0) !'=-1) /* A key has been pressed */
i f((caratt=toupper(getch())) == "'P') /* They want to change page */
{
hi ghvi deo() ;
page = ! page;
clrscr();
i f(page == 0)
put s
(" Channel Vnon | mon VOset | Oset Vliset | 1set Fl ag Ch#
")
el se
put s
(" Channel Vimax Rup Rdwn Trip St at us Ch# ");
nor nvi deo() ;
got oxy(1, 23);
puts(" Press 'P' to change page, any other key to exit ");
}
} /* End while */
}
/*** __
Par _set

voi d par_set ()

f | oat i nput _val ue
scal e;
static float powlO[] ={ 1.0, 10.0, 100.0};
ushort channel , val ue;
int i,
response
par =0
char choi ced_par anf 10] ;
static char *parani] =
{
"vOset", "vilset", "iOset", "ilset", "vmax", "rup", "rdwn", "trip"
}

B.11

18/12/92 V288 User Manual

clrscr();
printf("\n\n Channel: "); /* Choi ce the channel */
scanf (""", &);
channel =(uchar)i;
puts(" Allowed paraneters (lowercase only) are:");
for(i=0;i<8;i++)
puts(paranfi]);
whi | e(! par)
{

printf("\'n Paraneter to set: "); /* Choice the paraneter */
scanf (" %", choi ced_paranj;
for(i=0;i<8;i++)
if(!strcnp(paranii], choi ced_paramn)
{
par =1,
br eak;

o}
if(i==8)
puts(" Sorry, this paranmeter is not allowed");

printf(" Newvalue :"); /* Choice the val ue */
scanf ("%", & nput _val ue);

switch(i) /* Decode the par. */

{
case VOSET:
code=MAKE_CODE(channel , 16) ;
scal e=powl0[max_vi . decv[channel / 16]] ;
i nput _val ue*=scal €;
val ue=(ushort) i nput _val ue;
br eak;
case VI1SET:
code=MAKE_CODE(channel , 17) ;
scal e=powlO[max_vi . decv[channel / 16]];
i nput _val ue*=scal e;
val ue=(ushort) i nput _val ue;
br eak;
case | OSET:
code=MAKE_CODE(channel , 18);
scal e=powlO[max_vi . deci [channel / 16]];
i nput _val ue*=scal e;
val ue=(ushort) i nput _val ue;
br eak;
case | 1SET:
code=MAKE_CODE(channel , 19) ;
scal e=powl0[max_vi . deci [channel / 16]] ;
i nput _val ue*=scal e;
val ue=(ushort) i nput _val ue;
br eak;
case VMAX:
code=MAKE_CODE(channel , 20) ;
val ue=(ushort) i nput _val ue;
br eak;
case RUP:
code=MAKE_CODE(channel , 21);
val ue=(ushort) i nput _val ue;
br eak;
case RDWN:
code=MAKE_CODE(channel , 22) ;
val ue=(ushort) i nput _val ue;
br eak;
case TRIP:
code=MAKE_CODE(channel , 23) ;

B.12

18/12/92 V288 User Manual

i nput _val ue*=10; [* Tripis in 10-th of sec */
val ue=(ushort) i nput _val ue;
br eak;
}
i f((response=caenet_write(&alue,sizeof(ushort))) != TUTTOK)

printf(" Caenet_wite: Error nunber % received\n", response);
puts(" Press any key to continue ");

getch();

}

voi d speed_test()

i{nt i, response;

ushort channel;

char sy403ident[12],] oopdata 12];

char tenpbuff[22];

code=| DENT; /* To see if sy403 is present */
i f((response=caenet _read(tenpbuff,22)) !'= TUTTOK && response ! = E_LESSDATA)

printf(" Caenet_read: Error nunber %l received\n", response);
puts(" Press any key to continue ");

getch();

return;

}
for(i=0;i<l1;i++)

sy403i dent [i] =t enpbuf f[2*i +1] ;
sy403ident[i]="\0";

puts(" Looping, press any key to exit ... ");
/* Loop until one presses a key */
while(_gs_rdy(0) == -1)

{

i f((response=caenet_read(tenpbuff,22)) != TUTTOK && response ! = E _LESSDATA)

printf(" Caenet_read: Error nunber % received\n", response);
puts(" Press any key to continue ");

getch();

return;

}
for(i=0;i<11;i++)
| oopdat a[i] =t enpbuf f[2*i +1];
| oopdatal[i]="\0";
i f(strcnp(sy403ident, | oopdata)) /* Data read in | oop are not good */

printf(" Test_loop error: String read = %\n", | oopdat a);
puts(" Press any key to continue ");
getch();
return;
}
} /* end while */
getch();
}

B.13

18/12/92

voi d esci ()

clrscr();
deinit_buserr();
exit(0);

voi d mai n(argc, argv)
int argc;
char **argv;

{
if(argc '= 3)

[* "Kill"

ny Bus Error

V288 User Manual

Handl er

*/

puts(" Usage: vnesy403 <v288 vne address (in hex)> <sy403 Caenet nunber (in

hex) >");
exit(0);

sscanf (*(++argv), " %", & 288addr) ;
sscanf (*(++argv), " %", &craten) ;

v288addr =UPDATE(v288addr) ;

init_buserr();

if(get_limts() != TUTTOK)

esci ();

/*

Mai n Loop
*/
for(;;)

swi t ch(makermenu())

{
case 0:
read_i dent();
br eak;
case 1:

ch_monitor(1);

br eak;
case 2:

ch_nonitor(2);

br eak;
case 3:

ch_noni tor(3);

br eak;
case 4:

ch_noni tor(4);

br eak;

case 5:
par_set();
br eak;

case 6:
speed_test();
br eak;

case 7:

/* Cet

B.14

/* For Eltec E-6 VME board */

/* To handl e Bus Error

*/

i nformati on about the boards */

18/12/92 V288 User Manual

esci();

br eak;
defaul t:

br eak;

}

B.15

